5
F WATERLOO

WA
WATE

3
O

S

Y
SITY

g

A Note on Some Tree
Similarity Measures

Karel Culik 11
Derick Wood

CS5-82-30

September, 1982

eV

(2)

A NOTE ON SOME TREE SIMILARITY MEASURES(L)

by

Karel Culik 11(2) and Derick Wood(%)

Work carried out under Natural Sclences
Canada Grant Nos. A-7403 and A-7700.

Department of Computer Science
University of Waterloo
Waterloo, Ontario

N2L 3Gl Canada

and Engineering Council of

1. Introduction

Given two structures of the same type, one standard question is: how
close are these two structures to each other? One example is the string-to-
string correction problem, see [H], [S], and [WF] for example, a second is
syntax-error repairing in parsers, see [BP], and [Ll, and a third is the

similarity of two dendrograms [D], [MGB] and [WS}.

It is this third example we are concerned with in the present note. We
consider labelled and unlabelled trees and search trees of the same size n.
We show that two trees of the same type are 0(n) and O(nlogn) distance

apart, for unlabelled and labelled trees respectively. The basis for the

distance measure is the interchange or rotation tree transformation.

2. The Results

We define an (unrooted) binary tree (or dendrogram) to be a connected

graph with no cycles, where each node is elther unary or ternary. A unary
node 1s called a leaf, external or terminal node, while a ternary node 1is
called an internal node. If a binary tree has n » 3 leaves, then it has

n - 2 internal nodes and n - 3 edges connecting the internal nodes.

Similarily we define a rooted, oriented and ordered binary tree, usu-—

ally called a binary search tree to be a connected digraph, with a desig-
nated root node. Each node apart from the root has in-degree one and out-
degree either 0 or 2. The former are leaves and the latter are internal

nodes.

A well known tree transformation in binary search trees is that of

rotation or promotion, namely:

given

a clockwise rotation about v yields:

A counterclockwise rotation about u in the second diagram yields the
tree in the first diagram. The reasons for the importance of this rotation
are two—fold. First, if the original tree is a valid search tree, that is
its nodes are also canonically labelled with "keys" from some universe, then
the resulting tree is alse a valid search tree. Second, it affects the
“"balance" of the rotation node, and this is exploited in varlous balanced

binary search tree schemes, see [K, pp. 451 ff] for example.

Given this transformation, which we denote by p, and two binary search

trees S and T each with n nodes, we can define the rotation distance of S

and T, denoted by rdist(S,T), as: the minimum number of applications of p
which will transform S into a tree S' isomorphic with T. (Note: for pur-
poses of clarity, in the following we usually prefer to say (incorrectly):

"...transform S into T"... .)

Number the internal nodes of a binary search tree, with n internal
nodes, ftom 1 to n. Then we may speak of pi’ the clockwise rotation at node

1 and ;i as the counterclockwise rotation at 1.

We now have our first result, namely:

Theorem 1
Let S and T be two binary search trees with n » 1 internal nodes. Then

0 € rdist(S,T) < 2n - 2.

@
Proof: Let R = Cj/;;;i:kj\\ also have n internal nodes.
o/\o

We claim that 0 < rdist(S,R) < n - 1.

If R 1s equal to S then rdist(R,S) = 0. Otherwise the right spine of §
contains 1 < m < n internal nodes, since the root is on the right spine and
S 13 not equal to R. Consider a node i, say, on the right spine that has at
least one internal node in its left subtree. Perform pi to give 8' with
m + 1 internal nodes on its right spine. Repeating this process yields,
eventually, R. Clearly at most n - 1 rotations are used. Similarily, from

T we can also generate R with a sequence p_ ,

wes of rotations

m

0<Km<n- 1. Hence ;i ;1 ces ;i applied to R yields T, and this in
m ml 1

turn yields the result. B

Letting Jn denote the class of binary search trees with n internal

nodes, we next obtain:

Theorem 2

For all n, (Jn’ rdist) forms a metric space.

Proof:
(1) rdist(T,T) = 0, for all T in Ju.
(1i) rdist(S,T) = rdist(T,S), for all § and T in Jn'

(ii1) rdist(S,T) < rdist{S,R) + rdist(R,T), for all R,S and T in Jn') |

An open problem is to determine the complexity of computing rdist(S,T).

We now turn to unrooted binary trees., In [M] and [GB] the notion of a
“nearest neighbor l-step change” is introduced. This has been studied in
more detail in [WS]; they call it the "neareat neighbor interchange”. We

will simply call this tree transformation an interchange and we define it as

follows:

given

an interchange about the edge 1 yields:

a . c a
u v " v b
either or
d b
¢ d

Recall that we are dealing with free trees and hence the interchange takes
the set {a, b, c, d} of subtrees and redistributes them to u and v to form a

partition different from the initial one, {{a, b}, {c, di}.

Note that a rotation is a thinly disguised interchange, since:

”\O}s
u yields

that is {{a, b}, (¢, d}} yields {{a, d}, {b, ec}}. This interchange is

uniquely defined because the trees are ordered, and

therefore is an invalid rotatiomn.

We define the interchange distance of S from T, denoted by idist(S,T),

where S5 and T are trees with n internal nodes, as we did for rotation dis—

tance. Letting Fn denote the class of trees with n nodes, we immediately

have:

Theorem 3
For alln > 1,
(1) For all S and T in Fn, idist(S,T) is well-defined and 0 < idist(S,T)
< 2n - 2, and

(i1) (Fn, idist) forms a metric space.

However [WS] are concerned with leaf labelled trees, that is each leaf

of a given tree T has a unique label associated with it (unique with regpect
to T that 1is). It is convenient, and no loss of generality, to assume the
labels are the integers 1,2,... . We use n to denote the number of leaves

of a tree in this discussion, where n > 3.

We may once more define a distance measure between labelled trees with

n leaves, let us call it the labelled interchange distance of S from T,

denoted by 1idist(S,T). However, note that when $ and T are isomorphic,
this means that they are not only structurally the same, as with idist, but
also corresponding leaf nodes have the same label. We now obtain our final

theorem, letting Ln denote the class of leaf labelled trees with n leaves.

Theorem 4
For all n > 3.
(1) For all S and T in Ln, 1idist(S,T) is well-defined and
0 < 1idist(S,T) < 4n - 12 + Anllogz(n/S)], and

(i) (Ln, lidist) forms a metric space.

(1) 14dist(S,T) is well-defined since we can transform S into R which ig
equal to T, if leaf labels are ignored, via Theorem 3. Then for each
leaf in R with an incorrect label i, say, it is swapped with the leaf

having the required label, } say:

a b

— aw—x—z—g‘x—m o
ST YR

and now j can be moved down to its position by the same technique. Clearly

T T T

at most n such swaps are necessary and it should be observed that the
relative ordering of the subtrees on the path connecting i and j remains
undistributed by the swapping. Hence 1idist{5,T) is well-defined.

To show that it is bounded above by 4n - 12 + lm[logz(n/.?.)] transform S
into a minimal diameter tree R, that is the longest path is minimal. Hence

R has the appearance of:

where each subtree has approximately equal height, bounded above by
[logz(n/3)]. Hence to swap the values 1 and j at two leaves takes at most
2 . (2[logz(n/3)]) interchanges by the above and n swaps requires at most

4n - [1032(11/3)] interchanges.

Now to obtain R, by previous arguments at most 2n - 6 interchanges are

needed and similarily to obtain R from T, yielding the result.

(11) This follows immediately) §

As in [WS}] we leave a number of problems unsolved. For the unlabelled
cases we have an 0(n) interchange/rotation algorithm and this is clearly

asymptotically optimal, since the tree

with n nodes requires 0(n) interchanges to give the right spine tree

However for the labelled case we have an (Q(nlogn) interchange algorithm, but
we have no proof of optimality, although we conjecture it to be so., Simi-
larily the concrete bound of Theorem 4 is not kmown to be achievable, but we
have no better one. Finally given two trees S and T what is the complexity

of determining rdist(S,T), idist(S,T) or lidist(S,T)?

10

References

(AP}

ip]

[H]

{X]

L]

[MGB]

Aho, A.V., and Peterson, T.G. A minimum distance error—correcting

parser for context-free languages. SIAM Journal of Computing 1

(1972), 305-31i2.

Day, W.H.E. A new approach to constructing tree metrics. Memorial

University of Newfoundland, Computer Science Technical Report No.

8001, 1980.

Hirschberg, D.S. Complexity of common subsequence problems. Proce-—

edings of the 1977 Fundamentals of Computation Theory Conference,

Springer-Verlag Lecture Notes in Computer Science 56 (1977), 393~

398.

Knuth, D.E. The Art of Computer Programming, Volume 3: Sorting and

Searching. Addison-Wesley Publishing Co., Reading, Mass., 1973.

Lyon, G. Syntax-directed least-errors analysis for context—free

languages: a practical approach. Communications of the ACM 17

(1974), 3-14.

Moore, G.W., Goodman, M., and Barnabas, J. An iterative approach
from the standpoint of the additive hypothesis to the dendrogram

problem posed by molecular data sets. Journal of Theoretical Biology

38 (1973), 423-457.

[s]

[Ws]

[WF]

11

Sankoff, D. Matching sequences under deletion/insertion constralnts.

Proceedings National Academy of Sciences USA 69, (1979), 4-6.

Waterman, M.5. and Smith, T.F. On the similarity of dendorgrams.

Journal of Theoretical Biology 75 (1978), 789-800.

Wagner, R.A., and Fischer, M.J. The string-to-string correction

problem. Journal of the ACM 21 (1974), 168-173.

February 16, 1982
G/USC.4/A/DW6.1

/bh

	
	
	
	
	
	
	
	
	
	
	
	
	

