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1. The Aims

This paper presents several observations whose combination

will lead to an outline of a quite powerful design method for VLSI-
realizations of programmable finite automata. The automaten
realization to be described will have the following properties:

(1

&)

3
4)

For any given fixed k it can be programmed to perform the
task of any non-deterministic automaton with at most k
states.

There is & constant ¢ such that :it runs in time
cb—'n, + ck logh on inputs of length n >b and in time
cklogh on those of length n <b . Logarithms are with
respect to base 2. b is a constant, influencing the size of

the realization, which can be chosen such that 95'——« 1.

It is made from uniform systolic components connected in a
uniform manner. This will simplify the actual lay-out.

It is modular, that is chips of this kind may be connected in
order to increase the constant b and thus decrease the
time on long inputs. The constant & can be chosen after
the chips have been made.

1 This work was supported by the Natural Sciences and Engineering Research Coun-
il of Canada under the grant A-7403.

3+ On a leave of ebsence from I[nstitut fir Theoretische Informatik, Technische
Hochschule Darmstadt, Germany.



2 CULIK AND JURGENSEN

{5) It can.be modified to accept prefixes of the input string
whenever an accepting state is reached as an intermediate
state.

(6) It contains O(bk®) essentially uniformly connected and
identical processors.

Property {5) is particularly useful in string matching and
retrieval applications, which are one of the most popular
application areas of finite automata in practical problems fll]. It
is also common with this type of problem that the data item to be
searched for has a fairly short description, in terms of a finite
automaton A, say, whereas the data file f to be searched may be
quite long. In many practical situations a bound on the size of A
would be acceptable. However, fixing the structure of A, too,
would certainly reduce the applicability of a hardware realization
of A considerably. Our realization aveids this disadvantage by
having A programmable; in addition the size bound on A is
rather weak in most cases as it concerns the non-deterministic
description of A . On the other hand by chosing the constant &
large enough we achieve a considerable speed-up of searching f
if f is large. Finally, modularity of {3) will allow the user to
increase the speed of a given system which uses these modules by
adding same more modules and thus increasing & .

In the context of VLSI design the term “programmable” has
also been used in a completely different sense. So in Foster and
Kung [1] as well as in Floyd and Ullman [2] 'programmability™
means the existence of a programming language, that of regular
expressions, say, and a uniform design method, a compiler, which
given a regular expression produces the lay-out of the
corresponding acceptor chip. This type of “programmability’’ has
been referred to as uniform design above. In this paper, however,
by programmability we mean the possibility to have the actual chip
programmed at application rather than design time.

Designs of finite automata aimed at a VLSI realization have
been considered in several papers before.

Foster and Kung ]1] suggest a translation of regular
expressions into VLSI. They use standardized components for
comparison with single letters and for the operations of + and *.
Concatenation is implemented by sequential connections. If r is
a8 regular expression and A, is its VLSI realization obtained from
wsing this translation, then the size of 4. is determined by the
length of r, and A, takes c,k.n steps, approximately, for
recognizing a word f of length n. Here c, is the basic
switching time and k, is a constant essentially equal to the
*longest concatenation’ in the expression r . Once manufactured
as a chip, A, is programmable in a very restricted sense only; by
preloading the letter comparison units appropriately it is
programmed to accept any language which is definable by a
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regular expression having the same structure as r .

its uniform design method as well as little area consumption -
the area required is of the order k,logk, - are the mnerits of this
solution. Its main disadvantages are its non-programmablhty as
explained above, its highly complex though systematic wiring
which depends on the 'complexity” of r, and the fact that
essentially no use is being made of parallelism except Hfor
simulating the non-deterministic transitions of the avtomaton.

Floyd and Ullman }2] provide two solutions to the problem of
desigring integrated circuits for regular languagesitheifirst one
being :an implementation of a non-deterministic automedtonion a
programmable logical array (= PLA} and the second one asing the
hierarchical structure of the automaton obteained from the parse
tree of the regular expression.

The solutions of [2], [1], and of this paper all attempt: to arrive
at a .systematic design mmethod which, essentialfy, could ‘be
automatized, that is, which given a description wf a regular
language, a regular expression, say, would eventually produce a
YLS[-realizable design. In each case the circuit runs in linearitime
on long inputs; however, neither the implementation of [1] nor
those of [2] can achieve a run time bounded by cpn oniinputs of
length n where cg isless than 1, as it always takesithem at {east
n time units to read the complete input. The hierarchical
tmplementation of [2] is again of very little programmabilityias it
implements the parse tree of the regular expressionsat hand.
However, it seems that the PLA-version could be made ully
programmable by adding appropriate gates at all intersections and
also some new input connections which would allow ome to set
these gates according to the respective non-deterministic finite
automaton.

Due to their low area requirements the implemestations &£]1]
and [2] will be preferable to our solution when neither flexible
programmability nor very high speed on very long inputs are the
essentials, whereas for applications as string and pattern mat&hing
in'large databases our approach might be rmore adequate.

A different type of hardware design method fer string and
pattern matching algorithms, whose description and review,
however, is beyond the scope of the present paper, has been
proposed by A. Mukhopadhyay [6]

2. Systolic Trees

In [8, 4] systolic trees are considered as acceptors. One of the
main points of those papers is to explore the power and
restrictions of certain simple VISI topologies. Neither the
realization of the processors involved nor the implications of
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having a finite rather than an unbounded device are a central issue
there.
A systolic tree {3]

K=IT, Ip v, % .29, &p ,#,59’A|A€2P¥-U.4|A€ZP]]

cvonsists of

- =an Infinite tree T whose nodes are labelled by the letters of
the alphabet Zp such that T satisfies the growth, regularity,
and arity conditions defined below,

- finite alphabets Ly, Iy € Ep, Ly with L, L7y non-empty, and
# aspecial symbolin Zg ,

- anarity function v: Zp » N4 pp{d)=1,

- families of functions g,: Er » Ip and f4 I8 » ;.

T 1is said to satisfy the growth condition if there is a constant
o> 1 such that the number of nodes at a distance k from the
Toot is no less than of . It satisfies the regularity condition if it
contains only finitely many non-isomerphic labelled subtrees.
Finelly, the arity condition holds on T if for each node the
number of sons is the same as the arity of its label.

Zp is to be considered as the collection of processor types.
Iy is the operating alphebef, and a processor of type A4, 1ie., a
node labelled A, would take the v(A4) outputs of its sons
Zy,....Zy) €L and compute fa(zy,...Z,q) €Lp as its own
output. :

An input word w over the terminal alphabet Ly is fed into
& on an appropriate layer as follows: Let k be the smallesst
distance from the root such that there are at least }aw | nodes
having this distance, where |w | denotes the length of w . Let
Ay Az, ..., A be the nodes at the distance k , ordered from left to
right in the natural way, and let w =a,,...,8)y|, @& €Iz, then
for i=1,...,r the node 4 will have .

ga(m) for i<jw| and go(#)

as its output. Thus g4 is the input encoding corresponding to A .
The word is then processed towards the root as described above,
44 will be accepted if - after k£ steps - the root produces an
output in the aoccepting alphabet Iy. Let L(K) denote the
language accepted by K .
In [3] it is proved that, even though the isomorphism type of
¥ is gquite important in determining the class of languages
accepted by K, as far as regular languages are concerned it does
not make an essential difference.
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Proposition 1. [3] Let K be an arbitrary systolic tree with first
component T . Then for every reguler langunge R, there is a
systolic tree K with first component T -which accepts R .

Thus for accepting regular languages we may consider
complete binary trees only. Furthermore, as was shwon in [3], v
can always be made injective, i.e., in the case of complete binary
trees ] Xp | = 1. Thus a binary systolic free is a 7-tuple

K={T 2.5, .57, #.9.7)
with T a complete infinite binary tree such that
(7,14}, viA p 2,5, 89 . Er  #lga=g)tfa=19)

is a systolic tree.

Proposition 2. [3] Each regular language is accepted by o binary
systolic tree,

‘The proof of this statement uses an idea which will serve as
one basis of our construction. Therefore we give a brief outline of
it: Let RcX* be a regular language and let Syn(R) be the
syntactic monoid of R . Let I =Syn(R), Iy =Zu {#i.
gla) =[a] for a €L, where [a] is the syntactic class of a,
g(#) =[e] with & the empty word, Ty the set of syntactic
classes of words in R, and f{[ul{v]) = [uw].

In this construction each node simulates the complete
combinatorial structure of R, and # plays the role of an empty
input. It is, therefore, clear that this binary systolic tree is even
super-stable [4], i.e., essentially it does not matter whether it
receives its input on the lowest possible layer nor whether the
input is arbitrarily interrupted by sequences of # symbols.

A binary systolic tree recognizes its input w in kTlog |w]]
steps where k is proportionnal to the number of basic steps
needed to compute the functions f and g .

The logarithmic time is attractive, but, of course, not
achievable by finite realizations. With respect to realizations we
shall restrict to finite tree structures rather than unbounded ones
and also explere the structure of the nodes to a certain extent.

The construction of the proof of Proposition 2 may be modified
in order to reduce the complexity of the nedes in terms of the size
of that part of IZ; which is actually needed for recognition:
Tonsider the binary tree
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and suppose that in its root it computes the product of its inputs
m,, my, elements of the moenoid ¥ , and that m;my is accepted
it mmze GCM. Evidently it is relevant for the root to know

what m, really is only if
m, c GHD = im | mMnG#¢)

and similarly for m; only if
meae MUG = fm | mMNG=¢) .

Hence let
M=y 0, Mp=MUG U O

where 0O;, Op are new elements, such that, in fact, the left and
right sons of the root have M; and Mg as their output sets,
respectively. Then the root would evaluate the mapping

(ml,mz) b mym, if my#0p, me#0p
and mymz€§,
My xMp»Gw 0
(mymz) b O it m;=0; or ma=0p
or myma§ G

Applying this construction recursively to a binary systolic tree for
aregular language K yieids a tree in which each of the nedes uses
as little of I, as possible: For the root let G=g{R):thenif @
is given for some node in the tree let G = GHIY, G, = MI-UG
the corresponding sets for its left and right sons, respectively, with
M=Sym(R) and g the syntactic homomorphism.

Fxample. Consider K =a%*Cfa,b}. Then M = Synk
consists of the B classes [¢]. [a]. {e?]. [e%], [b], [@b],
{e?»], [ba], and the image of R is G = |[a®]}. Then
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Gi-Y = {[e]. [a] [2).[a°}} .
#1106 = U\H{ba]] .

CTontinuing this we obtain
(Gul-Tyg-1] = gyl
and
#0(GHY) = M\ ([ba]} .
and of course
(M- p1 = g yl-1ue) = M\ilbal).
As cutput sets of the nodes in the tree we obtain

G u 0 = {[a®],0}] for the root,

GHI Ny ¢ = f[c] [a].[e?], [a’] 0} for all left-
most nodes, and

M for all other nodes.

Dne easily proves that, in general. it M=SmR for &
language RcX* and g(R)= for g the syntactic
homomorphism of X* onto M, then

oMU = (Gul-yyl-1 . gilg = yiig-ig)
and
MG = (MM =g
where

W= M if # has no zero .
- M O it M has a zero .

8. Finite Binary Systolic Trees with Feed-Back

Clearly, with the input conventions of systolic trees, a finite
tree can only accept a finite languages. In order to arrive at a
more interesting and more realistic design we shall therefore
modify those rules.

A finite binary systolic free is a 7-tuple
K=(T.5.Zo.Zr #9.1)

where %.5%.Zr #.9.7 as before; T is a finite tree whose
nodes are at most binary, binary nodes are labelled f ., unary
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nodes are labelled id {for the identity mapping; leaves don't need
alabel as they serve as {the only) input nodes.

if K is a finite binary systolic tree let & be the number of
leaves of K. Let L= Zr {#1. A word weX* of length
m .—_f|w| is processed by K as follows: Decompose w into
o =l'%—] blocks bbby by =w s with
byl = |bel= -+ = |bp4|=b, O0<|b|<b. Then at
suctessive epochs enter g(b,).g(bz).....g(b,) at the leaves éf T
with b, possibly expanded to length & by an appropriate number
of # symbols.

Yhus, the computations on &,;,...,b, travel through the tree
until they reach the root. In order to combine their resulis we add
A new ''root’’ node with a feed-back loop as shown in Higure 1.

@06
@
0 0

6 ©® O ©

Figure 1

Let K* denote this finife binary systolic tree with feedback
obtained from K. By unrolling the computation of [B]. we
dbtain the following infinite tree (Figure 2) which can be
considered as determining the structure of an eguivalent;(infinite}
gystolic tree,
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By superstability {or directly. of course) one obtains:

Proposition 3. For gzach regular language R and each b€ N
there is o finite binury systolic tree with feed-back k' having the
Following properties:
{1} K' accepts R .
{2) K'wstreehas b leaues,
{3) K'  ~needs approzimately I%]Hlog b] steps for
recagnizing words of length n .
{4) XK' consists of b nodes realizing f and Fesblp
naodes realizing id .
From the above remarks the staterment is clear for b a power
of 2. Otherwise let h =[logh] and consider a binary tree T of
height h with b leaves. Extend all branches of T° whose height

is less than h by an appropriate number of unary nodes. The
resulting tree 7 would be used in K. For example, for b =5
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one would have Figure 3.

As an immediate consequence of these remarks we also obtain a
composition operation for finite binary systolic trees: Let

K1 =(T1.%.80. Er #.9.7)
and
Ky=(T2.Zp. 0. Br #.9.1)
be finite binary systolic trees and let A be aleafof T;. Then
K, £ K
denotes the finite binary systolic tree
K={T 3% .5 .57 .#.9.F}

whose underlying tree T is obtained from 7, and T by
replacing A by 7, and then again making all branches of the
same height by adding appropriately many unary nodes. For an
example see Figure 4, Obviously the construction can be
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modified in such a way that also unary nodes can be selected as
replacermnent destinations A . This simple observation is the key to
modularity, efficiency, and combinability as outlined in §1(4) as it
helps avoiding to introduce redundant delays by unary nodes.

Proposition 4. Let K, = (T;,Ly.ZT%.Er #.9.f) be finite binary
systolic trees for i=12, gnd let A be e leaf of T, or & unary
node of T, such that the subtree of T, with root A is a single
dranch. If K} accepts the regular language R | then (K, § Ko)
also accepts K .

By Proposition 4 an acceptor for a regular language £ canbe
obtained as a composition of several identical modules {chips,
e:2), each a finite binary systolic tree with & inputs, where, for
convenience, b should be a power of 2. Such an acceptor would
even be expansible by simply adding a few more of these
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components to it. Observe that these additions would increase the
number of leaves for input iand thus the speed on long inputs;
however, it would slightly decrease the speed on short inputs,
unless the old input nodes remain accessible also.

4, "The Nodes

Up to now we were mainly concerned with global properties of
finite binary systolic trees with ‘feed-back. We now turn to
considering the realization of the nodes and some aspects of the
timing connected to this.

Let RCE* be a regular language, let M = Syn{R) be its
syntactic monoid, and lét ¢ ¢ M be the image of & under the
natural homomorphistn ©f IL* sonto M. For an efficient
realization of the nodes and a simplified design we need a
representation p of M in a concrete (= itself represented)
menoid B, thatiis, 8 homomorphism ¢ of M inte B and an
evaluation function val: B » B = {0, 1 such that

villg(m)) =1 me G .

Here ‘B denotes the Boolean semiring
There are several:cbvious candidates for B :
- M itself givenby a Cayley table,
- ‘the transition monoid of a deterministic or non-
wdeterministic-acceptor of R

- -+the monoid 5, of m xXn-matrices over F for an
sfppropriate n .

The first possibility is 'ruled out by space and time
considerations - Keeping in mind that the network should be
programmable toiaccept various regular languages. In the second
case we would need a representation of the mapping of the state
set into itself; this could be achieved by tables for graphs thus
introducing space and time problems agin, or by Boolean matrices
which In fact gives the third possibility. In the sequel we therefore
consider that one only.

As'is well-known [8], alanguage R over I is regular if and
only if there is n+€ I ,:arepresentation p of ¢ in By, , arow
vector v € B1** |, and a column vector 77 € B™* such that for all
wiEel*

wk R ifandonlyif wp{wn=1.

In this statement we may consider n as the number of states of a
non-deterministic acceptor of FE, f§i|m=1] as the non-
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deterministic initial state, §¢ 7, =1} as the set of final states, and
for p{a) for .aic I :as the transition matrix corresponding to & .

Using this representation multiplication in Syn(R) reduces
o matrix multiplicationin &, , and the evaluation val is obtained
by two vector multiplications. For these the multiplication
networks of [5] could beused. For n =3, a typical node is given in
Figure 5 where .each of the processors computes zy +z from its
inputs z,y.¢ and wherethe Gy's are initially O.

EERT

z
1
Cy ! %2 Pis \ /
1
T X
Z

2: i‘“s y'/ \ ,

Figure 5

For a realization of a finite binary systolic tree with feed-back
#'" we now fix n, the dimension of the matrices, However, we
don't fix the representstion p nor the evaluation vectors m 7.
This is feasible as, given an appropriate encoding of ¥ inte 5, ,
norie of the interior nodes need to have any additional external
information about the representation. A typical application of
k'™ would run as follows:
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(1) R is specified by e non-deterministic acceptor A with non-
deterministic initial state accepting F and having nc more
than n states (for reduction and minization of non-
feterministic automata see {7]). Of course one may consider
other specifications:sf R from which A would be obtained as
usual. From A determine m, 7. and the transition matrices
for the symbols. The latter will be looked up by the input
encoding g .

{2) Break the input word w into blocks &,,...b, as outlined
pefore and feed them into K*™ . For doing so, for block b;
say, the matrices corresponding to the symbols in &; will be
pipelined into the corresponding leaves with the sequence as
shown in Figure 5.

¥3) The output of the feed-back node, glby- - - &) for
$=1,..,7 , besides being an input to this node is alse sent to
an  additional evalualion mnode, which  computes
mp(dy - bm

“¥his proves:

Proposition 5. let K'n be the realization of a finite complete

winary systolic tree with feed-bock and evaluation, K'™ has the

Following properties:

Xi) For any choice of matrices in B, encoding the input and for
any m.n the language uccepted by K'™ is regular.

gii) K'™ .mccepts any regulor lenguage which has o mnon-
deterministic acceptor with no more than m states and with
_possibly more than one initial state.

(i) For an input word w the time neededis approrimately
b
¢ - {5n-1)| [+———| + logd
{ )1 IR ]

awhere b is the number of leaves of K*" .
{iv) K™ conmsists of (3(n—1)n+1) b processors for the matriz

-products ond 2—n2+ T processors for the evaluakion node

each computing xy +2z fromifs Boolean inputs z.y.7 .
An example of X*™® for n =3 is shown in Figure 6, for b =2,
which is unrealistically small, of course.
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—
k____Tl

Figure

{The matrix product circuit of [5} which was used here turns
wut to have two undesirable properties when it is cascaded like
this:
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{1) The output sequence has to be twisted once when it is to be
used as input to the next stage.

{2) Inputs enter where outputs leave so that comparatively long
connections are needed.

YThe second problem could be overceme by rearranging the
inputs as shown in Figure 7.

N

Figure 7

With this scheme the multiplication of mxn-matrices becomes
even laster taking 3n-—1 steps; but, connecting the output to
another circuit of this kind is even more complicated. :

However, a solution to both problems can be cbtained using
the technique of folding as outlined in [8]. In fact, by folding the
circuit of Figure 5 twice along the dotted lines shown in Figure 8,
one arrives at a circuit which aliows for short connections to the
next stage and avoids having to twist the outputs.
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Figure 8
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