o000

Y OF WATERLS

Y
mY

SITY OF WATERLO

HNIV
UNIV
UNIV

Optimal Algorithms to Compute
the Closure of a Set
of Iso-Rectangles

Eljas Soisalon-Soininen

Derick Wood

CS-82-26

August, 1982

OPTIMAL ALGORITHMS TO COMPUTE THE CLOSURE OF A SET
OF ISO-RECTANGLES

Eljas Soisalon-Soininen & Derick Wood

Helsinki April 24, 1982
Report C-1982-31

Department of Computer Science
University of Helsinki
Tukholmankatu 2

SF-00250 Helsinki 25, Finland

158N 0357-3664
ISBN 951-45-2622-8

The papers in the series are intended for internal use,
and are distributed by the authors. Copies may be or-

dered from the library of the Department of Computer
Science.

Optimal Algorithms to Compute the Closure of a Set of

Iso-Rectangles*

by -

Eljas Soisalon-Soininen* and Derick Woud++

* The work of the.second author was partially supported
by a Natural Sciences and Engineering Research Council
of Canada Grant A-7700 and was carried out while visiting
the University of Helsinki.

+ Department of Computer Science
University of Helsinki
Tukholmankatu 2
SF-00250 Helsinki 25, FINLAND

+tDepartment of. Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3Gl

A proposed running head: Computing the closure of iso-rectangles

Mailing address:

Prof. Derick Wood

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

N2L 3Gl

Abstract

We introduce three notions of the closure of

a set of iso-(oriented) rectangles, that is
rectilinearly-oriented rectangles, namely, uni-
directional, diagonal and rectangular closure.
We first prove a strong decomposition theorem
for diagonal closure in terms of uni-directional
closure. We then describe time and space optimal
algorithms to compute uni-directional and
diagonal closure, each running in O(nlogn) time
and O(n) space. We also provide an O(nlogn)

time and space algorithm for rectangular
closure. Thus we obtain an optimal solution

to the safeness problem for locked transaction
systems, solving an open problem due to Lipski
and Papadimitriou.

1. Introduction

Yannakakis, Papadimitriou and Kung [14], in an interesting
paper, relate properties of locked transaction systems to
geometrical properties of corresponding rectilinearly oriented
rectangles, which we call iso-{oriented) rectangles. In
particular they define the notion of the closure of a set of
rectangles and prove that a locked transaction system is safe
if and only if the closure of the corresponding set of rec-
tangles consists of one connected region. In a follow-up paper,
Lipski and Papadimitriou {7] derive an O(nlognloglogn) time
and O(nlogn) space algorithm to determine the closure of a set
of iso-rectangles. This is then used to solve the safeness
problem with the same resource requirements, and also the
deadlockfreeness problem, see [14], They left open the problem
of whether either of these problems can be solved in O(nlogn}
time, that is in optimal time, since the problems can easily
be shown to require Q(nlogn) time and Q(n) space.

In this paper we focus attention on the notion of closure,
and we introduce three varieties of closure. One of these,
diagonal closure is the same as that considered by Lipski and
Papadimitriou [7], while uni-directional and rectangular
closure are new.

We decompose and characterize diagonal closure in terms
of uni-directional closure and are, thereby, able to derive an
O{nlogn) time and O(n) space algorithm for both uni~directional
and diagonal closure. Thus we obtain an optimal and simple
algorithm to determine the safeness of locked tramsaction

systems.

Finally we also provide an algorithm for rectangular
c¢losure requiring C(nlogn) time and space. Rectangular closure
has applications in architectural, geographic and geometric
data bases, when a set of planar geometrical objects must be
partitioned such that the smallest bounding rectangles of the

partitions are disjoint.

-6 -

2. Preliminary Notions, Terminology and Theorems

In this section we will prove a decomposition theorem
for diagonal closure in terms of the associated uni-directional
closure operations, in particular, NESW-closure in terms of
NE- and SW-closure. Although we are primarily interested in
iso-rectangles, it turns out to be more convenient, in this
section, to consider arbitrary regions in the plane. To this
end a line will always denote a straight line, while a curve
will always denote an arbitrary line, which has finite length,
is not closed, is non-intersecting and its two endpoints have
distinct x-values.

An iso-rectangle in the plane is defined by a quadruple
(Xl'xr’yb’yt)' which defines a rectangle whose corner points
are (Xg‘,)’b), (xg’yt)s (XT'Yb) and (Xr’yt)'

We say two regions R, and R2 in the plane intersect or

1
overlap if they have at least one point in common. Let R be a
tegion and Py and P points in it. We say Py and p, are
connected if there is a curve within R on which both p, and p,
lie. We say that a tegion R is connected if all points PysPy
in R are connected. If R is not connected then it can be

expressed as the disjoint union of connected regions, that is

R = Rl u...u Rn, R

Rj’ i#j, overlap. The regions Ri are called the connected

5 is connected, 1<isn, n2l and no two Ri and
components of R.

In [6] an algorithm is derived to compute the connected
components of 4 set of n iso-rectangles in O{(nlopgn) time and
O(n) space. The present paper can he viewed as un investigu-
tion of variants of connectiveness.

Let R be 4 region and let Py = (xi,yi), i=1,2, be two

connected points in R. We say P and P, are comparable if

Xy <Xy and Yy < Ys and incomparable if X) <X, and Yy > ¥y
Hence comparable points determine a positive sloping line and
incomparable ones a negative sloping line.

Let R be a region. Then the NE-conjugate of two incompa-
rable points p, and P, in R is the point (XZ’yl) and the
8W-conjugate is (xl,yz). For Py and P, comparable we obtain
the NW- and SE-conjugates (xz,yl) and (xl,yz), respectively.
These are illustrated in Figure 2.1, they are the opposing
corner points of the iso-rectangle determined by Py and P;-

We say that R is NE-closed if for every two incomparable
points Py and Py in R, the NE-conjugate of Py and P, is in R.
In Figure 2.2 an NE-closed region and in Figure 2.3 an region
which is not NE-closed are given. Similarly we obtain SW-closed,
and also for comparable points NW- and SE-clesed. If R is
X-closed for some X in {NE,SE,SW,NW}, then R is said to be

uni-directionally closed. If R is NE- and SW-closed (or NW-

and SE-closed) it is said to be diagoﬁally—closed. We abbrevi-

ate the particular direction as NESW-closed or NWSE-closed.

Finally we say R is rectangular~-closed if it is NE-, SE-, SW-

and NW-closed, we alsc write R-closed in this case.

These notions lead quite naturally to the notion of
closure. A region S is the X-closure of a region R, denoted
by § = X(R), if S is the smallest X-closed region containing
R, where X is in {NE,SE,SW,NW,NESW,NWSE,R}. In Figure 2.4 the
NESW-closure of a region is displayed. .

The importance of diagonal-closure comes from its corre-~
spondence to safeness and deadlock-freedom of locked trans-
action systems as can be seen in Section 5 and in [14].

Uni-directional closure plays an important role in the

-8 -

computation of diagonal closure as Theorem 2.9 indicates.
Finally, rectangular closure has applications in geometric
data buses in which "well-formed" partitions of the objects
are required. In particular, if R is connected then R(R) is
the bounding box around R.

We will summarize some of the basic properties of closed

regions in the following lemma.

Lemma 2.1
Let R be an arbitrary region and the connected components

of R be Rl""’R nzl, where R = R, U... URn. Let X be taken

n’ 1

from {NE,SE,SW,NW,NESW,NWSE,R} unless specified otherwise.

Then

(1) X(Ri) c Cj, for some j,'lstm, where X(R) = Clu Ll U Cm,
mz1.

(ii) X(R) € X(S), for all regions S =2 R.

(iii) Y(R) = NESW(R) © R(R), where Y equals NE or SW.

(iv) Y(R) = NWSE(R) & R(R), where Y equals NW or SE.

(v) NE(SW(R)) < NESW(R), SW(NE(R)) « NESW(R), and similarly

for NWSE.

(vi) For all sequences Y of operations X, Y(R) = R(R).

Proof: They all follow almost immediately from the definitions.

(v) and (vi) make use of (ii). o

In order to prove our main theorem we first need some
further notions and lemmas,
Let C be a curve and Py and P, two points on it. Then we

say p, precedes Py if Py is reached before < when traversing
C from its left end.

A curve is said to be :Ln-decreasing if for all distinct
points By and p, on it, Py precedes P, implies ¥y 5 ¥y We say
it is increasing if it is non-decreasing and for all distinct
points P,y and p, on it, Py precedes Py implies xS Xy

Let R be a region and q = (x,JE 4 point, not neceséarily
in R. The point q determines four quadrants of the plane, for
example the NW-quadrant is composed of all points q' = {x',y')
for which x' < x and y' 2 y. We say R blocks a quadrant if
all semi-infinite lines from q in the quadrant pass through R.

In the following development for simplicity of presen-
tation we only consider NE-, SW- and NESW-closure and R-

closure.

Lemma 2.2

Let R be a cbnnected region. Then
(1) NE(R) has as NE corner the NE corner of R(R),
(ii) SW(R) has as SW corner the SW corner of R(R), and
(iii) for NESW(R) both (i) and (ii) hold.

(See Figure 2.4.)

Proof: R(R) is the bounding box of R, when R is connected,
hence there is a point Py in R and on the N edge of R(R),
similariy there is a point p, in R on the E edge of R(R). But
this means that the corner point q of R(R) is in NE(R) since
it is the NE-conjugate of P, and Py Moreover every point q'

in the SW-quadrant of q such that q' lies above R and to the
right of Py is in NE(R) since there are two points in R of which

q' is the NE-conjugate. The other two cases follow similarly. o

The (outer) contour of a connected region R is the
closed curve C within R such that all points in R - C are

inside C, that all four quadrants are blocked by C. For an

10

NE- or NESW-closed connected region R, the upper contour

is the portion of the contour, lying above R, from the left-
most point in R (and if there is more than one such point,
the bottommost one) to the NE corner point in R. If R is a
SW- or NESW-closed connected region, then the lower contour
is the portion of the contour, lying below R, from the SW
corner point in R to the rightmost point in R (and if there

is more than one then the topmost one).

Lemma 2.3
Let R be a connected NE-closed region. Then the upper

contour of R is a non-decreasing curve.

Proof: Assume the contrary. Then there exists two points Py

p, on the contour such that Py precedes 5% but ¥y > Yy Pict-
orially, see Figure 2.5. But this contradicts the assumption
that R is NE-elosed since there exists a point q not in R which

is the NE-conjugate of two points r and Py in R. a
Similarly we obtain:

Lemma 2.4
Let R be a connected SW-closed region. Then the lower

contour of R is a non-decreasing curve.
And also:

Lemma 2.5
Let R be a connected NESW-closed region. Then its
contour consists of two increasing curves, the upper und

lower contour.

- 11 -

Lemma 2.0

Let R be a connected NE-closed region and let S = SW(R).
Then the contour of S consists of two increasing curves. The
same result holds if R is SW~closed and S = NE(R). In both

cases S is NESW-closed.

Proof: The upper contour of R is non-decreasing by Lemma 2.3.
If it is increasing then SW-closure has no effect upon the
upper contour, since for all points q above ﬁ, the NW-quad-
rant of q never cuts R; pictorially see Figure 2.6. But this
ensures that there are no two points Py and p, connected in
R of which q is the SW-conjugate.

On the other hand if the upper contour of R is properly
non-decreasing, then there exist points Py = (x,yl) and P, =
(x,y,) on the contour such that Yy €Y, and that x' > x for
all points (x',y') on the contour with ¥y < y' < Yy Consider
any point q = (x,y) such that Yy <Y €Y, Clearly there exists
a point p = (x',y) in R {(on the upper contour) such that q is
the SW-conjugate of p, and p. But this means SW-closure fills
these "dents" smoothing the upper contour, until all such
peints q are absorbed. Thus we are left with an increasing
upper contour.

Second consider the lower contour. Since S is SW-closed,
by Lemma 2.4 the lower contour is nondecreasing. If it is

increasing, the required result has been obtained. Hence
assume it is not increasing. But this means that there exist
points p; = (x,yl) and p, = (x,yz) on the lower contour such

that ¥y <3 and that x' < x for any point (x',y') on the con-

tour with Yy < y' < y,. Furthermere p; and p, can be chosen

such that x' < x also for any point (x',y') on the contour
such that y' < Y+ Now "y and p, are in R also, because the
SW-quadrant neither at p, nor at p, ever cuts R; picterially
see Figure 2.7. Furthermore, all points q on the straight
line joining Py and p, are NE-conjugates in R of Py and some
peint pz in R, because R is connected. Hence g is in R, which
is a contradiction, and therefore the lower contour is
increasing.

The other statements follow similarly. o

Thus we have obtained:
Theorem 2.7

Let R be a connected region. Then NE(SW(R)) =
SW(NE(R)) = NESW(R).

Proof: By Lemmas 2.1 and 2.6. @

We now extend Theorem 2.7 to disconnected regions by means

of the following lemma.

Lemma 2.8
Let R be an arbitrary region and the connected components
of R be R,,...,R_, nzl, where R = R,U...UR _, and let R be NE=-
S n 1 n
closed. Then SW(R) is NESW-closed. Similarly if R is SW-closed

then NE(R) is NESW-closed.

Proof: We only prove the first part of the lemma. The proof

of the second part is completely analogous. The proofl is hy
induction on the number of connected compohents of R. If n=1,
Theorem 2.7 implies the lemma. Then let k be a positive integer,
and assume that SW{R) is NESW-closed, whenever NE-closed R has

n connected components, n € k. Consider the case n = k+1, i.e.,

- 13 -

R has k+1 connected components. First observe that each con-
nected component R, of R is NE-closed. let § = Rlu"’URk’

§' = SW(S) and R' = SW(Rk+1). We claim that SW(R) =

SW(R'US') is NESW-closed. It is enough to show that SW{R'US')
is NE-=closed, since then it is NESW-closed. Clearly, if R'nS'
=@, R' £ §' or S' € R', then the result holds trivially.
Hence assume that R' and S' are incomparable.

Assume SW(R'US') is not NE-closed. Then there exist two
points py = (xl,yl) and Py = (xz,yz) in SW(R'US'), where
x; < X, and y; > ¥,, such that the NE-conjugate q = (xz,ylj
is not in SW(R'US'). Now p, and p, cannot both be in R' or in
S' because both R' and S' are NE-closed by the induction hy-
pothesis. Further because both R' and the connected components
of §' have increasing upper and lower contours, it should be
clear by the geometrical properties of SW(R'US') that both
Py and p, must be in R'US'. Assume, without loss of generality,
that p, isin R’ and p, is in S8'. Now S' contains a connected
region S§; such that P, is in Si. and the upper contour of Si
passes between q and P, and the lower contour of R' between
p; and q. Moreover these contours must intersect because p,
and p, are connected in R'Usi and thus R' and Si overlap.
Consider - the topmost intersection point of these contours,
which we call r. We derive a contradiction by examining the
point r.

Now r is on the upper contour of §]. Therefore if 5] is
neither vertical nor horizontal at r, then r is in §. This
follows by observing that in this case the NW-quadrant of r
is not cut by $!, and hence r is not the SW-conjugate of any

two points in Si. If Si is horizontal at r, then r is in §,

~ l4a -

since otherwise § ié not Nf-closed, as assumed.

Similarly r is on the lower contour of R'. Again if R'
is neither vertical nor—horizontal at r, r is in Rk+l' If R’
is vertical at r then r is in Rk+l’ because otherwise Rk+1 is
not NE-closed.

In"all combinations of the above cases for R' and Si, we
see that r is in Rk+1”5' This contradicts the assumption that
Ri.10S is empty.

Consider the remaining cases:

(a) Si vertical and R' not verticél at r. Then r is not the
highest intérsection point.

{b) Si not horizontal and R’ horizoﬁtal at r. As (a).

(c) Si and R' both vertical at r. Then r must also be in S,
since it is a corner point, which cannot have been added

by SW-closure. Thus, r is in R ns.

k+1
(4) Si and R' both horizontal at r. Then r must also be in
Re,1» if T is the rightmost intersection point. Also in

this case Ry, ;NS is nonempty.

Hence in all cases a contradiction has been obtained,

therefore SW(R'US') = SW(R) is NE-closed, as desired. a

Theorem 2.9 The Decomposition Theorem
Let R be an arbitrary region. Then NE{SW(R)) = SW(NE(R)) = NESW(R).

Proof: By lemma 2.8 SW(NE(R)) is NESW-closed and by Lemma 2.1 SW(NE(R))
is included in NESW(R). Hence we obtain equality. o

- 14b -

In concluding this section, we return from the considerations
of general regions to those of primary interest to us,

namely sets of rectangles. In Figures 2.8, 2.9, and 2.10 we
illustrate the NE-, SW- and NESW-closure of a set of
rectangles. In this regard it should be observed that the
upper contour of NE-closed rcgions and the lower contour of
SW-closed regions are nondecreasing step functions, while the
lower and upper contours of the NESW-closed regions are both

increasing step functions.

3. Uni-Directional and Diagonal Closure

In reading the algorithm of Lipski and Papadimitriou
[7] one certainly gets the feeling that there must be an
easier way to compute the diagonal closure, They use the
scan line paradigm, that is a left-to-right sweep over the
rectangles, to compute the NESW-closure of a set of rec-
tangles. Unfortunately their stratagem ensures that what
happens at the scan line can affect objects lying completely
to the left of it, that is they are dead but they are not
allowed to lie down. Typically the power of the scan line
approach stems from the fact that what is at the left of the
scan line is now dead and cannot be further affected. See
[3) and [11] for example. In our approach based on the
Decomposition Thecorem of Section 2, we carry out two scans,
one after the other. We first carry out a left-to-right scan
to compute the NE;closure and second, a right-to~left scan to
compute the SW-closure of the NE-closure. The Decomposition
Theorem asserts that this results in the NESW-closure, as
required.

However the output of our algorithm is the partition of
the set of rectungles defined by their NESW-closure, rather
than the contours of the NESW-closed regions. But in a third
phase we can also compute the contour as well, and this cah
be absorbed into the first two-~pass algorithm. We, therefore,
have a two-pass algorithm operating in O{nlogn) time and O(n)
space as we shall demonstrate. The correctness of each pass
is straightforward to verify, because of their simplicity.

However as we shall see in the next section the rectangular

algorithm is descriptively more complex, because it, too,
fails to meet the 'dead is dead" criterion outlined above.
Recall that given a set of rectangles, the generic
position of the scan line divides them into three classes.
These are composed of those to the left of the scan line,
those cutting the scan line and those to the right of the

scan line, known as the dead, active and inactive rectangles

respectively. Since these classes only change whenever a left
or right end of a rectangle is met, the scan line moves in
discrete steps from left to right through the corresponding
x-values. We shall also be using a right to left scan line,
when the classification of dead and active rectangles will be
reversed.

The basic idea on the left to right scan is to compute
the NE-closure of the set of rectangles. Thus there will also
be dead and active {connected) components, which correspond to
the compieted and partially completed NE-closure, respectively,
at each scan line position. The currently active components
correspond to disjoint intervals on the scan line, we call
these waves. On meeting a new rectangle it forms a wave W,
whose extremities are given by the bottommost and topmost
y-values in the rectangle. Since W 1is a newly created wave,
it possibly overlaps a number of those already present. If so
these are all replaced by one new wave and if not W corre-
sponds to the beginning of a new component. Observe that the
properties of NE-closure prevent any rewriting of history
here. When the right end of a rectangle is met, this can mean
the completion of a component, the shrinking of a wave or

perhaps have no affect at all, Tt is worth remarking that in

computing the NE-closure, the top of a wave can never become
Jower. The bottom of a wave can, howevér, become higher, when
a rectangle is deleted, or expand, when a merger takes place.

At the conclusion of the left-to-right scan the rec~-
tangles have been partitioned into classes corresponding to
NE-closed regions.

The secret of the second scan is simply that it begins
with the classes of rectangles given in the first pass. Other-
wise the second pass is very similar to the first one. Before
giving the complete algorithm in more detail, consider the
primitive operations in a little more detail.

First, since we are essentially computing equivalence
classes, that is the NE- and NESW-closed classes are equival-
ence classes, we assume the existence of a basic UNION-FIND
structure to deal with these. It is sufficient for our pur-
poses that both operations can be carried out in O(logn) time,
and that the structures used require O(n) space. However such
structures are abundant, ;ee [1), for example. Minor modifi-
cations to these structures are needed, as we shall see, but
they clearly do not have a deleterious affect on time and
space bounds.

Second, we need a structure in which we can insert and
delete waves and also carry out a wave query to determine all
waves the given one overlaps. However since waves are by their
nature disjoint y-intervals, we can base our structure on a
leaf search tree. For example in Figure 3.1 we have three
waves, whose bottom and top y-values are (1,2), (3,4) and
(5,6) respectively. The internal nodes have been filled in

using the maximum-value-in-the-left-subtree routing scheme

and the leaves have been doubly liked together. Note that it
is a height-balanced or AVL-tree. The insertion or deletion of
a wave can be carried out in O(logn) time and the resulting
tree can be restructured within O(logn) time to once more be
an AVL-tree. The addition of the double linking at the leaves
and the leaf search nature of the tree only cause minor
changes in the standard algorithms. Checking for the overlaps
that occur with a4 query wave W = (wb,wt) corresponds to
carrying out two searches, from root-to-leaves, one for wp
and the other for L For example letting W = (1.5, 4.5),
then the searches end up at the leaves containing 2 and 5,
respectively. Since 4.5 < 5 it falis between the second and
third waves, and since 1.5 < 2 W overlaps both (1,2) and .
(3,4). Note the neéessity to also keep with the leaf values
whether they are bottom or top values. This ensures it can
be determined that the query (1.5,1.8) overlaps (1,2) but the
query (2.5,2.8) overlaps no wave. Again this additional infor-
mation cause§ little change to the AVL-maintenance algorithms.
Let us now give a more detailed description of the

algorithm.

NESW-¢losed components algorithm

Input: A set of n iso-rectangles (n2zl) each given by a

quadruple (X;,X.,¥,Y,)-

Qutput: The NESW-closed components defined by the rectangles.

Phase_I:

Stepl:

Step2:

- 19 -

The left-to-right scan

Sort the Xp- and xr—values into ascending order
{(with ties broken with the left-before-right rule).
form the scan list. Let AW

The sorted x » X

[EREERE o™
denote the active wave structure, which is initially
empty. The UNION-FIND structure is also initialized

to empty. Let i=1.

If i = 2n+l then goto Phase Il otherwise consider Xy -
It is either the left or right end of a rectangle R,
say.

2.1, X5 is the left end of R

‘Create a new active component C comsisting of
R, and the corresponding new wave W defined by
Yip 80 Yy e

Set the active count of C to 1 and let the
status of R in C be "active".

Determine the waves in AW which W overlaps.

If none overlaps then insert W into AW and C
into the UNION-FIND structure, increase i by
one and goto Step2.

Otherwise merge W and the overlapping waves in
AW, updating the UNION-FIND structure (the
union of C and the components corresponding
the overlapping waves is formed and the active
count of the new component is the sum of the
counts in the unioned components), deleting the
merged waves from AW and inserting the newly
created wave in their place.

Increase i by one and goto Step2.

2.2, X4 is the right end of R

Determine the component C to which R belongs
using the UNION-FIND structure, and set the
status of R to "dead", decrementing the active

count of C.

- 20 -

If the active count is zero then delete the
wave of C from AW, mark C as '"dead'" in the
UNION-FIND structure, increase i by one and
goto Step2.

Otherwise if R is the bottommost rectangle
among the active rectangles in C, then shrink
the wave upwards to Yy of the next lowest
active rectangle in C.

Finally, increase i by one and goto StepZ.

There are only two new ideas introduced in this more
detailed version of the algorithm and both are in Step 2.2.
The first is that each active component C needs to keep track
of its wave in the structure AW. This is another simple addi-
tion to the UNION-FIND structure. The second is that we need
to keep the bottommost y-values of the active rectangles in
each component C. This can be done by adding a separate dic-
tionary to C, using an AVL-tree once again, which is updated
when meeting the left and right ends of rectangles. This
structure could also be used instead of the active count,
since it is empty if and only if the active count is zero.

After this interlude let us continue with the next phase.

Phase II: The rvight-to-left scan

Step3: The sorted x-values xZn""’xl form the scan list.
Let 2W be empty once more and leave the UNION-FIND
structure as it is. Let i=1.

Stepd: If i = 2n+l then finish otherwise consider X5,
It is either the right or left end of a rectangle
R, say.

End of Phase 1I.

- 21 -

%y_is_the right end of R

Determine the component C of which R is a
member. If C is "dead" (from Phase I) then
change its status to "active', and let its
wave be W = (bottom(R),top(C)).

Otherwise determine the wave W associated
with C.

In all cases change R to "active".

If bottom(R) < bottom(W) then delete W from
AW 4nd let W be expanded to bottom(R).

If W has been expanded or activated then
determine the waves in AW, which W overlaps.
If none overlaps then insert W into AW,
increase i by one and goto Step4.

Otherwise merge W and the overlapping waves,
updating the UNION-FIND structure, deleting
the merged waves from AW and inserting the
newly created wave in their place.

Increase i by one and goto Step4.

Xx;_1is the left end of R

i

Determine: the component C to which R belongs
using the UNION-FIND structure and set the
status of R to "dead", decrementing the active
count of C.

If the active count is zero then delete the
wave W of C from AW, mark ¢ as "dead" in the
UNION-FIND structure, increase i by one and
goto Stepid.

Otherwise if R is the topmost rectangle among
, then shrink the
wave downwards to the Ve of the next highest

the active rectangles in C

active rectangle in C.
Finally increuse i by one and goto Stepd.

Readers should compare Phases I and II to find that
they are almost identical. The major distinctiveness of
Phase Il being that it begins with the knowledge of the NE-
closed components. This means that an incoming rectangle can
only overlap other waves, if it either activates its NE-com-
ponent or expands its wave. In Phase II a wave can never
shrink upwards, while in Phase I it can never shrink down-
wards. The notations top(C), bottom(R), bottom(W) should be
self-explanatory. However in the case of C this means that
we should keep with it the coordinate of the NE-corner point,

which is of course easily available after Phase I.

End of NESW-closed components algorithm

That this algorithm does indeed correctly compute the

NESW-closed components is the result of the following theorem.

Theorem 3.1

Given a set of n iso-rectangles the NESW-closed compo-
nents algorithm correctly computes the NESW-closed components
of them and Phase I correctly computes the NE-closed compo-

nents.

Proof: We split the proof into two steps corresponding to the
two phases. If n = 1 (or 0) the theorem is immediately true.

1) Assume that the scan line is at the ith position, i2l,
and that up to and including this position the partial NE-
closed components have been correctly computed. Now consider
the (i+l)st position.

Either we meet the left end of a

rectangle R, in which case a new component C and a new wave
W is creuated for it. The waves at this scan line position
correspond to NE-closed compenents and in particular each
wuve can be viewed #s in Figure 3.2. The bottom ol the wave
corresponds to the bottum of an active rectangle and the top
of the wave to the top of a, possibly dead, rectangle. When-
ever W overlaps such a wave W', it is clear that it either
overlaps a rectangle in the corresponding component C' or it
overlaps a region defined by the topmost rectangle in C’, and
this region is in the NE-closure of it. In both cases R and
C' must be in the same component of the NE-closure of the
rectangles.

Or we meet the right end of a rectangle. The key issue
here is that a bottommost rectangle causes the wave to shrink
upwards, and this is indeed correct, while any other rectangle
including a topmost one produces no change in the wave. The
latter action is also correct since "holes" and NE-openings
are filled in by NE-closufe. Hence we conclude that Phase 1
operates correctly.

2) A similar argument to that used in (1) will demonstrate
that after Phase IT has been completed the NESW-closed compo-

nents will have been found correctly. o

The time and space bounds are the content of the next

result.

Theorem 3.2
Given a set of n iso-rectangles, the uni-directional and
diagonal closed components can be computed in O(nlogn) time

and O(n) space, that is in optimal time and space.

Proof: The space bound is immediate from the structures used
in our algorithm, while at least Q2(nlogn) time is needed
because sorting occurs in Stepl. The querying of the active
wave "structure AW takes O(logn + k) time, where k is the num-
ber of intervals responding to a query. Thus Step2 and Stepd
may at one time need to carry out ¢(n) merges at worst.
However at most n-1 merges of n objects can take place.
Hence we obtain O(nlogn) time overall. Similarly the time
needed for other primitive cperations is globally bounded by
O{(nlogn).

Optimality for space follows because n objects need O(n)
space, while optimality for time follows in the usual way
for these geometric problems, that is via the element

uniqueness problem. o

To complete this section we briefly discuss how to
modify the NESW-algorithm to also report the contour of the
NESW-closed region. We can basically do this in another two
passes of the final NESW-connected components that have been
obtained. Basically a left-to-right scan enables us to com=-
pute the upper contour of each region, while a right-to-left
scan enables us to compute the lower contour. The key is to
consider the way the currently active wave changes, by ex-
panding upwards on the first pass and expanding downwards on
the second. No other changes are monitored. Clearly the first
pass changes correspond to left ends of rectangles, while the
second pass changes correspond to the right ends of rec-
tangles. Each such change defines a horizontal line segment,

from the last changing x-position and a vertical line segment

corresponding to the extent of the change.

These observations bound the number of edges in the con-
tour of each NESW-closed region to be O(n), if there are n
rectangles in the region. Finally, it should be clear that
the contour computation can be carried out during Phuses I
and 11, except that some of the upper contours found in Phuse
I will either disappear in Phase II or be merged with others.
We leave to the reader the laborious but straightforward

details of this change, which leads to our final theorem.

Theorem 3.3
Given a set of n rectangles, the NESW-closed contours

can be computed in O(n) space and O(nlogn) time.

4., Rectangular Closure

Since the decomposition of diagonal closure into the com-
position of two unidirectional closure operations has been so
succesful, the reader might, initially, be seduced into taking
a similar approach for rectangular closure. However there does
not seem to be any decomposition theorem corresponding to
Theorem 2.9. Basically, this is simply because closure in any
one direction can interfere with the closure in other direc-
tions in this setting. In Figure 4.1 this is illustrated using
4 NENWSW-closed regions. The reader should observe that when
applying SE to "complete™ the R—cloéure, then regions 3 and 4
are not R-closed. This is because the shaded region cannot be
added under SE. Because of this counterexample it is necessary
to rethink R-closure from the beginning, since one would,
intuitively, expect it to be simpler that diagonal closure.

To this end we once more consider the scan line paradigm
together with the ideas of Lipski and Papadimitriou [7] for
diagonal closure. Thus at a generic position of the scan line
we have some active components (note that these are always
rectangles), some ''dead" components, which have already been
passed over and some inactive rectangles, still to be pro-
cessed. See Figure 4.2 for an example of this situation. The
dotted rectangles are "dead" components, the shaded ones are
the "active' components and the remaining ones are the inactive
rectangles.

As in the diagonal closure algorithm there are only two
critical positions of the scan line, namely at the left or

right end of an inactive rectangle. Consider what might happen

in cach case. On meeting the left end of a rectangle as illus-

trated, for example in Figure 4.2, it is necessary first to

determine which of active components it overlaps and second to

update the set of active components accordingly. In Figure 4.2

the incoming rectangie intersects two active components with

which it should be merged to form a replacement active compo-

nent. However note that this can also cause a merger with a

"dead" component. In Figure 4.3 a possible interpretation is

given. Observe that a ''dead" component should be merged with

the new active component and this in turn causes another
merger with an active and dead component, and so on. Finally

all of the components bar the bottommost dead one end up as a

single new active component.

Let us now consider what happens on meeting the right end
of a rectangle. In this case the component to which it belongs
dies if it is its last active rectangle. Otherwise it has no
effect whatsoever.

Examining the above cémments we are led to search for a
data structure which can support the following operations:

1) INSERT/DELETE active and dead components.

2) QUERY active components to determine if any overlaps a
given interval (the left end of a new rectangle, for
example).

3) QUERY dead components to determine if any overlaps a new

active component.

We also, of course, need to keep for each component its
coordinates and the rectangles it contains, but first is

trivial and the second can be carried out using a UNION-FIND

- 28 -

data structure. So let us turn to each of the above operations.

First, observe that the components do not introduce any
new x- or y-values, when considering their x- and y-projec-
tions. This means that a component's y-projection, for example,
is made up of '"fragments' determined by the original rec-
tangles. Thus a semi-dynamic data structure may be used.
Second, observe that active components can be represented by
disjoint y-intervals. Third, observe that it is necessary to
keep more than the y-interval for dead components, otherwise
the querying of dead components cannot be accomplished
‘ correctly.

These observations lead us to £epresent components by
their y-intervals, while also keeping the rightmost x-value
for dead components., We will store the "dead intervals” in a
segment tree and a range tree. The segment tree is a structure
invented by Bentley {2], while first appeared in [4] and sub-
sequently in many places, including [7]. For completeness we
will briefly describe it. Assume we have points Yy €Yy < e
< ¥ o0 the y-axis, which we renumber for convenience as
1,...,10. We represent this point set as a leaf search tree,
see Figure 4.4. However we consider each leaf i to represent
4 closed-open interval [i,i+1), 1<i<l0, and leaf 10 to repre-
sent [10,»). Similarly each internal node u represent the
interval defined by the leaves of its subtree, denoted by
int(u). In particular the root represents [1,=).

Furthermore euch node of the segment tree has an associ-
ated node list, which is initially empty. The node list is

organized us a two-way list. Let I be an interval, whose

endpoints are contained in {yl.....ylo}. We insert I into the

segment tree us follows: '

Let u be the root of the tree initially.

If int(u) = I then add I to the nodelist of u and return.

Otherwise: if int(left(u)) n I # P then repeat the
insertion for the left subtree of u,

if int(right(u)) n I # @ then repeat the

insertion for the right subtree of u.

Inserting A = [3,6), B = [1,5), C = [3,9) into the tree of
Figure 4.4 we obtain the node lists seen there.

Readers should convince themselves that.insertion is
indeed an O(height(tree)) time algorithm, and hence O(logn) if
it is a balanced tree. Moreover since each interval can appear
in O(logn) node lists, n intervals require O(nlogn) space.
Deletion can also be carried out in O(logn) time, if an addi-
tional dictionary giving for each interval its position in the
node-lists is provided (this is necessary because a node list
can be of O(n) size). A query q is simply an x- and y-value.
The x-value corresponds to the leftmost x-value of the newly
created active component, while y is its bottommost y-value.
The query returns all intervals, that is dead components, ''stabbed"”
by y, whose rightmost end is between x and the scan line.

To achieve this, a standard search is made in the segment
tree with y. At each node u, visited by y we report only
those components satisfying the x-condition. In order for this
to be carried out efficiently, the node list is organized in
descending x-value order, so that only the initial portion of

each node list need be examined. Finally, this ordering is

- 30 -

achieved naturally when a component dies because it is inserted
into the scgment tree at that time.

The segment tree only deals with half of the problen,
namely it is used to determine the dead components which over-
lap the bottom of the query component. Thus as in [12], we use
a range tree to complete the picture, that is to determine the
bottommost values of dead components which stab the query com-
ponent. Basically the tree structures are very similar. The
range tree is also organized as a leaf search tree, but only
on bottommost y-values of dead components. An insertion is a
y=value (to which there must be a corresponding leaf). At each
node u on the search path the correéponding dead componenf is
added to u's node list. Again observe that the latest dead com-
ponent, that is the one with the largest rightmost x~-value
appears first in all its nodelists. Just as insertion in range
tree is analogous to a query in the segment tree, a query in
the range tree is analogous to an insertion in the segment
tree. In other words a query consists of a4 y-interval together
with an x-value, and this defines a forked search path in the
range tree. Again only the initial components in each accepted

node are taken. See [12] for further details.

Remark: The segment tree constructed as described above solves
the following problem:

Given & set of non-overlapping line segments in the plane,
describe a data structure, which answers y-queries efficiently.
A y-query is a y-value, y, and an x-value, x; it requires all
line segments stabbed by the y whose x-values are greater

than x.

- 3] -

This problem is similar te that solved in [7], when per-
forming 'dripping".

But if the x-axis is interpreted as time, then it is also
an example of searching in the past, see [5,9,10].

Having disposed of the structure for dead components we
turn our attention to the structure needed for active compo-
nents. We could use the segment tree and range tree structures
for these components as well, however since they correspond
to disjoint y-intervals we use the simpler structure of Section
3, called AW. This structure can be maintained with O(logn)
insertion and deletion time and O(logn + k) query time, where
k is the number of intervals responding to a query, see
Section 3 for details.

To complete the picture we will give a more detailed out-

tine of the R-closure algorithm.

R-closure algorithm

Input: A set of n iso-rectangles (n21) each given by a

quadruple (xk,xr,yb,yt).
Output: The R-closed components defined by the rectangles.

Stepl: Sort the x,- and x -values into ascending order {with
ties broken by the left-before-~right rule).
The sorted x-values Xpsee s Xgn form the scan list.
Similarly, sort the y-values. Form the '"skeletal"
balanced segment and range tree structures for the
dead components (these have empty node lists and
dictionaries). Let this total structure be denoted
by DC. Let NC denote the search tree structure for

Step2:

active components or waves. This is initially
empty. Let i=1.

If i = 2n+1 then finish, otherwise consider X5
It is either the left of right end of a rectangle R,
say.

In the former case it determines a new compcnent,

and in the latter an active component,

2.1.

2.

z.

R determines a new component C = R and a new

(a)

(b)

wave W,

Determine all waves in NC which overlap W.
If none overlaps, then insert W into NC,
increase i by one and goto Step2.

Otherwise determine the new merged component
C' and the new wave W'.

Delete the merged waves from NC.

Determine all waves in DC which overlap C'.
If none overlaps, then insert W' into NC,
increase i by one and goto Step2.

Otherwise determine the new merged component
C and the new wave W,

Delete the merged componeﬁts from DC.

Goto 2.1(a).

R determines an active component C

If R is the only active rectangle in C then
delete C from NC and insert C intc DC.

In either case change the status of R to dead,

increase i by one and goto Step2.

End of R-closure algorithm.

Note that Step 2.2 implies that we are keeping a UNION-

FIND structure to enable the rapid determination of the active

component to which R belongs. This also means that in Step 2.1,

33

the creation of a new component always requires the UNION
opcration. The same structure can, with minor modifications,
also hold the status information for the rectangles together
with a count of those which are currently active.

Finally let us examine the time and space requirements
of this algorithm. By earlier remarks we need O(nlogn) space
for the DC structure in the worst case. The NC structure on the
other hand only requires O(n) space. As :far as timing is
concerned Stepl needs O(nlogn) time, since sorting takes place,
while the building of the initial DC and NC structures is an
O(n) time operation. The querying of NC and DC we have already
seen take O(logn + k) time, where k is the nuﬁber of answers.
Thus Step 2.1 (a) or 2.1 (b) can have O(n) merges to carry out
at worst. However as for diagonal closure there can never be
more than n-1 merges of n objects. Hence we obtain O(nlogn)
time overall. The various deletions, each of which take O{logn)
time are also charged to global rather than local expences.
Thus Step 2.1 takes O(nlogﬂj time, overall. Finally Step 2.2
clearly takes O(logn) time, thus yielding final worst-case time
and space bounds of O(nlogn).

To summarize:

Theorem 4.1
Given a set of n iso-rectangles, their rectangular closure

can be computed in O(nlogn) time and space.

Remark: It is to be expected that the space bound can be reduced
to O(n), while retaining the O(nlogn) time bound. This time and

space optimal algorithm we leave for some reader to discover.

5. Applications of Diagonal Closure

In this section we briefly discuss how the results of
Section 3 solve problem§ posed by Lipski and Papadimitriou [7].
In {14] the following results are proved, where T is a

locked transaction system and B(T) is the union of its corre-

sponding rectangles.

Propesition 5.1
T is safe if and only if NESW(B(T)) is a connected region.

Proposition 5.2)
T is deadlock-free if and only if all lower horizontal
~and all left vertical segments of the contour of NESW{B(T))

also belong to the contour of B(T).

We refer to the two papers mentioned above for further
details of locked transaction systems and the geometric inter-
pretation of them.

By the results of Section 3 we immediately obtain the
optimal algorithm for safeness, since it is trivial to inspect
the UNICON-FIND structure to determine whether or not it con-

tains only one component.

Theorem 5.3

Let d22 be a fixed integer and let T be s transaction
system consisting of d transactions. Then the safeness ﬁf T
can be computed in O(nlogn) time and O(n) space, where n is
the maximum size of the d transactions. Furthermore this is

optimal in both time and space.

35

Thus this solves the first open problem of Lipski and
Papudimitriou [7], their algorithm runs in O(nlogn loglogn),
time and O(nlogn) space.

Using the technique of Section 3 to compute the diag-
onally~closed components, we can in further two passes com-
pute the left vertical and lower horizontal segments of the
NESW-contour. Essentially we carry out a left-to-right and a
bottom-to-top scan. As they are computed it is a simple matter
to check whether or not they belong to the contour of the set

of rectangles. Hence we obtain:

Theorem 5.4

Let T be a trhnsaction system consisting of two transac-
tions. Then the deadlock-freedom of T can be computed in
O(nlogn) time and O(n) space, which is time and space optimal,

where n is the maximum size of the transactionms.

36

References

1.

10.

11.

12.

A.V.Aho, J.E.Hopcroft, and J.D.Ullman, "The Design and
Analysis of Computer Algorithms,'" Addison-Wesley, Reading,
Mass., 1974,

J.L.Bentley, Algorithms for Klee's rectangle problems,
Unpublished notes, Carnegie~Mellon University, 1977.
J.L.Bentley and Th.Ottman, Algorithms for reporting and
counting geometric intersections, IEEE Transactions on
Computers, C-28 (1979), 643~647.

J.L.Bentley and D.Wood, An cptimal worst-case algorithm
for reporting intersections of rectangles, IEEE
Transactions on Computers, C-29 (1980), 571-577.

D.P.Dobkin and J.I.Munro, Efficient uses of the past,

in "Proceedings of the 21st Annual IEEE Symposium on
Foundations of Computer Science, 1980," pp. 200-206.
H.Edelsbrunner, J. van Leeuwen, Th.Ottman, and D.Wood,
"Computing the Connected Components:df Orthogonal Geometric
Objects," Technical Report 81-CS-~04, Unit for Computer
Science, McMaster University, Hamilton, Canada, 1981.
W.Lipski and C.H.Papadimitriou, "A Fast Algorithm for
Testing fer Safety and Detecting Deadlocks in Locked
Transaction Systems," Report MIT/LCS/TM-181, Laboratory
for Computer Science, MIT, Mass., 1980.

W.Lipski and F.P.Preparata, Finding the contour of a union
of iso-oriented rectangles, Journal of Algorithms 1 (1980),
235-246. '

M.Overmars, "Searching in the Past I,"

Computer Science Technical Report RUU-CS-81-0, University
of Utrecht, The Netherlands, 1981.

M.Overmars, "Searching in the Past II: General Transforms,”
Computer Science Technical Report RUU-CS-81-1, University
of Utrecht, The Netherlands, 1981.

M,I.Shamos and D.J.Hoey, Geometric intersection problems,
in "Proceedings of the 17th Annual IEEE Symposium on
Foundations of Computer Science, 1976," pp. 241-247.
H.-W.S8ix and D.Wood, The rectangle intersection problem
revisited, BIT 20 (1980), 426-433.

14.

- 37 -

M.Yannakakis, C.H.Papadimitriou and 11.T.Kung, lLocking
policies: safety and freedom from deadlock,

in "Proceedings of the 20th Annual IEEE Symposium on
Foundations of Computer Science, 1979," pp. 286-297.

38

............. xNE-conjugate

'
T
'
'
1
]
]
]

K e e e e
SW~-conjugate *P

The conjugates of incomparable points.

Figure 2.1

A NE~closed region.

Figure 2.2

39

Figure 2.3 A non-NE-closed region.

Figure 2.4 NESW-closure of a region R and its bounding
rectangle.

Figure 2.5

40

41

P; q

Figure 2.7

i | 2

DAY

Figure 2.8

A

/////1

43

Figure 3.1

44

Figure 3.2 A NE-wave.

Figure 4.1 Computing SE-closure of NENWSW-closed region.

45

.

“h

Figure 4.2 Generic positicn of the scan line for R-closure.

//////

47

Figure 4.4

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

