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ABSTRACT

Late Binding Trees were defined and studied by D.E. Knuth,
We present a different methed for analysing their behaviour. The
approach taken in this paper is simpler and yields more informa-
tion on the performance of this data structure.
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Late Binding Trees[1] (cr LBTs, for short) are a class of binary search trees
constructed by using two fypes of ncdes, inferncl and ezfernal. An internal
node contains a pair of keys such that @ <b; an external node contains a
single key E .

An LBT with a single key a consists of just a leaf E . Larger LBTs are built
by inserting elements according to the following rules:
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ifr<a

insert{z, EI )= ﬂ

ifacz
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( ifr<a

insert{z,L) R

if b<z
insert(z, )= £ L insert{z .R)
L R

or ifa<z<d

insert{z,L) g L insert(z,R)

[each one of these two alternatives
is chosen with probability %

In [1] Knuth outlines a method to compute the expected external path
length of an LBT built by inserting » keys z;, .. ., ., under the assumption that
T;....,Z, is arandom permutationof {1, ... ,n}.
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In this paper we study the average length of a root-to-leal path {whose
expected value is 1/n times the expected external path length) under the
equivalent assumption that if z,<zp< - - - <z, have already been inserted and z
is a new key, then

1
n+l

Piz<z,] = Plz <z<zp] = - - =Pla,1<z<zp] = Plz >z, =

The method we use for this analysis is similar to the one used in [2] to study
a fringe heuristic for binary search trees.

To carry out cur analysis we will concentrate on the skape of the tree, and
ignore whenever convenient the labels of the nodes. This can be done because
the relative ranks of the elements stored in the tree are completely determined
by the shape of it. From this peint of view, the only efizct of an insertion is that
some external node becomes an internal node with two external nodes as sons:
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Consider the insertion of a random element 2 into a tree that already con-
Lains z,, . . . .25

(1} I z <z, then @ - qa

{2) It z >z, then

(3) If my<w<zyyy (1£i<n) then
> @y, B @R
=] =] [

In case (3) we choose with probability % between the two alternatives and we
ignore the necessary relabelling of one internal node, as it does not affect the
shape of the tree.

These rules imply that

1P TSRS
P[ '—*’% }=n11 (1<i<n)




-3-

Therefore, an external node that is either the leftmost or the rightmost one
of the tree is 50% more likely to be expanded as the result of an insertion than is
one of the remaining external nodes.

Let us say that all external nodes are of type 4, except for the leftmost and
rightmost ones, which are of type B. With this convention, an LBT looks like

We can immediately observe that, from the point of view of their statistical
behaviour, there are three types of subtrees: the full tree (which contains two B
nodes), a leftmost or rightmost subtree (which contains only one B nede) and a
middle tree (which contains only A nodes). A direct consequence of this obser-
vation is that a middle subtree with n elements has the same shape as an ordi-
nary binary search tree with n—1 elements. In particular, the average length of
a root-toleal path in a middle subtree with n elements has expected value
_H, 2.

The full tree A leltmost subtree A rightmost subtree A middle subtree

Let us now assign levels to the tree, starting from the root, which is at level
zero. Let

A, x = average number of A nodes at level k&

B, = average number of B nodes at level &
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F, ) is the probability of finding an external node (of any type) at level £ in
a tree with n elements.

We also use the associated generating functions

A(2) = Vhiz®, Balz) = L Buszt, Palz) = ) Paxz®
k=0 k=0 k20

Initially (n=2) the only possible tree is ‘. , SO

Ag_i; =0 forallk
Byy1 =2, Bgp =0 forallk #1

For n=2
3
—Bp k-
_ A An k-1 g Tkl
Anvik = Ak ntl T g n+1 n+l
3 3
o Bnk o Pk
Brsri = By = n+l n+l

Introducing generating functions we have

Anal®) = 4@ + i [(ez—l)mz> + %antz)]: 42(z) =0
Bra(z) = Ba(2) + ——2-(z-1)B,(2); Bale) =22

Or, using matrix notation,

Ar 41 z Aplz
Bni-l((Z))] =+ ni—l H(z)) [é:((z))] : [5"2((2))] = [20“7]

where

Rz—1 4

z

H =
= o (-

The sclution of this recurrence can be found by expressing the unknown
vector in a basis of eigenvectors of the matrix H(z). The eigenvalues of H(z)

are \j(z)=2z —1 and Ay(2)= —g—(z—l). and the sclution is

2 1 p 2
) - v 2o 45

where
3z
1 1 z+1
By = ew |- FE =10 8 |
T3z z+1




o = T (&EESly @ = T (:Ez_—:ﬁ.

2<jsn 7 2<j=n

a2 _ . [z =)
Lan(z)] = 82 ﬁ(z)

The probability generating function for the average length of a root-to-leaf
path is

Therefore,

Pale) = 2 [32 4 (12 )n‘2>]
3
=2_z[32 T (i22=ly 4 g )H{”z(z A
no(2+] alen J z+1 2<j=n 7 !

An equivalent form, which may be more suitable for differentiation, is

3
4z 82z T(n+2z) I‘(n+1+-e—-(z -1

nl'(n+1) jz+1 T{R+R22)

Pale) = 5
{3+ -2—{2—'1))

From this gensrating function we cen compute the expected value of the
average length of a root-to-leaf path

—petyy 13 _ 5
mean(P,(z)) = (2+ o YH;, 8 Tom
and its variance
_ 1 1. 2
var(Pn(z)) = (R+ 75— 1211 121?.2 ~Sem)Hy (1+ W Ha)

- 24 95 _ 5_ _ =%
(4+ )H( )4+ 2 36 B T Toan?

Note that the same analysis applies to leftmost, rightmost and middle sub-
trees, by changing only the initial conditions. For leftmost or rightmost sub-
trees we have A;(z)=2, Bp(z )=z, for middle subtrees, 4,(z)=2z2, B,(2)=0.

Unfortunately, the detailed knowledge about the performance of LBTs we
have just cobtained dees not support their use as a replacement for "naive”
binary search trees. Neither the mean nor the variance show any significant
improvement that could justify the increased complication in the algorithms
that handle the tree. This does not mean, of course, that there is no simple way
to improve the performance of a binary search tree by delaying the decision
about which element should be at the root: the heuristics analysed in [2] are an
exammple of a successful application of that idea.
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