

Height-Ratio-Balanced Trees

WEBSITY OF WATERLIVERSITY OF WATERL

Gaston H. Gonnet Henk J. Olivié and Derick Wood

CS-82-29

September, 1982

HEIGHT-RATIO-BALANCED TREES1)

by

Gaston H. Gonnet²⁾, Henk J. Olivié³⁾, and Derick Wood²⁾

¹⁾ The work of the first and third authors was carried out under Natural Sciences and Engineering Research Council of Canada Grants Nos. A-3353 and A-7700.

²⁾ Department of Computer Science University of Waterloo Waterloo, Ontario CANADA N2L 3G1

³⁾Unit for Mathematics and Computer Science IHAM Paardenmarkt 94 B-2000, Antwerp, BELGIUM

Abstract

We introduce a new class of binary search trees, the height-ratio-balanced binary search trees, as the height based analogy of weight (-ratio) balanced binary search trees. They form a proper subclass of the class of binary search trees, but not a logarithmic one, indeed an n node height-ratio balanced tree of order α , $0 < \alpha < 1/3$, has a worst case height of $\mu e^{\mu+O(1)}$, where $\mu = \sqrt{-2 \ln(\alpha/(1-\alpha)) \ln(n)}$. This result indicates that these naturally defined trees should not be used to implement the DICTIONARY operations, in practical situations.

1. Introduction

Since the AVL or height-balanced binary search trees were introduced by Adelson-Velskii and Landis [AVL] in 1962, there have been surprisingly few new classes of "logarithmically-balanced" search trees introduced. The only ones known to the authors are the weight-balanced trees [NR], kheight-balanced trees [F], one-sided height-balanced trees [K], half-balanced trees [01], and c-balanced trees [02]. All these classes allow updating to be carried out in O(log n) time, when the starting tree has n nodes and the resulting tree is in the same class. Furthermore searching a tree of n nodes in any of these classes is also an O(log n) time operation. Typically whenever these so called DICTIONARY operations [AHU] need to be implemented with O(log n) time complexity, one of these classes of trees is chosen (typically the AVL-trees).

In each of the classes of trees mentioned above, [AVL, F, K, NR, 01, 02] the notion of a balanced node is defined which depends on either the

height or the weight of the node's subtrees (additionally [01, 02] requires the shortest path to a leaf from the node). Hence a natural question arises, namely, when can the roles of height and weight be interchanged leaving a logarithmically-balanced class of trees. This paper considers the weight-balanced trees of Nievergelt and Reingold [NR] as such a candidate.

We prove that these height-ratio-balanced trees also give a non-

logarithmic class of trees, but of more interest is the worst case height of a height-ratio-balanced tree of n nodes: $h=\mu e^{\mu+\theta(1)}$, where $\mu=\sqrt{-2~\ln(\alpha/(1-\alpha))\ln(n)}.$

Height-ratio-balanced trees

Before introducing our central notion we require some preliminary $\frac{1}{2}$

A binary tree of n nodes, T_n is the empty tree T_0 if n=0 and otherwise is a triple $(T_{\hat{\ell}}, u, T_r)$ where $\ell+r+1=n$, $T_{\hat{\ell}}$ and T_r are binary trees, u is the root of T_n , $T_{\hat{\ell}}$ is the left subtree of u and T_r is the right subtree of u. For the purposes of this paper we define the height of a tree T_n , denoted by $ht(T_n)$, as follows:

$$ht(T_n) = 1$$
 if $n = 0$ and $1 + max(ht(T_n), ht(T_n))$ otherwise.

The height is defined as one larger than usual to simplify the balancing formula.

The particular balancing measure we study is captured in the following definition.

Definition

Let n > 1 and T = $(T_{\hat{\chi}}, u, T_{\hat{r}})$. Then the <u>balance of u</u>, denoted by $\beta(u)$, is defined by

$$\beta(u) = \frac{ht(T_{\ell})}{ht(T_{\ell}) + ht(T_{r})}.$$

2. Height-ratio-balanced trees

Before introducing our central notion we require some preliminary definitions.

A binary tree of n nodes, T_n is the empty tree T_0 if n=0 and otherwise is a triple (T_ℓ, u, T_r) where $\ell+r+l=n$, T_ℓ and T_r are binary trees, u is the root of T_n , T_ℓ is the left subtree of u and T_r is the right subtree of u. For the purposes of this paper we define the height of a tree T_n , denoted by $ht(T_n)$, as follows:

$$ht(T_n) = 1$$
 if $n = 0$ and $1 + max(ht(T_1), ht(T_r))$ otherwise.

The height is defined as one larger than usual to simplify the balancing formula.

The particular balancing measure we study is captured in the following definition.

Definition

Let n > 1 and $T_n = (T_{\hat{\chi}}, u, T_r)$. Then the <u>balance of u</u>, denoted by $\beta(u)$, is defined by

$$\beta(u) = \frac{ht(T_{\ell})}{ht(T_{\ell}) + ht(T_{r})}.$$

This in turn leads to our central notion:

Definition

Let α be a number, $0 \le \alpha \le 1/2$. A tree T_n is said to be height-ratio-balanced of order α , α - hrb, if either n = 0 or n > 1, T_n = (T_{ℓ}, u, T_r) , $\alpha \le \beta(u) \le 1$ - α and both T_{ℓ} and T_r are α -hrb.

With any notion of balance it must be demonstrated that there is a tree of every size satisfying the balancing criterion. In the present case we do this in two stages, we first show that not all values of α in [0, 1/2] are viable and second we show that for viable α there exist trees of every size. Observe that by definition, the class of 0-hrb-trees equals the class of binary trees, and that not all α are viable, that is similar to the case of weight-balanced trees [NR] there is a "gap" lemma.

Lemma l

For all α , $1/3 < \alpha < 1/2$, the class of α -hrb trees does not contain any trees with an even number of nodes.

<u>Proof:</u> Let T_n be α -hrb, for some α , $1/3 < \alpha < 1/2$. This implies that $\alpha < \beta(u) < 1 - \alpha$, for all nodes u in T_n . That is, letting x be the height of u's left subtree and y the height of u's right subtree, $\alpha < x/(x + y) < 1 - \alpha$. Since $\alpha > 1/3$, this implies x < 2y < 4x, must have integral solutions for y for all integral values of x > 1. In particular 1 < 2y < 4 implies y = 1, that is $\beta(u) = 1/2$. But if n is even there must be at least one node with both an empty subtree and a non-empty one, that is with balance at most 1/3. This proves the result.

Note that this gap result is not as strong as the one of [NR], since in their case, there are only completely balanced trees in the gap. Our result says that there are no trees in the gap with n even. Because of Lemma 1 we will only treat viable α in the remainder of the note, that is $0 < \alpha < 1/3$.

Lemma 2

For all α , $0 \le \alpha \le 1/3$ and for all n > 0, there exists a T_n which is α -hrb.

<u>Proof:</u> Let T_n be a minimal height tree with n nodes, then for every node u in T_n , the difference between the height of u's subtrees is at most 1. Letting h_{ℓ} denote the height of the left subtree of u, then $\beta(u)$ = either 1/2 or $h_{\ell}/(2h_{\ell}+1)$, without any loss of generality. In the latter case $\beta(u) > 1/3$ implies $h_{\ell} > 1$, which is trivially true. Hence in both cases $1/3 \le \beta(u) \le 1/2$, as desired.

To demonstrate that the class of α -hrb trees is, indeed, balanced, we need to prove that insertions and deletions can be performed in O(ht(T)) time, for all T in the class, yielding, perhaps by way of some restructuring, a tree T' in the same class. However, because of the worst case analysis of the height, which we now present, this is left to the interested reader.

Theorem 3

Let α be viable and T_n be an $\alpha\text{-hrb-tree, then}$

$$ht(T_n) < \mu e^{\mu + O(1)}$$

where
$$a = (\frac{\alpha}{1-\alpha})$$
 and $\mu = \sqrt{-2\ln(a)\ln(n)}$.

<u>Proof:</u> To prove this theorem we will find the smallest tree (least number of nodes) of a given height. The tree may be represented as

Let ht(B) > ht(A). If this tree has the least number of nodes, then B also has the least number of nodes, that is it is in the same class. From the balancing condition we conclude that

$$\frac{ht(B)}{ht(B) + ht(A)} \le 1 - \alpha$$

or
$$\frac{\alpha}{1-\alpha}$$
 ht(B) < ht(A).

Letting a = $\frac{\alpha}{1-\alpha}$ and noticing that the height is always an integer

Since the number of nodes for this class is clearly monotone in the height, we will select A to be the smallest possible tree with the least number of nodes, and also in the same class.

Consequently we have a recurrence (ellition in the minimal number of nodes N(h) of a tree with height h:

$$N(h+1) = N(h) + N([a \cdot h]) + 1$$

Let h(n) be the smallest h such that N(h+1) > n. Then it is easy to see that the height of any tree with n nodes is bounded from above by h(n). If $N^{-1}(n)$ denotes the inverse function of N(h) then it is easy to see that $h(n) = \{N^{-1}(n)\}$.

For example with $\alpha = 1/3$ and a = 1/2 we obtain

,												
h	10	20	30	40	50	60	70	80	90	100	150	200
N(h)	29	194	729	2061	4913	10398	20133	36450	62573	102928	782153	3694785

Then we can define

$$N^*(h+1) = N^*(h) + N^*(ah) + 1$$

a functional equation defined for real h. Using standard techniques we can show that $\ln(N^*(h))$ has a proper asymptotic expansion in terms of $\omega(h)$, the first few terms being:

and $\omega(h)$ is the transcendental function defined by $\omega(h)e^{\omega(h)} = h$.

We can also invert the asymptotic series to obtain h in terms of N (the inverse of the function N (h)):

(**)
$$h'(N) = e^{\mu-c/2} \left(\mu - \frac{\ln(a) \ln(\mu)}{2} + 0(1)\right)$$

where

$$\mu = \sqrt{-2 \ln(a) \ln(n)}.$$

Intuitively, N(h) should be close to N $^{\star}(h)$, the only difference being the ceiling function in one of the arguments.

To prove that the relation $N(h)/N^*(h)$ is bounded we will first introduce the function $N^+(h)$,

$$N^{+}(h+1) = N^{+}(h) + N^{+}([ah]) + 1$$

with the same initial conditions as N(h). Then it is not difficult to show that

$$N(h) > N^{*}(h) > N^{+}(h)$$
.

A careful study of the difference $N(h) - N^{+}(h)$ shows that

$$\lim_{h\to\infty}\frac{N(h)}{N^+(h)} < \text{constant.}$$

The relation between N(h) and N (h) follows immediately.

The final step is to relate h $^{\star}(n)$ to h(n) (the inverses of N $^{\star}(h)$ and N(h)). The previous theorem says that

H

$$h(N) = h^*(KN)$$

in some bounded constant, K. Since

$$\mu(KN) = \mu(N) \left(1 + O(\frac{1}{\ell nn})\right)$$

we finally conclude that the height of an n node tree < h(N) = $e^{\mu-c/2}$ ($\mu - \frac{\ln(a)\ln\mu}{2} + 0(1)$).

There is an interesting relation between N(h) and P(h), a partition number. P(h) of index r is the number of different solutions, number of different ordered sets of values h_0 , h_1 , h_2 ..., of

$$h_0 + h_1 r + h_2 r^2 + \dots < h$$

This latter problem was solved by Mahler [M] and de Bruijn [D] in great detail as was kindly pointed out to us by A. Odlyzko [private communication].

P(h) satisfies the functional equation

$$P(h+1) = P(h) + P(\left[\frac{h+1}{r}\right]).$$

It is easy to verify that the binary partition problem (Mahler's partition problem for r=2) satisfies exactly the same functional equation as the hrb-tree for $\alpha=1/3$. Due to different initial conditions,

$$N(h) = P(h)/2-1$$
.

In any case P(h) always satisfies the same asymptotic expression (*) with a = $1/r_{\star}$

It is interesting to note that N(h) has a much simpler solution in terms of $\omega(h)$ than in terms of $\ln(h)$ and $\ln(\ln(h))$, cf. Mahler [M] and de Bruijn [D].

References

- [AHU] Aho, A.V., Hopcroft, J.E. and Ullman, J.D. The Design and Analysis

 of Computer Algorithms. Addison-Wesley Publishing Co., Reading,

 Mass., 1974.
- [AVL] Adelson-Velskii, G.M., and Landis, E.M. An information organization algorithm. Doklady Akademiia Nauk SSSR 146 (1962), 263-266.
- [D] de Bruijn, N.G. On Mahler's partition problem. Netherlands Aka.

 Wetenschef. Proc. 51 (1948), 659-669.
- [F] Foster, C.C. A generalization of AVL trees. <u>Communications of the ACM 16 (1973)</u>, 513-517.
- [K] Knuth, D.E. The Art of Computer Programming, Vol. 3: Sorting and

 Searching. Addison-Wesley Publishing Co., Reading, Mass., 1973.
- [LP] Luccio, F. and Pagli, L. Power Trees. Communications of the ACM 21 (1978), 941-947.
- [M] Mahler, K. On a special Functional equation. J. London Math. Soc. 15 (1940), 115-122.
- [NR] Nievergelt, J., and Reingold, E.M. Binary search trees of bounded balance. SIAM Journal of Computing 2 (1973), 33-43.

- [01] Olivié, H.J. Half-balanced binary search trees. RAIRO Informatique
 Théoretique (1981), to appear.
- [02] Olivié, H.J. On a-balanced binary trees. Theoretical Computer

 Science Conference. Lecture Notes in Computer Science 104 (1981),

 Springer-Verlag, Heidelberg, 98-108.

May 31, 1982 M/MDW.2/A/DW3.1/bh