NGE BEPARFMENT

§E DEPARTMENT
NCE DEPARTMENT

&lE
GEN

U
U
U

ol
COMP

3

Bk
F WATERLOO

E wal
F WATERL

R
ITY
YO

Checking Sets, Test Sets,
Rich Languages and
Commutatively-Closed
Languages

Jiirgen Albert
Derick Wood

CS-82-28

September, 1982




CHECKING SETS, TEST SETS, RICH LANGUAGES

AND COMMUTATIVELY-CLOSED LANGUAGES b

by

Jt‘;rgen Albertz) and Derick WOod3)

DThis work was partially supported by grants from the Deutsche Forschungs—
gemeinschaft (DFG) and from the Natural Sciences and Engineering Research
Council of Canada, Grant No. A-7700.

2)Inst:itu'c_.f.';rr Angewandte Informatik und Formale Beschreibungsverfahren,
Universitat Karlsruhe, D-7500 Karlsruhe, West Germany.

”Department of Computer Science, University of Waterloo, Ontario N2L 3Gl,
Canada.



Abstract

The problem of homomorphism equivalence is to decide for some language
L over some finite alphabet I and two homomorphisms f and g whether or not
£f(x) = g(x) for all x in L. It has been conjectured that each L can be
represented by some finite subset F such that for all pairs of homomorphisms

f and g:
£f(x) = g(x) for all x in F implies f(x) = g(x) for all x in L.

We prove this conjecture for the families of rich and commutatively-
closed languages. We derive lower and upper bounds for the sizes of these
finite subsets and give examples of language families for which there are

effective constructions of these subsets.



1. Introduction

Although a homomorphism can be considered to be the simplest function
which translates a word (letter by letter) into some other word, many basic
problems concerning pairs of homomorphisms are still open.

For example, given two homomorphisms f and g over some alphabet £, does
there exist some x in Z+ such that f(x) = g(x)? This is a re-formlation of
the well known Post Correspondence Problem, however there are some recent
results about the decidability of restricted versions of it. Desplte this
the minimal size of I such that the Post Correspondence Problem over I
becomes undecidable remains open.

We can use two homomorphisms in this way to define a language, their so
called equality set. For two homomorphisms f and g their equality set
E(f,g) is defined ds {x in E*if(x) = g(x)}+ The power of this mechanism has
been demonstrated by yielding elegant characterizations for the recursively
enumerable sets and very general families of complexity classes including NP
[4].

The study of test sets can be considered as dual to this approach.
Whereas for equality sets wé fix a pair of homomorphisms and generate a
language from them, we now fix a language and all those pairs of homomorph-
isms are considered which have the same images for all words in the langu-—
age, i.e. all homomorphisms £, g for which E(f,g) is a superset of the
given language. To test this property for some f and g 1t would suffice for
our language L to always be effectively represented by some finite subset
FS L. Such an F is then called a test set for L.

Test sets can be constructed effectively for regular and context-free
languages and are known to exist for all languages over a binary alphabet

[1], and [4].



As applications of these results we obtain algorithms to decide the
equivalence of deterministic gsm-mappings on context-free languages and
theorems about the reducibllity of systems of string equations of certain
types [1], [6], and [13].

In this paper we treat the problem of test set existence for the
families of rich {7] and commutatively-closed [I0] languages. It turns out
that in both cases the characterization of the languages by their sets of
Parikh vectors is sufficient in a sense to be made precise later. Before
proving our results we need some notation.

Tet L be a language over some alphabet £ and g and h be two homomorph-

* .
isms defined on I . We say g and h agree on L, denoted by g 3 h, if for all

#* Wt

words x in L, g(x) = h(x). We say that a finite set FE I 1is a checking
get for L iff for all pairs of homomorphisms g and h defined on 2:*, g and h
agree on F iff g and h agree on L. If further F£ L then we say that F 15 a
test set for L. These notions were first introduced by Culik II and Salomaa
[8] and have been subsequently studied in [1], [6], [7] and [9]. [4]
contains a survey of recent results.

Associated with the notion of a test set are three fundamental prob—

lems. These are:

The Test Set Existence Problem: Does every language have a test set?

Ehrenfeucht has conjectured that this is indeed the case.

The Test Set Construction Problem: Given an arbitrary language can its test

set be constructed effectively, if it has one? In general this is surely

not the case, however [1] demonstrates effectiveness for context-free langu-



ages.

*
The Test Set Decision Problem: Given an arbitrary language L= I and an

*
arbitrary finite set FE I then is F a test set for L?

In this paper we consider these three questions for the families of
rich languages (Section 2) and commutatively-closed languages (Section 3).
A language L= E* is rich i1ff for all homomorphisms g and h such that
g(x) = h{x) for all x in L then g and h are identical. We say that L is

*
commutatively-closed if for every word x in L, L contains every word y in I

which has the same Parikh vector.

We are able to solve the existence problem affirmatively for these
languages and also give partial results for the two other problems.

Qur approach also leads to -another interesting result, namely a
necessary condition for a set to be a checking set and hence a test set for
an arbitrary language. This also gives a lower bound on the size of a test
get. We are also able to show that every language which has a checking set
has a checking set of size given by this lower bound result. . Moreover
Ehrenfeucht has conjectured that an upper bound on the size of test sets is
2" where n 1s the cardinality of the alphabet. In the case of commta-
tively~closed languages we are able to derive an upper bound of

2%(n! +n) + Snz.



2. Checking and Test Sets For Languages and Rich Languages

The notions and definitions introduced here are mostly standard and can
be found in most textbooks on formal language theory, e.g. [11], [12], and

[14}. Let #a(w) denote the number of occurrences of the letter a in a word

w, and alph(w) the set of letters occurring in w.
*
If & = {al, RN an} is an alphabet and w is in L , the n-dimensional

vector p(w) = (#a (w), #a (W), ==v, #a (w)) is called the Parikh vector of
1 2 n

W.
In the following we will use in the proofs some basic facts about com
binatorial properties of words. Readers unfamiliar with these results are

referred to [11, Section 11.3] for background material.

We begin with a general lemma giving a necessary condition for a finite

set to be a checking set for an arbitrary language.

Lemma 1
*
Let L = (al, aes, an} be an alphabet and LE I . If F is a checking

set for L then there are Yt Yy in F, m & n, such that for each x in L

m
there exist rational numbers a_ , =++, o with p(x) = I a, * p(y,).
1 m =1 i i

Proof: Let Yis **ts Vo be in F such that p(yl), ree p(ym) constitutes a
basis for p(F). We now show that there is a pair of homomorphisms

* *
1 h2 : r =+ {a} such that h1 = hz and hl(x) # hz(x) if
F

p(yl), evey p(ym), p(x) are linearly independent.

Let p(x) = (xl, ees, xn) and for 1 = 1, =+« m let p(yl)



(yil’ b Yin)-

If p(yl), ves, p(ym), p(x) are linearly independent the system of equa-

tions:

- + . + eese . -
LSS TR AT P PV 80

T " ALt Ty Ayttt 8 =0

% 0A1+x2 <A +",.+xn -Annl

has at least one solution (Al' LRI An) of rational numbers Ai by the basic

theorems on the rank of such systems.

%4
let A, = ——, where a, is in Z, and B, is in /Q/, for £ = 1, »++, n.
i B:I. i i
Now we complete the proof by»exhibiting homomorphisms hl and h2 such

= - £ 0. = . e sae
that h = h, and |h1(x)| 1h2(x)i 0. To this end let k =8, * B,

rxi

. Bn’ choose natural numbers oi, i such that g Ti =k - Aiand define

[+ T
hl(ai) - a i, hZ(ai) = 3 L for i = 1, v++, n, Clearly, by the above system

of equations
Iyl = byl =y Gy =) +eee dy, v (o =1 ) =0
for 1 = 1, *++, m and

I, )| - [h,G)| =k # 0 E

An immediate corollary to this lemma gives a lower bound on the size of



checking sets.

Corollary 2
Let L be an arbitrary language with a checking set F and let a basis

for p(L) have size m. Then #F > m.
We now state a trivial result which has far reaching consequences.

Lemma 3
* *
Let L€ I be an arbitrary languge and F& £ be an arbitrary finite
language.
*
Then F 1s a checking set for L iff F is a checking set for L . More-

*
over 1f F is a test set for L then it is a test set for L .

Proof: Trivial, since (i) for homomorphisms hl' h2 and words LIRERARE in

%
L, hl(xi) = h2(xi) implies hl(x1 nee xk)‘ = hz(x1 LEL) xk) and (ii) LE L. ¥

Definition
* *
let L€ I be an arbitrary language and F € I be a checking set for L.
We say F 1s minimal if #F is the size of a basis for p{(L). We define mini-

mal test sets analogously.

Theorem 4
*
Let LE I be an arbitrary language having a checking set. Then L has
*
a minimal checking set. If L has a test set then L has a minimal test

set.



Proof: We will only prove the first statement. The second follows from it
together with Lemma 3.
*
Let FS & be a checking set for L and let F = {xl, Sets Xy Wi

wn} where {p(xi) : 1 <1< m} forms a basis for p(L)s If n = 0 then F is
already minimal, therefore consider n > 0.
o
Now p(wn) =7 a

iul
tive. Hence without loss of generality assume &) > 0.

i p(xi) for rational ai, not all of which are nega=-

Let F' = {xlwn’ Xy 10y Xy s 40, W }+ We will show that F' is a

2° 1? n-1
checking set for F and hence for L. It is well known that {p(xlwn), p(xz),

aee, p(xm)} 18 also a basils for p{L). Consider h, and h, with h

1 2 1 h,s We

o2
will show that hl E h2 . In other words we will show that hl(xlwn) -

]

hz(xlwn) implies hl(xl) = hz(xl) and hence hl(wn) = hz(wn).
Now p(hl(xlwn)) - p(hz(xlwn))

= pCh () + BBy (v ) = B(hy(x))) = Blhy(¥,))

=1+ al)(p(hl)xl)) - p(hz(xl)))

=0
by the representation of p(wu) given above and because W Xys Kgs 000 x
in F' implies p(l:\1 (xlwn)) - p(hz(xlwu)) as well as p(-hl(xi)) = p(hz(xi)) for
i =2, 3, »+» m. Now because a » 0 we have p(hl(xl)) - p(hz(xl)) and hence
Ihl(x1)| = !hz(x1)| . But this means that in the equation

by Gew ) = by (xyw))

which can be written as

By e b () = hyCe dhy ()



we have hl(xl) = hz(xl). Therefore hl(wn) = hz(wn) also.

We have replaced F by a checking set F' satisfying #F' < #F. Clearly

this procedure can be iterated to obtain a minimal checking set. )i |

Remark. In [7] it is shown that the language L = {anbn]n » 1} cannot have a
test set consisting of only one word, i.e. there exist languages which do

not possess minimal test sets.

As an application of these results we consider the collection of rich

*
languages. A language LS I 1is rich if for 21l homomorphisms g and h

satisfying g = h, we have g = h.

*

L
I

Theorem 5

*
Let L = {al, “es, am} and LE I .

Then L 1is rich iff there exist Rps 00, X in L such that p(xl). e, p(xm)

are linearly independent.

Proof: (+) Since L is rich it must contain, by the arguments in Lemma 1,

m
words Xpis *0 X withp(x) = £ «
n 1=1

*
(Essentially L is a possibly infinite checking set for & .)

*
. p(xi), for some a,, for all x in I .

i i?

(+) Each p(ai) can be expressed as a . p(xl) + ees aim - p(xm). When—

il

ever h, = h2 for two homomorphisms hl' h

1 it follows that |h1(a1)| -

2?

=

Ih (a,)| for all i in {1, s+, m}., This immediately implies h (a ) = h (a,)
271 17741 21



for all 1 and thus hl

* Corollary 6 —— Test Set Existence

Every rich language has a test set and moreover it has a minimal test

set of the same size as its alphabet.

Corollary 7 —— Test Set Construction

Given an arbitrary rich context—free language L. a test set for L can be

found effectively.

This follows from the fact that p(L) is semi-linear when L is context-
free and hence a basis for p(L) can be found effectively. This result can
be strengthened by observing that richness is decidable for context-free
languages.

Corollary 8 -— Test and Checking Set Decision

Given an arbitrary rich context-sensitive language L E* and an arbi-
trary finite set F & Z* it is decidable whether or not F is a test set for
L.

Given an arbitrary rich language L < E* and an arbitrary finite set

*
FZ 1 it is decidable whether or not F is a checking set for L.

The Corollary follows by observing that a finite set F is a checking
set for an arbitrary rich language 1ff F is rich itself. Thus, testing
whether F is a test set for L involves checking whether or not p(F) contains

#. linearly independent vectors and testing if F £ L. The latter test 1is
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effective for context—sensitive languages.
*
Remark. Richness is undecidable for context-sensitive languages LE I ,

since there 1is no algorithm to find the minimal alphabet %' such that

*
LE(') .
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3. Commutatively-Closed Languages

We define the commutative closure of a language LS Z*, denoted by

c(L), by: {x in 2* : p(x) = p(y) for some y in L}. We say L is commuta-—
tively~closed if L = c(L).

Since a commutatively-closed language L 1s in some sense representable
by 1ts set of Parikh vectors p(L) one is led to think that any basis of p(L)
can be chosen as a test set for L. The following example demonstrates that

this is, in general, not the case.

Examgle
Let L = {x in {a, b} : #(x) = # (O}

Then F = {ab, ba} is not a test set for L.

* *
Consider hl’ h {a, b} » {0, 1) defined by:

2:

hl(a) = 010 hz(a) =0
hl(b) =1 hZ(b) = 101
Then hl(ab) = 0101 = hz(ab),
h_(ba) = 1010 = h_(ba)
1 2
but hl(aabb) = 01001011
hz(aabb) = 00101101

The proof of our main theorem shows that F = {aabb, abab, abba, baab,

baba, bbaa} can be chosen as a test set for L, for example.
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Definition
*
Let L€ I be any commtatively-closed language and let F = L be finite

and commutatively—closed. We say that F has property cl if:

For each z in L there exist xl, ety X in F and rational numbers.

Qs Ty @ such that alph(xi) = alph(z) for i = 1, *++, m and

m
p(z) = L a.- p(x.),
1=l i i

and F has property c2 if:

For each z in L and each a in I occurring more than once in 2
there is a y in F such that alph(y) = alph(z) and a also occurs

more than once in y.

Theorem 9

*
Let L€ I be a commutatively-closed language and F a finite commuta-
tively—closed subset of L with properties cl and c2.

Then F is a test set for L.

h,. For

Proof: let z be in L - F and hl’ h2 be two homomorphisms with ‘n1 2

F
A = alph(z) we can assume that there 1ls an o in 4 with hl(a) # h 2(m).

Otherwise hl(z) = hz(z) holds trivially.

The set A is now partitioned as follows.

Let Al be the set of all letters in A which occur exactly once in all y

in F satisfying alph(y) = A. lLet A2 = A - Al.



_13_

For our proof that hl(z) = hz(z) we show that - except for one trivial

subcase - all homomorphic images of all letters of A commte.

Let us consider the following two cases:

Case 1: There is an a in A2 with hl(a) # hz(a).

Cage 2: There is a b in A1 with hl(b) # hz(b) and hl(c) = ’nz(c) for all ¢

in A2.

Case 1: Let w = h1 (a), w' = hz(a). By property c¢2 of F and because F is

commutatively-closed there are words
aya, aay in F, where alph(ay) = A
and

() whl(y)w = w'hz(y)W'-

(2) wwhl(y) = w'w'hz(y).

Without loss of generality we can assume |w| > |w'|.
Since w, w' are prefixes (suffixes) of the same word we have w = w'x = T
for some x and x with [x] = |X| > O.

By substituting for w with w'x and xw' in the equations (1) and (2) we

obtain:

(1) xhl()')l_c = h,(y) giving
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(2') xw'x by (y) = w'xh () X.

By (2') xw' and w'x are prefixes of the same word. Since they are of
the same length, they must be equal, that is xw' = w'x. Because w = w'x =

tw' we also conclude x = x. This gives two simpler equations:

") x hl(y)x - hz(y),

(2") x hl(y) = hl(y)#-

By a basic theorem on commting words equation (2') implies the exist—
ence of a non—empty word u and numbers 1 » 1, j » 0 such that x = ui and

hl(y) = uj; cf. [l1l, pp. 9 and 12]. Choosing u to be of minimal length,

determines u uniquely as the “"primitive root"” of x. Nov; if y' is a word
having the same Parikh vector as y then ay'a, aay' are in F as well. As
above we derive xhl(y') = hl(y')x. $ince u has been chosen uniquely and
]hl(y’)l = ]hl(y)! it follows that hl(y') =h (.

Thus h1 (y) is not changed if the letters in y are permited.

Now by (1") hy(y) = xh ()% = xh ()% = (") = w1,

Let b be in the alph(y) and hl(b) be non-empty then hl(b)hl(;) =
h1<;)h}.(b) where aab; and aa;b are in F and alph(ab;) = A, Again by [l1,
ppe 9 and 12] there is a unique nonm—empty word v, the primitive root of
hl(b)’ and numbers 1i' » 1, j' » 0 such that hl(b) = vi' and hl(;) = v '.

- i1 ' 3
Since h1 (b)hl(y) =v 0 u’ and v and u are primitive it follows that

v=uand j =1'"+ 3'.

Similarly if hz(c) is non-empty and ¢ is in A, there is a number k > 1



- 15 -

such that h, (c) = uk.
2
Now definme r(d), s(d) » O such that hl(d) = ur(d) and hz(d) = us(d) for

each d in & and for each d in L - A define r(d) = s(d) = 0. Let r and 8

denote the row vectors

= (l‘(al), r(az)) ey r(aﬂ))’

et I

= (s(a)), say), ++v, s(a))),

where I = {al, a5, et an}-

By property cl of F there exist yl, yz, e, y“l in F with alph(yi) = A and

m
rational numbers a_,’ «++, a_ such that p(z) = § a, « p(y. ).
1 i 1=1 i i

9y a9,
Thus hl(z) =g, hz(z) = u “, where
m
=T =T
oy =p(z) = = [ a cply) -1,
i=]
T
=T =T
and o, =p(z) =5 = ] a *p(y) -5,
i-1
where we use T to denote transpose.

Because Yy is in F and hl(yi) = hz(yi) it follows that P(yi) . _;.T =

=T
p(yi) +8 fori=1, «++, m and thus hl(z) = hz(z).

Case 2: There is a b in Al with hl(b) # hz(b) and for all ¢ in Az hl(c) =



- 16 =

hz(c).

Let us first consider the following simple subcase:

Subcase 2.1: hl(c) - hz(c) = ) for all ¢ in AZ.
Because of c2 there is a word y in F such that hl(z) = hl(y) = hz(y) =

hz(z).

Subcase 2.2: We have hl(b) # hz(b) for some b in A, hl(c) = hz(c) for all

1

c in Az and there is an a in A2 such that hl(a) # A
Without loss of generality assume that lhl(b)| > |h2(b)| and that there

are words aaby, aayb, abay, ayab in F with alph(aby) = A such that h, and hz

1
agree on these words.
!

For w = hl(a) = hz(a) and v = hl(b)’ v' = hz(b) we have v = v'x = xv

for some x, X # A. As in Case 1 we can now derive from hl(t) = hz(t) for t
= aaby, aayb, abay, ayab that
XW = WX, *w = wx and therefore x = ;, and xhl(y) = hl(y)x for all y such

that aaby 1is 1in F and alph(aby) = A. This iwmplies again that all

homomorphic images of all letters in A commute and hl(z) = hz(z). |

It should be obvious that every commutatively-closed language L has a
finite commutatively—closed subset F satisfying properties cl and c2,

Thus, Theorem 9 implies
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Corollary 10 —- Test Set Existence

Every commutatively-closed language has a test set.

As an application of Theorem 9 we obtain explicit test sets for some

special commutatively-closed languages.

Corollary 11

*
let T = {al, sse, a } be an alphabet and L = {x in I : # (x) = #_ (x)
m a; a,

® eve = #a (%)}
m

Then for each i » 2, Fi a{xin L : #a (x) =1 for § =1, s+ m} is a test
]

set for L.

The languages Fi obviously satisfy properties ¢l and c2 and therefore

they are test sets for L.

Corollary 12 -— Test Set Construction

For L an arbltrary commutatively-closed context-free language a test

set F for L can be effectively found.

This follows from conditions ¢l and ¢2 for such an F. We also have:

Corollary 13 -~ Test Set Decision

For L an arbitrary commutatively-closed context-free language and F an
arbitrary commtatively-closed finite set it is decidable whether or not F

is a test set for L.
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Finally, it should be mentioned that Theorem 9 can be generalized to
include all (1, 2)-complete languages. A language L 2* is (1, 2)-complete
if for any pair of letters a, b in I, a # b, such that a occurs at least
twice in a word of L and there exists an x in L with {a, b} & alph(x) then
there is a y in Z* with aaby, aayb, abay, abya, ayab in L.

This leads to an upper bound result on the size of the test sets

namely:

Corollary 14
*
Let LE I be (1, 2)-complete. Then there is a test set F for L, such

that #F < 2n(n! + ) + 5n2 where n = #Z.

*
Proof: It is easy to see that every (1, 2)-complete language L€ & con—

taing a finite gubset F with the followlng properties:

cl: For each z in L there exist yl, e, ym in F and rational numbers

o

10ttt % such that alph(yi) = alph(z) for 1 = 1, ¢++, m and
i
p(z) = a, » p(y. ).
121 i i
*
dl: Let z = Kga X 8,%, P00 K8 X, be in L, x; inZ, a; in T, such

that the letters ay occur at most once in all words of L and each

letter in the xi’s occurs at least twice in some word of L. Then

for each such z F contains some word Yo21Y180y *** Y13V

d2: For each pair of letters a, b in £, a # b, such that a occurs at
least twice in a word of L and {a, b} & alph(x) for some x in L, F

*
contains five words aaby, aayb, abay, abya, ayab for some y in L .
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To show that F is a test set for L we carry over the case-analysis in
the proof of Theorem 9. Case 2 can obviously be covered by properties dl,
and d2. In Case 1 we show first that hl(a), hz(a), hl(by), hz(by) commite
as before. Now we represent hl(b)’ hl(y), hz(b), hz(y) in t:etvms of the
primitive root u of hl(a). Inserting these in hl(aayb) - hz(aayb) we derive
easily that 'nl(a), hl(b), and hz(b) commute.

Since there are less than Zrl non—empty sub-alphabets of I we need less
than 2" + n words in F to gatisfy cl. For dl and d2 we need less than
n

2
2" +» n! and 5o words, respectively. Thus we can find an F with

#F < Zn(n! + n) + 5n2 satisfying properties cl, dl and d2. ¢
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