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ABSTRACT

We present a detailed analysis for the behaviour of binary
search trees built by using a heuristic that performs only local
reorganizations af the bottom of the tree.
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1. Introduction

Binary search trees constitute a well known data structure for efficient
retrieval and modification of information. If elements are inserted in random
order by simply appending them at the external nodes at which searches for
them are ierminated, then the mean and the variance of the number of probes
required for a search are both about 2ln N, where N is the number of elements
in the tree [6]. There is, of course, the danger that such trees may degenerate
into linear lists. One approach to avoiding drastically unbalanced siructures is
the introduction of rigid balance disciplines such as height [1] or weight balance
I8]. Such schemes guarantee logarithmic search and update costs, but do add
to space requirements and ceding difficuity. In this paper we suggest a class of
simple heuristics for inserting elements into a tree such that drastically unbal-
anced trees are much less likely to occur than under the naive scheme; further-
more, the expected search time is also reduced.

The basic idea is very simple: whenever a son is appended to a node which
itself is an only son, a rotation of the three nodes is perfermed to place the
median of the three values at the roct of the subtree with the other two as sons
(see Figure 1). No other balancing action is taken and so we refer to a technique
of this form as a fringe heuristic.

Figure 1
Basic fringe heuristic
O denotes an internal nede or data value
[ denotes an external node or missing element

The origins of this heurisiic can be traced to the work of Bell[2}, ard Walker
~ and Wood[B]. Further analysis was done by liai and Rodeh [4]. Walker and Wood
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describe a class of trees called "k-locally balanced trees,” that coincide with the
class of trees generated by this heuristic for k=1, However, they provide only a
superficial analysis, and empirical results. We will introduce later a generaliza-
tion of our heuristic that differs from theirs. The heuristic is also implicit in
some of the work on analysis of balanced trees. For instance, Guibas and
Sedgewick[3] analyze the average number of comparisons for an AVL tree,
assuming all rotations occur only at the "bottom" of the tree. Under that
assumption, AVL trees become the trees generated by the heuristic. There is
also an analogy between this class of schemes and Quicksort[?]. We observe,
however, that although the analysis of the mean carries over, the higher
moments do not.

¥e are able to produce the generating function for the distribution of
search paths under this scheme. In principle, this generating function can be
extended to any scheme that chooses the median of an odd number of elements
at the fringe to become the root of the subtree containing these elements. How-
ever, to oblain this generating function we must determine the {exact} eigen-
values of a matrix whose size grows as the number of elements chosen becomes
larger. This can be very complicated. For matrices larger than 4x4 it involves
finding polynomial roots which, of course, need not be algebraic, and appear to
have no (heipful) special structure. However, we can determine asymptotic
expressions for the mean and the variance of the distribution without finding the
full generating function, thus providing an analysis for the general case.

2. Analysis of the Basic Heuristic

Let N be the number of data values or internal nodes in a binary search
tree, and n be the number of termination points for unsuccessful searches or
external nedes (n=N+1). Let P, be the probability that a & coroparisons are
needed for an unsuccessful search, and let P, (z) be the generating function

Fp(z) = 2 Pn.kzk
k=0

The main complexity measures for binary search tree are the average
search time and its variance. We denote Cy and Cy the average number of cormn-
parisons needed in a successful and in an unsuccessful search, respectively.
Similarly, Vy and Vy are the associated variances.

We will be primarily concerned with obtaining Cy and Vy. The following two
relations can be used to derive the other quantities:

= (1+ ) oh—
Cy = (1+N )CN 1
W = (kv - L 2y + 2
N N N
For naively formed binary search trees, the following results are well known
[5}
Po(2) = (Rz+n—)(2z+n—-3) - - - {2z )/ n!
Cy = 2(Hyw—1) = (2ln2)lg N
Vi = 2fyy —4HP +2 R (Bn2) g N

where lg denotes the base 2 logarithm, ##’ denotes 3 fi—and Hy = Hf{Y.
1=jsN

To begin our analysis, it is convenient to assign levels to the tree, starting
from the root (the root is at level 0). We make the assumption that the m
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external nodes are all egually likely to be hit by unsuccessful searches or by
insertions. Then F,; is the probability that the node chosen is at level k. More
precisely,

Py = average number of external nodes at level k&
L n

For the usual insertion methoed for binary search trees it is easy to find a
recurrence relating Poiy4 to Ppy and Ppy-;. This is not possible when we use
the heuristic, but we can break F,; into three components, for which we are
able to find recurrences. Let us say that an external node is of type 4 if it is
attached to a single node, of type 7 if it is attached to the bottom of a pair, and
of type C if it is attached to the top of a pair {see Figure 2).

Types of external nodes

Let us define

_ average number of A4 nodes at level k

Ak = =
Bop = averape number of B nodes at leve! k&

bk =

n
_ average number of C nodes at level k

Gr = -

Clearly we have
Prok =4 + Bpi + Coy

and also
Gk = é_Bn)H-l

Let us try to find a recurrence relation for these quantities. Suppose we
insert a new elemenl. There are Lwo possible transilions, shown in Figure 3.

Figure 3
Transformation rules

Therefere,

Anvip = ,",_'—.':T[nAn.k + 4B+ Cr—1) — RAn il
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Booe = = [nBu i + BAn -y — 2(Bp 4 +Cn 1)}

n+1
Corip = [MCus + Aus = (BrisrtCap)l

n+1

Using the relationship between B and C, we can eliminate €, and rewrite
the resulting equations as follows:

Anne =hap + [“BAn.k + 68, ]

Brsik = Bny + 1 [B4n 145 ]

with the boundary conditions
Ay =1
App =0 for k=1
Bap =0 forallk

We now introduce the generating functions 4, (2), B,(2), and G, (z), defined
analogously to P,(2). Note that

Cale) = 5= Dp(2)
and thereiore
Pa(2) = 4 (2) + (14 5) Ba(2)

Using these generating functions and writing in matrix notation, we get the

recurrence
+1 8
o) -oe 2R P
3=
Lemma 2.1

Let 4,{2) be a t dimensional vector that satisfles the recurrence
_ 1
Anlz) = U + ——HENA()

given 4; (z). If H(z) has distinct eigenvalues A{z), . .., As(z), then
Aulz) = B(z) diag(nf(\(2)), . . . 1PN () B7(2)

where E(2) is the matrix whose columns are the eigenvectors associated
withAy{z), .. ., A¢(2), and mP(}) is the function

) = ] L

t<j=n M



Proof
The sclution of the recurrence is

A= I HHHEL A6
By definition of F(z), we have E Y z)H(2)}E(z)=D(z), where
D{z) = diag(A,(2), . .. . A(2)). Then
I1 Gr+HG) = 1] GEG)E (=) + B(=)D()E7 (=)

t<j=sn
= E(2) ([Licjan [+ D(2))) E7Y{(2)

This is now easy to compute, because

[1 Gr+D()) = diag( T (+2(=)). ... T] G+ae(=)) ®
<j<=n <jsn

t<j=n

We can apply this result to our particular problem. The eigenvalues of
matrix H(z) are

=T w = _w
ME=-gtg RFpTg

where w = VI+48z, and
w4+l

1
1 1 g 11
- 1) =
£(z) = w1 w+tl E7Nz) = w w1 -1
12 12 12

The solutien can be written as

An(z) _ oz [(ﬁ(1)+ﬂ(2))w +(TI'“)—1[{2))
2(2)| T Pw 4z {03

where
ﬂ-(l} = ﬂ'{‘(—_?_{. &) 1-1-(3) = ﬂtn(—?__ﬁ)
2 27 2 2
From this we can compute the generating function
_ 2lw+4z48) oy z(w—42-3) _m
Pn (Z)— 2w m e w

Now it is routine task to compute the mean and the variance by
differentiation. We have therefore proved:

Theorem 2.1

, 2 53
Oy = 1—7"HN+1 - %
for N=6, and
_ 300 _ 144 . , BOS6 |, 2304 1
Vi = 343 Hvn ~ g Hifh + 2401 T 843 (N+)N (N-1) - {(N-b)

for N=>13, ®



Proof
The solution of the recurrence is

A= ] (HEED 24

$<jsn

By definition of £E(z), we have E7(2)H(2}E(2)=D(z), where
D{z) = diag(\(2), . .. . AM(2)). Then

II Gr+H( 2)} = H UE()E~(z) + E(z)D(2)E\(z))
t&j=n
= E(z} (H«jsn(.”“’p(z))} E7N(z)

This is now easy to compute, because

I Gr+D(2)) = diag( ][] (G+M(=2)). ... .‘H (G+re(2))) ®
<jsn

tj=n t<j=n

We can apply this result to our particular problem. The eigenvalues of
matrix H(z) are

7
where w = V1+48z , and
w+1 T
1 1 N g1 12
BE)=| o1 wel E™N(2) = w w1 ]
i 12 12

The soluticn can be written as
2z HrWea®hy + ({0 —nieh
B (z) = Sw 4z (x(1)—n?))
where

0) = prg_ T, W @) = (=t W
T ﬂ¢(2+2), T ﬂ'g(z )

From this we can compute the generating function
_ z2(w+sz48) o) _ zlw-42-3) (g
P, (z)= o T S r

Now it is routine task to compute the mean and the variance by
differentiation. We have therefore proved:

‘Theorem 2.1
12,
CN— 7 Hyv1 %9
for N=86, and
300 _ 144 , . 5056, 2304
Vi = S Hva — G5B Y STt S D N 1) ----- N—5)

for N>13. ®
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The significance of this result is best understood by comparing it with the
behaviour of naively formed thees and with perfectly balanced trees. We have
that Cy R 1.19lg N; in other words, this scheme lies almost exactly haliway
between perfectly balanced trees and naively formed trees. The simple fringe
heuristic seems a small price for eliminating half the "waste" of the naively
formed structures. Perhaps of greater significance is the variance, which is
reduced by more of a factor of 2, from roughly 1.4lg N to about .6lg N. This is
indicative of the fact (attested by more detailed analysis of the generating func-
tion} that the probability of “very bad" trees is dramatically reduced.

It is quickly noted that the worst case behaviour of our scheme leads to a
tree of height [[N+1)/ 2, rather than N if the elements are presented in order.
Although still linear, this is clearly an improvement and, interestingly, the
"waste" is again reduced by a factor of 2. In fairness we should observe that
there are sequences of insertions for which our scheme produces a substantially
worse tree than the naive method. As indicated in the example below, there
exists a sequence of N insertions that generales a tree of height 8(vN ) under
the naive methed and a tree of height ®(N) when the heuristic is applied. How-
ever, the fact that both the average search time and its variance decrease tells
us that these anomalous situations must happen with very small probability.

We define a family of trees T}, (p) (h,p>1), each built by performing normal
inserticns on an initially empty tree. The sequence of keys inserted is
Ky Koy, .. ., and the order relation among them is such that the resulting
trees have the shapes indicated in Figure 4 (for convenience we write j instead
of K;).

TJ(P}= l&l Th(p) =

Tp-1(p +2h—2)

Figure 4
Trees buill using the naive method

It is easy to see that a tree T,(p) has height h and A(h-1)+1 internal
nodes. Let Ty(p) be the tree obtained by processing the same sequence of
insertions using the heuristic. The resulting family of trees is shown in Figure 5.

The height of a tree Ti(p)is h(h—1)/2. Therefore, we see that a sequence
of insertions that creates a tree of height h using the naive method, creates a
tree of height ®h?) when the heuristic iz used. In terms of the number of
nodes, the height goes from @(VN) to ®{N). Similar results hold for the
expected search time.



T (p) = EJQD

Figure 5
Trees built using the heuristic

3. AGeneralized Heuristic

The simple heuristic we have just analyzed can be described as wailing until
three elements have been inserted in a subtree before deciding which one will
become the root of thal subtree. This process is illustrated in Figure 8.

o »10.04 - {0} {0}

Figure 6

This has the obvious generalization of accumulating some odd number of

elements, say 2 —1, and then letting the median of the set become the root of
the subtree. Figure 7 shows this process for ¢ =3

{0.0! -+ {0.0,0{-+{0.0,0,0] (0,0} 10,0}

Figure 7

How the elements inside a set are organized for retrieval is not particularly
important frem the asymptotic poinl of view, becausc that can only add a con-
slant amount to the search time. Two extreme alternatives are illustrated in
Figure B{a) and (b).

We will assume that some sequence of trees T{), ... K T@-1) has been
chosen, such that 7U) has j external nodes, for t=j<2t. The algorithm staris



(a) A scheme that minimizes search time
AP —}'ﬁ ““;ﬁ@ —

(b) A scheme that maximizes search time

Figure B

with ore instance of 7#), advances to the next tree in the sequence with each
insertion, and closes the cycle by constructing a tree that has a root and two
instances of trees T%) as its left and right subtrees. We will dencte by 24 the
height of tree 79, and by [ed) e, . - ] its number of external nodes in each
level, starting from the bottom.

For instance, from Figure 8{a) we have
r®=3; [2 1,0}

h@=3; [4,0, 0)

hB=s4; [2,3.0,0]

and from Figure B(b) we have
r¥=3; [2 1,0]
hE=4; [2 1,1,0]
r®=5 [2,1,1,1,0]
Let A{] be the probability that a random external node is in level k of the

whole tree, and is altached to the bottom of a tree TU). Let A¥)(z) be the
corresponding generating function. We then have
el
Pai = S A
mk ts;zlet Dﬂ-%u)?-ﬂ’ ke
or
el

Fo(z) = 2 ( E

157 <Bt ogichli} géJ)

2-)40)

1t is not hard to obtain a recurrence for the 49). I £ <j <2¢, we have

i 4 - ) .
ARy = A0+ =[G +1)40) + (5 ‘1)%}—&[{;&0—:)40;]

n+l e



and for j=¢, we have

1
A=Al + el

e

e
[~(t+1)48 + (2t -1} W-‘iﬂ e, )
In terms of generating functions, these recurrences become

A (=) = 40(z) + =] (G+049%e) + G 1)—}:"—r ORI 4G-e)]

for £ <j<2¢, and

A (=) = A + L[t 1)A(E) + 2ot —1) 5D oMOn gy

e -1
This can be rewritten in matrix notation as
_ 1
Aoile) = U+ A HEDA()
where Zn(z) = (4(=2), .. .. A "D(2)T, and where the matrix H(z) is shown in
Figure 9
eft) )
~(t+1) o 0 ce 2(2t—1)862€_1) ZhG)-nE-D4
etV amom
t'“;-g"-)-‘-z —(t +2) 0 v 0
95“2) (E42)_p(t+1)
0 (t+1)gét+_”2h h —(t+3) ce 0
| 0 0 0 s —(2t)
Figure 9
The matrix H(z)
Lemma 3.1

det(H(z)~A1) = (1) [(A+£ +1}A+2+2) - - - (A+28) — (£ +1)(t +2) - - - (28)]

Proof

Expand the determinant by the first row. ®

As an illustration of the preceding discussion, for the sequence of trees in
Figure B(a)} we have

Pa(2) = (14 5:)48(2) + 4¥(2) + (14 2)40(2)

—4 0 10
H{z)=|6 -5 0

0 2z -6
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det(H(2)-AI) = [(A+4)(A+5){(A+8)—4-562 ]

and, for the trees in Figure B(b) we have

Pa(z) = (14 5)A0(=) + (14 5+ 2)AWE) + (14 gt 2o+ SL5)afe)
-4 0 10/z
H(z)=[32 -5 0
0 42z -8

det{H(z)-AL) = ~[(A+4)(A+D)(A+6)—456-2]
e will denote
P(Az) = (A+E+1) - (A+28) — (£ +1) - - (2t)z

and p(A) = p(A1).

Lemma 3.2

All the roots of p(A\) are pairwise distinct, one of them is zero and all the
others have strictly negative real parts.

Proof
The proof is a slight modification of [5, ex. 8.2.4-10]. Let A be a root with
multiplicity two or more. Then p(A}=0 and alse p'(A\)=0. But p'(A)=0 implies
that
1 1
it o T REER

This can only happen if A is real and —2t <A<—(£ +1). But this implies

=0

[A+E+1] - - [A+BE] < (E+1) - - - (28)
a contradiction with p (A)=0.
Let A;, .. ..M be the roots of p(A)=0. Now we observe that |A,+2f| < 2
for all £, since otherwise we would have
|Ap+E+1] - - |Ap+RE| > (£+1) - - (BE)

Clearly p(A) has zero as a root. If we take A\;=0, then we must have Re A, <0
for R<k<t, ®

We will denote Aj(z). ..., Ai(z) the roots of p(Az)=0, with the convention
that A (1)=Ac for all k£, where the A, are the roots of p(A)=0, as defined in the
proaf of the preceding lemma. In particular, A;{1)=0.

Lemma 3.3
There exist functions a,{z), . . . , &;{2) that do not depend on n such that
Polz) = 3 o (2) PN (2))
1=kt
Proof

We know that P,(z) is a linear combination of the A{*)(2), with coefficients
that do not depend on n. The results then follows by direct application of

Lemma2.1.®
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Lemma 3.4
Let oy{2), .. .. (2} be defined as before. Then a;{1)=1 and a,(1)=0 for
R=k=t,
Proof
By definition of the Gamma function and recalling our definition of ©f{{A),
F( t+ 1! A

RIN) ~
i A+t +1)
Since F,(z) is a probability generating function, we must have F,{1)=1 for
ali n=f. But
T(t+1) Ag

Pn(l) ~ al“-) + &;stak(l) F(?\k""t"‘l) n

As n-o, the summation goes to zero, so the limit of &, (1) must be one. But
a;(1) does not depend on n, so it must be aqual to cne.

Now this implies that, for all n=t, we must have

Y e (D) mPA) =0

eskst
This in turn implies that, for all n=t,

Y oae(1) T] (wti)=0

<kt t<jsn
or, using the notation z% = z{z+1) - - - (z+n-1),
2 oAt =0

askst

We can write the first t-1 equations in matrix form as follows:

1 1 e 1
. az(1)

[&_ As M| ag(1)
Mo o A =0
. 1

L VRN

Let us call this matrix V. Now consider the Vandermonde matrix
1 1 R 1
Ag Aa e )\g
v=|a A - A
MR NTR

whose determinant is [] {A;—A;). There is a simple relation between these
2sidfst
two matrices. If we dencte

)

0.
N

| B8
GIGIGRE T
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where the [;:L] are the Stirling numbers of the first kind, then
V=5V

But det S=1, because &l:l for all n. Therefore, det ¥ = det V. Since all
the eigenvalues are different, the determinant is nonzero and the system of

equations has only a trivial solution, ag(1)= - - =a,{1)=0. ®
lemma 3.5

G~ Xi(l) Hp

Vo ~ (1) + A1) H

Proof
By differentiating the expression for P,(z) given in Lemma 3.3, evaluating
at z=1, applying Lemma 3.4 and ignoring lower order terms. ®

Therefore, we have found that the average search time and its variance

depend only on the first twe derivatives of A)(z), the eigenvalue of H(z) that is
zero for z =1,

The following lernma tells us how to find these derivatives.

Lemma 3.6
Let A{2) be such that p(A(2),2)=0. Then
gp_
. _ _ 0z
ME) = =g
ax
op 8p &p _ ( )2 ( )z_&
2
A(z) = fz OA BAdz AN
(67\
Proof

Since © (A,2)}=0, we have

dp = E‘%d)\+ % 4s =0

and from this we get

op
gr _ 0z
dz dp
aA

The second derivative can now be easily obtained by differentiating this
expression. ®

It is now easy, using this lemma, to obtain expressions for G, and V,. We
can rewrite the characteristic polinomial as
_ (At (26
phz) = gy (26)

—z =nfd) — =
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From this, we get the partial derivatives

¥ _,

oz?

izl,:g

gz A

Lo/ 1\ L = Hy-H,
B H ( )tqzizt}dj ::& R t

B_EE - ‘.'Ta A ( 1 2 1
aAE £ :<§s’a:}\'{'j ) !<;Zizt (A3 [ g2d

= (Hp—H )® — (Hétz) ‘Ht{g))

Puttling all these results together, we finally have
Theorem 3.1

. 1
g 2t —Hy .
. HEP-HE

N~ T g AN
(Ha—H)?
Table 1 shows the value of these two coeflicients for some values of . For

purposes of comparison with completely balanced binary search trees we also
tabulate In 2/ (Hzg "'H‘).

" 1 In2 HP-HA
Ho—H,  Ha—F  (Ha-BL,F
1 2 1.3863 2
2 1.7143 1.1883 0.8746
3 1.6218 1.1240 0.5555
4 1.5760 1.0924 0.4063
&5 1.5489 1.0736 0.3201
o 14427 1 0o
Table 1

Coefficients for Cy and Vy
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