BEPARTMENT

DEPARTMENT
DEPARTMENT

ENGE

4

MBUTE
MPUTE

AERER &8

WA
W

VERSIFY OF
VERSITY OF
VERSITY OF WATERLOO COMPUTE

i

Direct Dynamic Structures
for Some Line
Segment Problems

Gaston H. Gonnet
J. Ian Munro
Derick Wood

CS-82-27

August, 1982

DIRECT DYNAMIC STRUCTURES FOR SOME LINE SEGMENT PROBLEMSI)

by

Gaston H. Gonnet, J. Ian Munro, and Derick Hoodz)

(1) work carried out under Natural Sciences and Engineering Research Council
of Canada Grants, Nos. A=3353, A-7700 and A-8237.

(2) Department of Computer Science
University of Waterloo,
Waterloo, Ontario N2L 3Gl
Canada

Abstract

We introduce simple direct dynamic binary tree structures for two line

segment problems. Both structures provide for 0(logzn) updating and query-

ing and can be based on any balanced clasa of binary search trees, for exam
ple AVL-trees. The measure tree solves a non-decomposable searching prob-
lem, while the stabbing tree improves the known updating and querying time

for its corresponding application.

1. Introduction

Our general interest in this paper 1s that of dynamic problems in
computational geometry. Such issues arigse, for example in the design of
VLSI circuitry where problems of layout deal with the manipulation of
rectangles whose sides are parallel to the coordinate axes in 2-space. The
end product of such manipulations, a mask for a layer of a chip, is the
specification of the region of the plane covered by at least one of the
rectangles. In such applications, however, it is important to realize that
not only must computation of a layout be performed efficiently, but that
changes to the circuit are bound to be made during the design process.

Hence modifications to the structure must be performed at modest cost.

The specific problems solved in this paper deal with keeping track of
overlapping lines in a dynamic environment. The ultimate goal is the appli-
cation of methods of the type developed here to problems of the type sug-
gested above, Indeed the technical origin of our problem arises from such a
problem, partially solved by Bentley (1977), and van Leewen and Wood (1981),

namely:

Given n rectilinearly-oriented rectangles in 2-space compute the area

of the plane that they cover, that is their measure.

Their algorithm uses the sweeping line paradigm to reduce the problem

to a dynamic one-dimensional measure subproblem, namely:

Design a data structure in which line segments can be inserted and

deleted in O(logzn) time and which gives the measure of the current line

segments, that is the total length of the portions of the line which are

covered, in 0(logzn) time,

In both cases the same tree structure, the segment tree introduced by
Bentley (1977), is used. However this data structure is only semi-dynamic,
in that its structure does not change during updates. This is because the
line segments to be inserted and deleted are known in advance and because

the segment tree cannot easily support arbitrary updates.

This work raises the natural question:

Does there exist a structure which supports arbitrary updating of line

segments and querying of the current measure in O(logzn) time.

In Section 2 we introduce the measure tree, to solve this problem which
only requires O(n) space and constant time for the current measure query, as

well as O(logzn) for updates. Surprisingly the underlying structure can be

any class of balanced binary search trees. For convenience we consider AVL-
trees. It should be noted that the measure problem is not decomposable,

cf, Bentley (1979).

In Edelsbrunner, van Leeuwen, Ottmann and Wood (1981) an algorithm to
find the connected components of a set of rectilinearly—-oriented rectangles,

requires the following stabbing problem to be solved, namely:

Design a data structure In which line segments can be inserted and

deleted in 0(log2n) time and which gives the stabbing number of a query

point x with respect to the current line segments in 0(1032n) time.

The stabbing number of a point x with respect to n line segments is the

number of line segments containing, or stabbed by, x.

In Section 3 we introduce the stabbing tree to solve this problem in
the specified time bounds using O(n) space. The stabbing problem unlike the
measure problem 1s decomposable, see Bentley (1979), but general dynamiza-
tion techniques, see Bentley and Saxe (1980) and van Leeuwen and Overmars

(1981), do not yield such tight bounds.

Although these direct dynamic structures are of interest in their own
right, the proofs that the structures can support rebalancing' have wider
application and interest., The basic tool for proving that rebalancing can
be carried out efficiently in the measure and stabbing tree is a
Reconatruction Lemma, which states that the additiopal information at a node

in such a tree can be recomputed from that of its sons.
Bafore introducing these two structures we recall some basic notation.

let T be a binary tree and u a node in T, then by T(u) we denote the

subtree rooted at u, by Au the left son of u and by pu the right som of u.

In the following sections a line segment L is specified by its two

endpoints, L = [xl, x2], where X, < Xy» denoting a closed interval of the

line. ¥or convenlence we will assume the endpoints of all line segments to
be unique throughout the paper. This assumption does not affect the

results, it makes their presentation simpler.

2. VComputing the Measure

Given n regions Ri’ of d-space, then the measure of Rl\} RZU ‘en b’Rn

is the fair d-volume, where the reglons are interpreted as point sets. By
fair d-volume we mean that for overlapping regioms their region of overlap
is only counted once. For 2-apace we have the area covered by the regions.

When each of the 31 is a one-dimensional line segment, then their measure is

the total length of the portions of the line which are covered by at least

one of the Ri' The problem of computing the measure in this case was posed

and solved by Klee (1977), while Fredman and Weide (1978) proved that Klee's

algorithm was optimal. When the Ri are rectilinearly-oriented rectangles in

2-gpace, an optimal algorithm to compute their measure 1is provided by
Bentley (1977), see also van Leeuwen and Wood (1981), who also provide effi~

cient algorithms for computing the measure of d-ranges in d-space.

However in each of these investigations only the off-line or static
problem, posed above, is solved. The on-line or dynamic computation of the
measure has not been tackled. In this section we consider the dynamic
meagure problem for line segments in l-space, that is arbitrary sequences
of: insert a line segment; delete a line segment; and query the current

»

measure are allowed. We are able to show that each of the operations can be

supported in 0(logzn) time in the worst case in a data structure requiring

0(n) space, where the data structure currently contains n line segments., In
fact querying the measure requires only constant time, as we shall see. It
is important to realize that the measure problem is not decomposable, see
Bentley (1979), Bentley and Saxe (1980) and van Leeuwen and Overmars (1981),

and hence the dynamization paradigm is inapplicable.

We will comstruct such a data structure, the dynamic measure tree, in

three stages. First we describe the static measure tree, second we describe

how an insertion and deletion can be carried out in such a tree T, in
O(height{T)) time, and third we describe how a single rotation of a node in

T can be carried out in constant time.

1f the measure tree 1s also an AVI~tree, Adelson-Velskii and Landis
(1962}, then the three stages outlined above ensure that the AVL-insertion
and AVL-deletion algorithms can be implemented without any deleterious
effects. Moreover as the root of the measure tree contains the current

measure we will have proved the following required theorem.

Theorem 2.1,
The dynamic one-dimensional measure problem can be solved using O(a)

space for n currently active line segments, 0(logzn) time for an insertion

or deletion of a line segment and 0(1) time for the current measure query.

2A. The Statie Measure Tree

The measure tree we will describe is a binary search tree for the end-
point values of the line segments, together with eight further fields.
Initially we assume that all endpoint values are distinct. More precisely,

the fields for each node u in a measure tree are:

(1) value(u) - either a left or right endpoint,

(ii) which(u) - whether the endpoint 13 a left or right endpoint,

(111)
(1v)
- 189}
(vi)

(vii)

(viii)

other(u)
min(u)
max(u)

leftmin(u)

rightmax(u)

submeasure(u)

the value of the partner (endpoint),

the minimum value in T(u),

the maximum value in T(u),

the minimum left endpoint value with respect to
the line segments represented in T(u). Note that
leftmin(u) can be outside T(u).

the maximum right endpoint value with respect to
the line segments represented in T(u). Note that
rightmaex(u) can be outside T(u).

the measure of the line segments represented in
T(u) by at least one endpoint, but only with

respect to the interval [min(u), max(u)].

Figure 2.1

Of these fields it is only the last three that possibly require further

clav ification.

Submeasure(u), see Figure 2.1, can be viewed as the "blinkered” measure
determined by T(u). In other words only the portion of the interval
[min(u), max(u)}, which is covered by the line segments in T(u) is consid-

ered.

The other two fields leftmin and rightmax, are necessary to Stage 3.
Note that when ;11 left endpoints in T(u) have partners in T(u), then left-
min{u) reverts to min(u), since this then represents the minimum left end-
point value represented in T(u)., A similar remark holds for max(u) and

rightmax(u).

Observe that n line segments require 2n nodes and each node requires
constant space, hence 0(n) space 1s required in total. Furthermore if u is
the root of such a tree T, then submeasure(u) is indeed the measure of the
line segments in T, Therefore only 0(l) time is required to answer a

measure query.

2B. Insertion and Deletion

In order to demonstrate how insertion is carried out we need the fol-

lowing lemma.

Lemma 2.1 The Reconstruction Lemma

Let T be a measure tree and u be any node in T. Then the fields (iv) —-

(viiil) of u can be reconstructed from the first two fields of u together

with the fields of u's left and right sons.

Figure 2.2

Proof: (iv) Clearly

value(u), if Au is empty,
min(u) = |
min(Au), otherwise

(v) Is similar to (iii).

(vi) Clearly

min{value(u), leftmin(iu), leftmin(pu)}
% if which(u) = left,
leftmin(u) =
min{other(u), leftmin(iu), leftmin(pu)} otherwise,

If Au or pu is empty the corresponding term is ommitted.
(vii) 1Is similar to (vi).

(viii) Assume which(u) = left; the case which(u) = right is symmetric.

There are three cases to consider:

1. (leftmin(pu) = min(pu) or leftmin(pu) = value(u)) and rightmax(iu) =
max{iu). See Figure 2,2, In this case the only contribution to the

gap between max(Au) and min(pu) is from value(u) itself.

submeasure(iu) + submeasure(pu) + min(pu) - value(u)
if other(u) is in T(pu),
submeasure(u) =
submeasure(Au) + max(pu) - value{u), otherwise

2. rightmax(iu) # max(iu).

The gap is completely covered, hence

submeasure(Au) + submeasure(pu) + min(pu) - max(iu)
if other(u) is in T(pu),
submeasure(u) =
submeasure{iu) + max(pu) - max(iu), otherwise

3. leftmin(pu) # min{pu) and leftmin(pu) # value(u) and not case 2.

The gap is completely covered.

submeasure(iu) + submeasure(pu) + min(pu) - value(u)
if other(u) is in T(pu),
submeasure(u) =
submeasure(pu) + min(pu) - min(Au), otherwise

Thus in all five cases the reconstruction can be carried out H

10

We utilize Temma 2.1 during both dinsertion and deletion. First

consider insertilon.

Insertion
Given a measure tree T with the information described above and a line

segment L = [xl, x2] we gsearch T with both X, and x, simultaneously, This

2

search describes a forked path in T, see Figure 2.3(a), which may be

degenerate, see Figure 2.3(b).

(b2
Figure 2.3
In both cases we add xl and x2 to T, viz.
O am - P
(a) > u U/qb x and (b) 1 > u x, > v

0 == v 6Aﬁ xz

and in both cases we initialize the fields of u and v to their appropriate

values,

11

(a.i) which(u) := left; other{u) := xz; min(u) := max(u) := xl;

leftmin(u) := xl; rightmax(u) := xz; submeasure(u) := 0;

(a.i1) which(v) := right, other(v) := x5 min(v) := max(v) := xz;

leftmin(v) := %3 rightmax(v) := Xy submeasure(v) := 0;

(b) as for (a) except that:
max(u) := Xy submeasure(u) := x, - X
Now the search path(s) in T are retraced and at each reviaited node
Lemma 2.1 is invoked to re-calculate the 6 fields. In case (a) the
recalculation at the "fork" node 1is only carried out after both its sons
have been revisited. Thus the time taken for the insertion s proportional

to the length of the search path(s) and hence 1a O(height(T)) in the worst

case.

Deletion

Given a measure tree T and a line segment L = {xl, x2] we search T with

both x1 and xz simultaneously. Again we obtain a forked path similar to

that of Figure 2.3(a), except that the termination nodes contain %y and x,.

iz

As is usual in deletion we distinguish between x and x2 appearing in fron-

1

tier nodes and internal nodes. Consider x1 only in the following:

1. x1 is a frontier node u, that is u is one of:

u X u /x or u X
1 ’ Ql 1

In each case u can either be replaced by the empty subtree or by its
non—empty subtree. The recomputation of each field of every node on the

search path is now carried out based on Lemma 2.1.

(2) x is in an internal node u, that is u is:

u ? X,
In this case, we carry out the standard technique, namely we delete

min{pu) from T(pu) and replace x1 by min{pu). The first stage is a type(l)

deletion, and therefore the removal of min(pu) is straightforward and also
the fields on the leftmost path in T(pu) can be recomputed. Second on

replacing xl by min(pu), the recomputation of the fields in u and its pre-

decessors can also be carried out via Lemma 2.1.

Hence both types of deletion can be carried out in time proportional to

the height of T.

13

2C. Rotations

Most balanced hinary tree schemes make use of single and double rota-
tions to rebalance a tree after an insertion or deletion. Now double rota-
tions consist of two successive single rotations, hence it is only necessary

to consider single rotations.

u v single J
(> . v
rotation

Figure 2.4

Reading Figure 2.4 from left to right illustrates a single rotation of
v, while from right to left it illustrates a single rotation at u., We only
congider the former since the latter follows symmetrically. We will sub-

script the u and v with a(fter) and b(efore). Observe immediately that

min(ua), max(ua)...., aubmasure(ua) -
niu(vb),..., submasure(vb), respectively
since the values in T(vb) are the same as those in I‘(ua).

However min(va),... . submeasure(va) are not the same as min(ub),...,
...,submeasure(ub), but in this case we can compute thew by invoking Lemma
2.1. ‘Hence we have demonstrated that a rotation in a measure tree will give

a2 new measure tree and furthermore this transformation can be effected in

0(1) time. This completes the proof of Theorem 2.1.

14

3. Computing the Stabbing Number

We say that a point x, (in l-space) stabs a line segment L = le, x2]

in l=space, if X £ x< Aye Given n line segments in l-space, and a point x

in 1-space, then the stabbing number of x with respect to the n line seg-
menfs is the number of line segments stabbed by x. Cléarly these concepts
can be generalized to arBitrarily dimensioned spaces, but this is not our
concern here. As in Section 2 we are concerned with the on-line or dynamic

stabbing number problem, that is:

Construct a data structure to maintain line segments, which allows
insertion and deletion of line segments and for an arbitrary point x deter-

mines its stabbing number, all in 0(log2n) time and O0{n)space, when the data

structure currently holds n line segments.

We parallel the approach taken in Section 2 by first presenting a

static structure, the (static) stabbing tree, second showing how insertion

and deletion can be carried out and third, how rotations can be achieved.

In the present case we are dealing with a decomposable problem a la
"Bentley (1979), however our direct approach is of interest not only in its
own right, but also because it provides the best known bounds to date., We

will prove the following:

Theorem 3.1

The dynamic one-dimensional stabbing problem can be solved using 0O(n)

15

space for n currently active line segments and 0(log2n) time for updating

with a line segment and querying with a point for its stabbing number.

3A. The Static Stabbing Tree

The static stabbing tree 1s basically a binary search tree for the 2n
endpoint values of the given line segments (n > 1). Again for simplicity we
assume these values are d}stinct. However the nodes have three additional
fields, all of which we now specify: Let u be a node in such a tree T,

then:

(1) value(u) - the endpoint value,
(11) which(u) -~ whether value(u) 18 a left or right endpoint value,
(i11) other(u) =~ the position of the partnering endpoint in T.
(iv) ©balance(u) - the difference between the number of left endpoint
values and the number of right endpoint values in

T(u).
To answer a stabbing query we have:

The Stabbing Query Algorithm

Given: A stabbing tree T with root u, a point query x, and two variables

leftstab and rightstab, both initfally zero.

1. u is a leaf: The stabbing number is leftstab if x < value(u), right-
stab 1f x > value(u) and max(leftstab, rightstab) if x =

value(u).

16

2. u is not a leaf:
2.1 x < value(u): Let rightstab be leftstab + balance(u) and recur-
gively call the algorithm with u equal to Au.
2.2 x > value(u): Let leftstab be rightstab - balance(u) and recur-
sively call the algorithm with u equal to pu.
2.3 x = value(u): The stabbing number is max(leftstab + balance(iu),
rightstab + balance(pu)).

End of stabbing query algorithm.

This gives rise to immediately to:

Lemma 3.1
Given a stabbing tree T and a point query x, the stabbing query algor-
1thm returns the stabbing number of x with respect to the line segments in T

in OCheight(T)) time.

Proof: Clearly the recursive stabbing algoritbm takes O(height(T)) time,
hence it only remains to demonstrate its correctness. However this follows

immediately from the recursive invariant:
On entry to the stabbing query algorithm at node u in the stabbing tree
T, leftstab and rightstab are the stabbing depths immediately to the

left and right, respectively, of T(u) with respect to T.

See Figure 3,1, B

17

Figure 3.1

3B. Insgertion and Deletion

Examination of the four fields in each node of a stabbing tree T shows
that only the fleld balance(u) needs to be updated along the search path,
when inserting or deleting a line segment L = [xl, x2]. A search for both

X and x, is carried out simultaneously yielding a forked path in T, which

may degenerate, c¢.f. Section 2B and Figure 2.3. Consider the left fork of
such a forked path. The subtree T(u) of every node u on this fork contains
only the left endpoint of L. Similarly subtrees rooted on the right fork
contain only the right endpoint of L. On the left fork balance(u) i3 incre-
mented or decremented by one for an insertion orA deletion, respectively.
Whereas on the right fork balance(u) is decremented or incremented by one
for an insertion or deletion, respectively. The balance at each of the
nodes on the initial (unforked) portion of the search path is, of course

unchanged.

3C. Rotations

The balance of a node is easily recomstructable since balance(u) =

balance(left(u)) + balance{right(u)) + §, where § = 1 1if which(u) = left and

18

-1 otherwise. Hence we have:

Lemma 3.2 The Reconstruction Lemma

Let T be a stabbing tree, u be any nonleaf node in T, then the balance

at u can be recomputed from the balance of its sons.

And this completes the Theorem.

19

References

Bentley, J.L. Solutions to Klee's rectangle problems. Unpublished manu-
script, Carnegie-Mellon University (1977).

Bentley, J.L. Decomposable searching problems. Information Processing

Letters 8 (1979), 244-251.
Bentley, J.L., and Saxe, J.B. Decomposable gearching problems I: static

to-dynamic transformation. Journal of Algorithms 1 (1980), 301-358. v

Edelsbrunner, H., van Leeuwen, J., Ottmann, Th., and Wood, D. Connected
components of orthogonal geometric objects. McMaster University Tech-
nical Report 81-CS~04, 1981,

Fredman, M., and Weide, B. On the complexity of computing the measure of

U[ai, bi.]' Communications of the ACM 21 (1978), 540-544.

Klee, V. Can the measure of U[ai, bi] be computed in less than O{nlogn)

steps? American Mathematical Monthly 84 (1977), 284-285.

van Leeuwen, J.L., and Overmars, M.H. The art of dynamizing. Proceedings

of Mathematjcal Foundations of Computer Science 1981 (ed., J. Gruska

and M. Chytil), Springer-Verlag Lecture Notes in Computer Science 118

(1981), 121-131,
van Leeuwen, J.L., and Wood, D. The measure problem for rectangular ranges

in d-space. Journal of Algorithms 2 (1981), 282-300.

August 11, 1982
UCS4/DW.1/A/DW3.1/dm

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

