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Abstract

We introduce a new class of binary search trees, the height-ratio-
balanced binary search trees, as the height based analogy of weight (-ratio)
balanced binary search trees. They form a proper subclass of the class of

binary search trees, but not a logarithmic one, indeed an n node height-

ratic balanced tree of order o, U0 € a € 1/3, has a worst case height of

ueU+0(L) where u = ¥-2%n(a/(l-a))&n{n). This result indicates that these

naturally defined trees should not be used to implement the LICTIONARY oper—

ations, in practical situations.



i, Introduction

Since the AVL or height—balanced binary search trees were introduced
by Adelson-Velskii and Landis [AVL] in 1962, there have been surprisingly
few new classes of "logarithmically-balanced" search trees introduced.
The only ones known to the authors are the weight-balanced trees |NR|, k-
height-balanced trees [F|, one-sided height-balanced trees [Kj, half-bal-
anced trees [0l|, and a-balanced trees [02]. All these classes allow updat-
ing to be carried out in O(log n) time, when the starting tree has n nodes
and the resulting tree is in the same class. Furthermore searching a tree
of n nodes in any of these classes is also an U(log n) time operation.
Typically whenever these so called VICTIONARY operations [AHU| need to be
implemented with U(log n) time complexity, one of these classes of trees is

chosen {typically the AVL-trees).

In each of the classes of trees mentioned above, lAVL, F, K, NR, 01,

02] the notion of a balanced node is defined which depends on either the

height or the weight of the node's subtrees (additionally {01, 02] requires
the shortest path to a leaf from the node). Hence a natural question
arises, namely, when can the rcles of height and weight be interchanged
leaving a logarithmically-balanced class of trees. This paper considers the

weight-balanced trees of Nievergelt and Reingold [NR| as such a candidate.

We prove that these height-ratio-balanced trees also give a non-



logarithmic class of trees, but of more interest is the worst case height of

ut0¢1)
e ,

a height-ratio-balanced tree of n nodes: h where

n = +¥-2 zn(o/(1-a))2n(n).



2. Height-ratio-balanced trees

Before introducing our central notion we require some preliminary

definitions.

A binary tree of n nodes, Tn is the empty tree To if n = 0 and

otherwise is a triple (TL’ u, Tr) where £+ r+ 1 =0, T and Tr are binary

)
trees, u is the root of Tn’ T!. is the left subtree of u and Tr is the right

subtree of u. For the purposes of this paper we define the height of a tree

T , denoted by ht(Tn), as follows:
n

hr.(TuJ =1 if n = ¢ and 1+ max (ht(TL), ht(T:)) otherwise.

The height is defined as one larger than usual to simplify the balancing

formula.

The particular balancing measure we study is captured in the follow-

ing definition.

Definition
Let n » I and T:l - (Tl' u, Tr). Then the balance of u, denoted by

8(u), is defined by

n:(T”)
B{u) = IR ¢
ht Ty’) + ht('rr
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This in turn leads te our central notion:

Definition

Let a be a number, U < a € 1/2. A tree Tn is said to be height—

ratio-balanced of order a«, ¢ - hrb, if either n =V or n > 1, Tn = (Tg, u,

Tr)’ a € B{u) € 1 - o and poth Tl and Tr are o~hrb.

With any notion of balance it must be demonstrated that there is a
tree of every size satisfying the balancing criterion. In the present case
we do this in two stages, we first show that not all values of o in [u, 1/2]
are viable and second we show that for viable o there exist trees of every
size. Observe that by definition, the class of U-hrb-trees equals the class’
of binary trees, and that not all o are viable, that is similar to the case

of weight-balanced trees [NR] there is a "gap" lemma.

Lemma 1

For all a, 1/3 < a < 1/2, the class of a~hrb trees does not contain

any trees with an even number of nodes.

Proof: Let T be o~hrb, for some a, 1/3 < a < 1/2, This implies that
—_— n

a < B{u) < 1 - a, for all nodes u in Tn‘ That is, letting x be the height

of u's left subtree and y the height of u's right subtree, & <x/(x + y) <
1 - o Since a > 1/3, this implies x < 2y < 4x, must have integral solu-
tions for y for all integral values of x » 1, In particular 1 <2y < 4
implies y = 1, that is B{u) = }/2. But if n is even there must be at least
one node with both an empty subtree and a non—empty one, that is with bal-

ance at most 1/3. This proves the result. 1



Note that this gap result is not as strong as the one of [NR}, since
in their case, there are only completely balanced trees in the gap. Our
result says that there are no trees in the gap with n even. because of
Lemna 1 we will only treat viable « in the remainder of the note, that is Q

< a < 1/3.

Lemma 2

For all a, U € a € 1/3 and for all n » 0, there exists a Tn which is

a~hrb.

Proof: Let Tn be a minimal height tree with n nodes, then for every node u
in Tn’ the difference between the height of u's subtrees is at most l.
Letting hﬂ. denote the height of the left subtree of u, then B(u) = either
1/2 or hﬂ,/(Zhi’. + 1), without any loss of generality. In the latter case

8(u) » 1/3 implies hJL > 1, which is trivially true. Hence in poth cases

1/3 < B(u) < 1/2, as desired. : . &

To demonstrate that the class of o-hrb trees 1is, indeed, balanced,
we need to prove that insertions and deletious can be performed in 0(ht(T))
time, for all T in the class, yielding, perhaps by way of some restructur-—
ing, a tree T' in the same class. However, because of the worst case anal-
ysis of the height, which we now present, this is left to the interested

reader.,

Theorem 3

Let a be viable and Tn be an ao—hrb-tree, then



ht(Tn) < ueu+0(1)

]
1...

where a = ( a) and u = v-2¢n(a)ta(n).

Proof: To prove this theorem we will find the sumallest tree (least number

of nodes) of a given height, The tree may be represented as

Let ht(B) » ht(A). If this tree has the least number of nodes, then B also
has the least number of nodes, that is it ie in the same class. Froum the

balancing condition we conclude that’

ht (B)

hE(B) + he(a) < LT @

a
1~ a

or ht(B) < ht{A).

Letting a = & and noticing that the height is always an integer
1 -a

ht(B) > [asht(B}].

Since the number of nodes for this class is clearly monotone in the height,
we will select A" to be the smallest possible tree with the least number of

nodes, and also in the same class.



Consequently we have a recurrence ¢el s tion in the minimal number of

nodes N(h) of a tree with height h:

Let h(n) be the smallest h such that N(h+l) > n.

H(h+l) = N(h) + N([a*h]) + 1

Then it is easy to

see that the height of any tree with n nodes is bounded from above by h(n).

_1 -
If N "(n) denotes the inverse function of N(h) then it is easy to see that

nn) = O .

For example with @ = 1/3 and a = 1/2 we obtain
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Then we can define

a functional equation defined for real h.

* * *
R (btl) = N (h) + N (ah) + 1,

Using standard techmiques we can

*
show that £n(N (h)) has a proper asymptotic expansion in terms of w(h}, the

first few terms being:

) Laly (b)) = Ei%;; ()’ + coulh) + 2(a) 2nls(h)) + 0C1))

where

¢ = —2n{a) + 22n(Rn(a)) + 2,



w(h}_

and w(h) is the transcendental function defined by w{h)e h.

We can also invert the asymptotic series to obtain h in terms of N

*
{the inverse of the function N (h)):

u-c/2 ¢n:(a)n(y)
R Ul

(#%) w) = +0(1))

where w = Y~2Z%ala)in{nlt.

*
Intuitively, N(h) should be close to N {h), the only difference

being the ceiling function in one of the arguments.

*
To prove that the relation N(h)/N (h) is bounded we will first

introduce the function N+(h),
+ + +
N (htl) = N (h) + N ([ah]) + 1

with the same initial conditions as N(h). Then it is not difficult to show

that
* +
N(h) > N (h} » N (h).

+
A careful study of the difference N(h) — N (h) shows that
Iim Nih)
h+e N (h)

< constant.



*
The relation between N(h) and N (h) follows immediately. '

* *
The final step is to relate h {n) to h(n) (the inverses of N (h) and

N(h)). The previous theorem says that

*
h(N) = h (KN}

in some bounded constant, K. Since
p(RNY = p(N) (1 + 0 ))
Lonn

-c/2
we finally conclude that the height of an n node tree < h(N)} = eu o/

(u - —-—-—1“(;)"“" +0(D). (]

There is an interesting relation between N(h) and P(h), a partition
number. P(h) of index r is the number of different solutiong, number of

different orderad sets of values ho, hl’ hz..., of

2
h0 + hlr + hzr +.0s < he

This latter problem was solved by Mahler {M] and de Bruija [D] in
great detail as was kindly pointed ocut to us by A. Odlyzko [private communi-
cation].

P(h) satisfies the functional equatiocn



_10_

P{ht+l) = 2(h) + P([E-E-l- )e

It is easy to verify that the binary partition problem (Mahler's
partition problem for r = 2) satisfies exactly the same functional equation

as the hrb-tree for a = 1/3. Due to different initial conditionms,
N(h) = P(h)/2-1.

In any case P(h) always satisfies the same asymptotic expression (*)

with a = 1/r.

It is interesting to note that N(h) has a wmuch simpler solution in
terms of w(h) than in terms of 2n(h) and fa{2&n(h)), cf. Mahler [M]| and de

Bruijan [D].
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