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1. Introduction

Although linear upper and lower bounds of 3n and 1.75n respectively, have
been known for several years for the problem of finding the median of a set of n
elements [3, 1], the gap has not been narrowed despite a number of efforts
including the insights of Yap [5]. In this paper we establish a worst case lower
bound of 1.B372n-0(1) (1.B372..=79/43). The extraordinary length of the
proof with respeet to the improvement obtained suggests that significantly
improved lower bounds, if at all possible, will require completely different proof
techniques. The result does, however, confirm the expectation of Yap that a
bound of 1.8333..n is achievable by a basic adversary strategy. We precisely
state the problem as follows:

We assume we are given any algorithm that determines the median (i.e. the
In/ 2] largest element) of any totally ordered set by performing a sequence of
pair-wise comparisons between elements of the set. For simplicity, we will
assunie that n is odd. We will construct an adversary [2, 4] that will provide the
answers to those comparisons in such a way that the algorithm will be forced to
ask at least a certain number of questions in order to determine the results.
The basic restriction for the adversary is that all its answers must be consistent,
i.e., there must exist at least one total order in which all the relations implied by
his answers hold.

2. The Strategy of the Adversary

At any point in time, all the guestions asked by the algorithm and all the
answers supplied by the adversary can be summarized in a certain partial order,
which we will depict by its Hasse diagram. Initially, the partial order is the unor-
dered relation of Figure 1{a); at the end, the partial order must contain /2]
elements above one, and [/ 2] elements below it, as in Figure 1(b).

To avoid having to manage partial orders of unbounded size the adversary
uses a "trimming"” technique. The idea is that certain elements can be declared
"too big" to be the median, and others "too small” to be the median. We say that
the former elements have been "promoted”, and the latter have been
"demoted". Consider for instance a comparison between the two circled ele-
ments in Figure 2(a). The adversary may answer that the element at the left is
greater than the element at the right, thus forming Figure 2(b); but, at the same
time, it may promote two elements, as indicated in Figure 2(c), or one may be
promoted and another demoted as in Figure 2(d). The promoted or demoted
elements are ignored from now on {(questions about them are answered in a con-
sistent way, but are not counted). In either of our cases the remaining partial
order is that of Figure 2{e).
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A cornparison with subsequent promoetion, demotion and simplification

When elements are promoted or demoted, we record the number of nodes
end edges removed from the Hasse diagram. We use the notation "4/2" to
record the fact that 4 edges and 2 elements were removed. Intuitively, the
adversary tries to achieve a rate "edges/nodes” as high as possible.

The adversary must also try to delay as long as possible the deactivation of
the median. To do this, the differsnce between the number of elements pro-
moted and the number of elements demoted must be small. A rule like the
second of the above pair is belenced, because one element is promoted and one
is demoted. Following Schénhage [4] and later Yap [5], rules need not always be
balanced if we can guarantee that their biases wil! ultimately cancel.

Consider for instance the comparison of Figure 3(a). One possibility is to
enswer as in Figure 3(b), giving 3/ 2 and two singletons. As we will see, the ratio
3/ 2 is not high enough. A better approach is to let the adversary answer as in
Figure 3(c), which achieves a better ratic, 2/ 1, but which is biased. We write
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"2/ 1{+1)" to remark that there is a difference of +1 between promoted and
demoted elements. But the adversary could also have given the complementary
response of Figure 3(d}, and indeed alfernate between them. We therefore have
a balanced scheme with a net return of 2/ 1, as denoted by Figure 3({e).
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(@) M s2/1(-1).* . I
l
]

(e) '
>R/ 1+1), ¢, x %
I e
NERERERE
Figure 3

Biased rules leading to a balanced scheme

The fraction of time we use each rule depends on its bias, Consider, for
example, Figure 4. We can apply rule (b) 1/3 of the time, and rule {¢) 2/ 3 of
the time, to achieve balance on the average.

o {8

(b) >§< _;4/z(+2),-.-.-I
© />>¢( T /\ -

Figure 4
A 1:2 ratio in applying biased rules

The average ratio is then

1 2 _8 ,4
5 x[4/ 2(+2)] + 3 %[/ 1(-1)] 5/ 3

Sometimes it is convenient to ignore one of the two structures. For exam-
ple, when an element in any structure is compared against the top element of
Figure 5(a), we can answer ">" and deactivate two elements, as in Figure 5(b).
This can be viewed as a convenient shorthand, avoiding detailed examination of
all possible structures compared against one.
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Figure 5
A stratagem in which one input is ignored

Finally, if no elements can be deactivated, an answer is given and the
resulting partial order is added to the set of allowed structures. Initially, this
set contains only the singleton and grows by these additions. The final set must
be clased, in the sense that any structure generated as the result of application
of a rule must be in the set,

The strategy described so far was used by Schénhage in his proof of the
1.75n lower bound. Tt has the property that the global bias is bounded by a con-
stant at all times {the constant depends on the particular adversary).

Some structures, such as a chain of three elements, are unfavourable for
the adversary, and Schinhage's adversary avoids generating them by deactivat-
ing enough elements. Yap realized that it was safe to allow the existence of
these structures, provided they are generated only in contexts where a good
ratio of deactivation has already been achieved. For instance, we can guarantee
that every time the "three-in-a-row" structure is generated, we remove two
nodes and four edges. We call this two nodes and four edges a "bonus”, and we
carry the structure and the bonus together (Yap cazlls this pair a "safe-box").

Dne way to depict the augmented structure would be that of Figure 6(a),
but we prefer that of 8(b). .
(a) N { (b)

4/2

Figure 6
Denoting bonuses

This type of structure could be generated , for example, as the result of a
comparison like that of Figure 7(a). We can alternate between the outcomes of
7(b), and the resull of two consecutive applications of these rules is 7(c), which
can be rewritten as 7(d).

A bonus needs not be unbiased, as seen in Figure 8. The rule of B(a) is not
valid (by itself) because it is biased. But we can transform it by absorbing the
8/ 1(+1) as the bonus of some structure, giving 8(b). The biased pair is trivially
handled in 8(c).

The introduction of biased structures must be handled with care, since it
allows for an unbounded global bius {note in the preceding examples the global
bias was bounded at all times). While unbounded global bias is possible during
the execution of the algorithm, there is a simple condition that guarantees that
it will be bounded at the end. The follewing lemuma is a slight modification of
Yap's Lemma 1 [5].
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Generating three-in-a-row with a bonus
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Biases and bonuses together
lemma 2.1

If the number of active elements in each biased structure is strictly greater
than the absolute value of its bias, then at most a constant number of biased
structures can exist at the end of the execution of the algorithm.

Proof

Suppose there are ! types of structures of sizes (number of active ele-
ments) s,,....5;. Suppose also their bonuses are ¢;/e;(b;) for j=1,...t {we
can assurne structures with no bonus carry one of 0/ Dfﬁ}). Suppose the number
of elements that have bsen promoted and are not in some bonus is p, and,
analogously, d are those demoted. Recall that |p—d| is bounded at all times.

If the median is still active at the end, then only one structure may exist
{otherwise the median would not be uniquely determined).

If the median has been deactivated, say it has been promoted, then we can
have more than one structure. Suppose we have k; structures of type j, for
j=1....t. Then, the number of elements promoted is

b
UP=p+ E k; 70
1<j<t R
and similarly
e;—bh;
DOWN =d + Z k; 3
1=j=t 2

is the number of elements demoted. By assumption, since the median has been
promoted, UP =n/2. Now, the total number of elements, n, is
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n = UP+DOWN + 3 kjs;
1<j=t

From this and R UP = n we get
UP —DOWN < 3, ks

i=i=t
pod+ 3 kit Y ks
1=<jst 1=j=t
=> Y kilsj-bj)sp —d < |p—d| = 0(2)

1sj<t

Now, by hypothesis, }b;! <s; for all j, and this implies &; <s;, which in
turn implies s; — b; > 0 for all j. Therefore we have that there exists a set of
coefiicients A; > 0,1€5={, such that

2 )&j kj = 0(1}
1=j=t
which implies that the k; are bounded by a constant. ®

(Besides the notation introduced in the proof of this lemma, we will some-
times use w; = §; + e;, the "weight" of structure 3.}

Since at the end of the execution of the algorithm only a constant number
of elements may still be active, we have

p+d=n-—0(1)

If we can assure that each element promoted or demoted can be changed
at least o comparisons, for some o, then we will have a total charge of

a{p +d)
which is at least
an — 0(1)

3. Accounting Techniques

Our problem is, therefore, to find a way of charging as many comparisons as
possible to each efement that is promoted or demoted. If we have { different
types of structures, we define y; (the "yield" of structure j) as the minimum
number of comparisons that can be charged to elements in structure j. If S; is
an structure, we also denote y; by y[S;] Wewant to find y[»].

The yields of the different structures are related by inequalities implied by
the rules of the adversary.

Consider, for instance, the structures in Figure 9(a). We will assume for the
purpese of this example that Sg is formed only from 5, and S; as indicated in
Figure 9(b). If we decompose Sg by the rule of 9(b), we have the rule

Sz 4/2 5, 5, Sp
and so
y[Sel = 4+ 2y[S8,] + y[S:].

But since Sg was the result of a comparison between S, and Sp we will
share its yield between both structures, in proportion to their weights:

y[S: = £y[Sdl
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(b) Formation and disintegration of Sg
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(¢) Two alternatives for avoiding Sg
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{d) Sy and a rule for combination with S,

Figure 9
Scme structures and rules

y(Sz]= 'z_yfsa]-

In rules where only one structure participates, that structures gets all the
yield. Thus, if the top element of S, is compared, we may promote it, demote
one of the pair not adjacent to it, and note that

ylS,) =4 +y[S1] + y[Sa].

When there is alternation, we must average the yields proportionally. If, for
instance, the rules indicated in Figure 9{c) are applied, we have

4/2(+2), 1, S1. Sq {1/3 of the time)
and
2/ 1(-1), 5S4 S, (2/3 of the time)
In the first case, the yield is at most
4+ 2y[S1] + y[Se]

and, in the second case, it is at most
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R+ y[Si] + y(S4]
Therefore, the average yield is at most
B, 4 L 2
] + 3 y[Sl] + 3 'y[Sz} + 3 y[Sé]
and this must be shared between S, and S, in proportion to their weights, giving

16 , 8 2 4
y[Sd= 5+ gulSy+ gylSel + g[S

B 4 1 2
y[S2l = oo+ gylSil + GulSel + ‘9—9'[5'4]-

When a structure with a bonus participates in a comparison, its weight is its
number of active elements plus the number of elements in its bonus. For
instance, the yield corresponding to the rule indicated in Figure 9{d) is at most

8+ y[S1] + 2y[Se]
which must be shared between [4/ 2 Sgjand S, in proportion 5:4, giving
40 5 0
yl4/2 55]= 5=+ gy[Si] + 19—'!![5'21

32 4 B8
y[Sa = G-+ gylSil+ gulSel.

If the inequalities for decomposing the structure 5; are
fy; < ¢ 1=i<my; |, then we can conclude

y; = minf ¥ : 1=i=m; {.

Ag)plylng this to all variables y;, a system of equations is obtained. Each of
the ¥’ is an expression containing only constants and variables y;, so this sys-
tern can be viewed as a vector equation of the form

y=Hy

which can be iterated to obtain a fixed point. Once the fixed point has been
found by an iterative technique, a set of equalities can be extracted and solved
using rational arithrmetic to find the exact yields. In particular, we can find the
exact value for y[ » ] under the given adversary.

4. Designing an Adversary

Although the accounting techniques from the previous section tell us how to
compute the yield of a given adversary, they de not give us useful guidelines for
designing cne. We will look now at some heuristics that are useful during a
design process.

Suppose we want to design an adversary such that y[ =] > « for some given
o (e.g., 11/6). Clearly, a sufficient condition for this is ¥; > aw; for all j. We will
find sufficient conditiens for this.
Lemma 4.1 (Basic Heuristic)

If in all rules the rate edges/nodes is greater than «, then y; > aw; for all j.



Proof

We will consider only the case of ocne structure at the left and no alternation
{the other cases are similar}. Suppose the ruie has the form: :

S;»c/e, s@, S,éj)
where, by hypothesis, ¢ > ae. Note alse that
wi=e+wld+ +'w3§jj)

since every element must be accounted for somewhere. Then the corresponding
inequality is

yysc+yfle 4y

We will prove that, if y; = aw; for all j, then this inequality is strict. In
effect, we have

Y = ow; = ae + awf! + +awk(’f)
=ae +yPl + - +y;§:?')
<c +yf+ . +y,§j”

Therefore, we can increase y; for all j and still not violate this restriction.
Since the same holds for all rules, we have y; > aw; forall j. ®

There is a type of rule that does not satisfy the basic heuristic but causes
no problem. These are the rules with ¢/ e=0/0 (typically, those generating a
structure with a bonus, or those where two structures simply combine to form a
new one), The rule has the form

S; s .S'kf;?')
with
w] :w{.ﬂ + +wk(j)

and whose associated inequality is
vyl o ey

For any 8 > «, we can see that, if we replace y by fw, we have
Bw; < Blwl+ -+ wk(jf)) = By

and therefore the ineguality holds. It is left to rules with e/e # 0/0 to deter-
mine how much bigger than «, f can be.

It is not always possible to use the basic heuristic directly. Consider for
instance the comparison of Figure 10{a), which suggests the rules of 10(b).

After averaging, we get as right hand side

11 ,8 1 2

5 /3 SrgSrg
which is not strietly above the 11/ 6 level according to the basic heuristic. But if-
at least one of the structures in this right hand side can be proved strictly above
that ievel by using the heuristic, then we can expand it and then pass the test.

In the example, the rules of Figure 11 can be applied to Sy. After averag-
ing, (2) becomes

T4/2 Sy]
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a) A comparison between Sy and Sj

[4/2 }L{ 1 / > P/A(+R), ., v (1/3 of the time)

s

{4r2 )\]ﬂ< +2/1(-1), 0, [4/2 )\] (/3 of the time)

b) Rules for the comparison above

Figure 10

4[3/1(—1) . o ]

<1> >V<
@ v/ 2/1(+1). | (1/2 of the time)

S2/1(-1) 0 . (1/2 of the time)

Figure 11
Rules for Sy

Sy-2/1, Sy, é—xsa_

Replacing both alternatives for Sy in the right hand side, we get
i1 , 8 1 2
33 S émx[ax 1{-1) 81 8,11, gx[yz Syl

and
74 1 2
—3—/ 5 'B—X.S'l. 'S—XSE. -3—X[4/2 Syl

The second alternative is at the 13/ 7 level, which is better than 11/ 6, but
we still have problems with the first one. Now look at the rule for
[3/1(-1) Sy S;], which demotes an §; on its next comparison, giving an
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unbiased 4/ 2, S;. Replacing this in the first alternative, we get

15 .8 4 2

3_/ 3_. S—XSI, 3—x[4-/2 Sy]
which is at the 15/ 8 level, better than 11/6. We are now in a positicn to check
by using the basic heuristic that we are strictly above the 11/6 level in both
cases.

5. An Adversary for 1.8372n

Theorem 5.1 .
., - 0(1) comparisons are necessary, in the worst case, to find the
median of a set of n elements.

The proof follows immediately from the adversary (and its analysis) which is
based on the preceding sections and presented in the Appendix. Clearly, the
basic goal of this scheme was to prove an (11/ 8)n bound, and the fine tuning of
the previous section was helpful not only in surpassing it, but also in reaching it.

While this methed may be extendable to achieve a bound of (2-€)n, the
combinatorial explosion of cases seems enormous. We feel any significant
improvement beyond our bounds will have to come from radically new tech-
niques.
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Appendix

The set of structures that the adversary allows to exist is shown in Figure
12(a) and (b), together with any associated bonuses., We have labelled the nodes
with letters to simplify reference. For each structure, the "inverted" version is
also allowed. If n is the number that identifies a structure, we use n' to denote
its inverted companion.

Nodes labelled with the same letter (but different subscripts) are sym-
metric. Without loss of generality, we will assume that it is always the node with
suscript one the one that participales in comparisons.

We use a tabular notation to specify the vutcome of comparisons. For each
possible comparison we record the answer given by the adversary, which ele-
ments are promoted, which ones are demoted, which structures remain active
after these elements (and their incoming edges) are removed, the rate "c/e"
associated to the rule, and a real approximation for that rate. Figure 13 shows a
graphical representation of several comparisons, and Table 1 shows the
corresponding tabular representation.
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Figure 12(a)
Structures allowed by the adversary

Exarmples (1), (2), and (3) should be self-explanatory. Examples {4), (5).
and {8) iliustrate an abbreviated notation we use for rules with similar out-
cornes: (6) should be taken as an abbreviation for (4} and (5).

The full set of rules of the adversary are given in Table 2. If we look at that
table, we observe that all rules but (127) are on or above the 1—113\:;5:{. We will

prove first that the actual yield per element in rule (127) is better than %—
Before doing that, let us consider the rules for Sz Rule (6) gives an
immediate rate of 2/1, but rule (5} gives 0/ 0,Ss. However, we can use rule (15)

to expand structure S, and get a rate of 4/2. Of these two rates, /1 and 4/2,
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Structures allowed by the adversary

the most unfavourable for the adversary is 2/1, so we will always use that rate
when we need to expand S3. {Note that rates are not necessarily comparable,
but rates that give the same quotient are. If an structure may be expanded to
give non-comparable rates, e.g. 2/1 and 19/10, we have to try all possible expan-

sions in parallel.)

Consider now rule (127). its right hand side has the form

58,82 6
575 5 s

Replacing S3 by 2/1, we get a rate of
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alternated with
a b
N alternated with
c 4
a
?jm
d
a
b e,
)
d
&
b’ C‘l
Figure 13
comparison | answer | promoted | denioted | active c/e
4c?2b > 4a 2b 1,1, 2| 4/2 2
Be > Ba,c 1,111 23 12
Be < Be.dyd, | 2 5 /5 | 18187
3] - ba 1,2
5 - 5d 1z |*1 R
4a > 4a 4d 1,1 4/2 2
4d < 4a Ad - 472 2
4a.d >.< 43 4d i1 4/2 2

Table 1
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58 , 32
?/-g—l-

which is at the 1.8421 level

CJ'IEO’J

x[2/1] = 14/ %B~

Using a more concise notation, the previcus expansion can be summarized
as follows:

{127) % 352 g xSg => 14/ wm 1.8421

So far we have proved that the adversary achieves a rate of at least Ea We

will show now that its actual rate is even betier. To do that, we will examine
each one of the rules that are exactly at the ilevel:

6
(22) Sz -g—xsm =[5/ % 79—1:/ %8—] ~ [1.B875, 1.8684]
(4D) —g—ys é—xSs = %Z—m 1.8571
(45) 1—3142. %—xsg = 1:% g—w 1.8571
(51) 33—244. ;—xSs = 231, 13—4x 1.8571
(129) 11/6, é—xsS = 12/ %w 1.8462
(132) 12—1/3, é—xs14 = 1223—/ —g— %7/ 13—4] 1.8571
(138) vz Lxs,= %g-w 1.8571
{147) 271} 1?—2 ‘;—xsi.,2 = [18/-@?-: %gli/ ?112— %5—/ %i 53;9;—/ %%—]

~ [1.8529, 1.8585, 1.8438, 1.8457]

(149) 11/8, 1—><.5‘26:[ , 18 107 29]a:[l B421, 1.8448]

2 2B
(150) 11/8, éx.5‘27=>2—9f%3m183?2

We use = to indicate that the rate used for Sey was also obtained from an

expansion, in this case (13B). Before continuing, we will consider some rules
whose expansions will also be needed for other expansions:

(29) 0/0, ><53=3>1/é—

(142) o/c, xssg:[——/sz 2 18,8 e B B Ay

~ [1.B4£48B, 1.8571, 1.88386, 1.84B85]

(176) iLye 3 FeXSpy,

: sy 82,87 364, 196,

3 457 45
® [1.B507, 1.85’?1]

(185) %1/2, TS = [y L 2 By e
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We continue now with the normal sequence:

(161) 11/6, - xSgs => &/ 29 29 & 1.pa4B

2
(152) 11/6, 1xSa =5 [ 130 /283 , 877, 368 1 8375, 1.8397]
2 36 ' 457
(153) 11/6, -;—xsgs = —/am 1.85
(154) 11/8, é—xsss=:> Bixam 1.8542
(155) 11/6. é—xsga;-»
159 43 63,17 95,19 59,32
(75 373272373
181 98 31 287,52
e AT

R~ [1.8488, 1.B529, 1.8421, 1.8436, 1.B387, 1. 839’?]

(156) 11/6, xSy => i-é-@—/s ~ 1.8594

2
(157) 11/8, -é—xss,, = %z—/m ~1.85
(158) 11/6, é»xsf,9 = %?7/ 0~ 1.85
159) 11/6, xS, => 88, 37 ~ 1 8378
2 575
160) 1176, xS, => 21/ 10~ 1.85
2 2
(161) 11/6; é—xs;z = 32i/10m 1.85
(162) 11/6, Tx55 =5 7%/ 5 1.8372
35, 19

(163) 11/6, = x5y, => 22,19 S 18421

2 2
(165) 11/, ;—xS45=>[—/9 19/ 3L 31 208 113 '281 68,

[N E R VA
~ [1.8811, 1.8387, 1.8407, 1.8456]

We can observe that the lowest rate is E/ 53

& attained in rules (150) and
{162), and this concludes our proaf for the Z%’n lower bound.
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coriparison | answer | promoted | demoted | active c/e
(1) | 1a?la > 2 0/0
() [ 2a%la > 3 0/0
2b?1a = (2a?la)’
(3) | 2a?2a > 4 /0
(4) [ 2a?2b > 5} /0
2b?2b = (2a?2a)’
5 | 3a > 3a [¢] e/0
3b < 3b 2
® |5 . 3a ! 1 /1
" | 4ad >.< 4a 4d i1 4/2 2
4b < 4b 7
® |4 - 4a 12 (90
(&) | 4c?la > 8 0/0
{10) | 4c?8a < 9 0/0
{11) | 4c?4b > 4a 2b 1,1.2 4/2 2
(12) | 4c%4c < 4R 1,10 0/0
(i3) [ £'c?4c - 4a 4'p 1,122 4/2 2
| : o o4 e e
(15) 66.] < Sa; 1 4/2 2
{18) | 7a?la > 4 4/2 2
(17) |_7Tb?1la > 11 0/8
Yc?la = {7a?1a)"
(18) | 7a?2a > i2 0/0
{18) | 7a?2b > i3 0/0
{20) | 7b?2a < 14 0/0
7b?2b = (7b?2a)
7Tc?2a = (7a?2b)’
7c?2b = {7a?2a)'
{21) [ 7a%4c > 15 0/0
Tb?4e < La 1,14 11
©2) | yho40 < 7b,c 14 | 37R 1833
(23) | 7c?4c < Aa e 1.22 8/4 2
7a?d'c = (7c?4c)’
7h?4'e = (7b?4c)’
7e?4'c = (7a?4c)’
(24) | 7a?7a < 16 gs/0
7a?7b > a 2.7 19 . 10
) | 7a97p > 7Rb,c 1,7 375 |18

Table 2



(26)

(27)

(28)
(29)

(30)

(31)
(32)

(33)

(34)

(29)
(36)

&7
(38)
(39)

(46)
(41)
(42)
(43)

(44)

(45)

(26)

(47)
(48)
(48)

-1B -~

comparison ! answer | promeoted | demoted | active c/e
7a?7c > 7la 2,7

7a?7c > e 27 |83 ?
7b?7b > 17 0s0

Th27c = (7a?7b)’

7c?7c = (7a?7a)’

Ba.d1 > < Ba 8d, i,2 4/2 2

Bb < Bb 11

B - 8a 1g | 0/0
8c > Ba,c 1,1 29 12

Bc < Bed;d; |2 ?)—/5— 1.9167
9a,.d >.< Ga, 9d 1,3 4/2 2
8b, < Sh, an 1.7 0/0

gc < Ge,d 2,

9 - 931.3.9 1,1.2 42 2
10a, > 104, 1.4 B

10 - 10¢.d 2 |3z |18
i0b, < 10b; 14 0/0

10c,d <, < 10e,d 2,2

i0 . 10a,.8p 1.1.2 83 2
11la%ia > 8 4/2

11b?ia > 1B 0/0

1ie?ia < 14 0/0

lia%2a > ila 2.3 11

11a%2a > 2b 8 273 | 18333
i1a%2b > 1la 2.3

11872 > 2b IR il R
11b72a < i9 0/0

11b?2b > 1lia,b 1,1,2

11b22b > 2b R il ?
110[?28\ < 11a.b,2a i,i,1 15

11c,22a < ile, 2,7 272 | 187
11C1?2b > 11ﬁ.b 1,3 11

11¢,?2b > 2b 111 3 2 1.8333
11la%4c > 11a 3.4 B

1a%c > 4e,d 211 |3 1875
11b74c > 20 0/0

11c,?4c < 4a 11e, 127 4/2 2
11a%4'c > lia 4'a 123 8/4 2

Table 2 {continued)




(50)

(51)
(52)

53)

(51)

(55}

(56)

67

(58)
(38)
(80)
(61)

(62)

(63)
(84)

(89)

(70)

(71)

-19-

comparigson | answer | promoted i demotad | active c/e
11b?4'c > 11a,b 1,1,4
11b%4'c > Lac 1111 | 8/3 R
1le,?4'c > fac 11,11 | e
leoae | > lia,b 4'a 113 | 7% | 18333
11a?7a > 21 0so
11a?7b > 1ia 3,7
: 19 , 10

112%7b > Tbie 111 13”73 ®
11a%7c > 1la 3,7
11a%7e > e 2.11 6/3 2
11b?7a < 11beyea | 1,7 57 5 1 18571
116?7h > ilab 187 | 15
11b77b > 7b.c 1,11 o 74 | 187
11b%7e > 1la,b 1,1,7
oo , 20,10 |,
11b?7c > Te 2,11 3 3
1ie;?7a < Ta 2.1t
11¢,77a < iig, 7.7 42 2
116,770 < 22 0/0
11C1??O > 11a,b 1.4 23
110,77c > e 211 | 374 | 1987
11a%ila > 23 0/0
11a?11b > 11ka 8,11 13,7
11a?11b > 11%,e,,05 1 1,11 57z |18
11a%lle, > 1ila 3,11
11a?ite, | > 118¢, 71 | 4R 2
11p%11b > 24 0/0
11b?11c, > 1ilab 1,1,11
ile?lic, > 118e, 7,14 4/2 R
lie,?ite, > 25 0/0
11a?1i'a > 1ia 3,11
11a?li'a > il'a 311 | 873 2
11a?11'b > lia 3,11

. : ) 29,10 |
11a?11'b > il'a,b 1,1,11 3 3
1la?li'e, > 11'a,b 1,8 23
1la?li'e, > lia 3,11’ 374 | 19167
11b%11'p > 11ab 1,1,11°
11b?711'b | > 11'ab 1,11 | B/4 2
11b?11'¢; | > lia,b 1,111 | 45
11b?ite, |- 17ab 1311 | 27% | 187

Table 2 (continued)




(v2)

(73
(74)
(75}

(78)

(77)

(78)

(87)
(68)
(68)
(20)

{01)

(s2)

(83)

-0 -

comparisen |-answer | promoted | demoted | active c/e
11e,211'e; | < 11'¢, 7,11
lig,211'¢, | < 1le, i | R ] R
12a.¢) >.< 12a 12c; 1.2 8/4 2
12b1 < 12b1,01 7 B
12 - 12a 2.2 53 1.875
13 - 13a 2,2
13 - 13d 1y |42
l4a.e >.< 14a l4e 1,2 B/4
14b < 145 11"
14 - 14a 1,7 |3t
l4c - > 14c 4

19 , 10
14 . l4d,e 1,2 373 |0
14d < 14de 1,2
14 - 14 17 |47 2
1Ba.e >.< 15a 1Be 2.3 B/4 2
15b < 15b,¢ 14 8
15 - 15a 2.4 55 1.875
15¢ < 15g 15¢ 14 B8/4 2
15d < 15d,e 27
15 - 15a,f izz |6/3 2
15 > i5f i5e iz B/4 2
15g < 15a i5g 2.7 4/2 2
i6a > 18a,d 2.2

52,238 | 4 g5
1Ba < 1Babe |7 5° 5
18b < 1E~b.c 4 23
18 - 16d 27 | g’% |19187
i6c.d <> 16d 16c 2.2 12/6 2
18e < 16C.e,f 7 13 7
18 . 164 2.7 5/ g | 18571
16¢ < 16d 15f 1.7 B/4 2
17b,C <. < l?b,C 1.7 15
17 - 17%d,e 17 | 7% 1675
17d.e = (17b,c)’
17a%la > \ f2s  las0 |
17f21a = (17a%1a)’
17a%2a < lev  Toas i

Table 2 {continued)




(1)

(@5}
(98)

(87)
(88)
{69)

(300)
(101)
(102)
(103)
(104)
(105)

(108)
(109)

(108)
(109)
(110)

(11)

(112)

(119)

(114)

-21 -

comparison | answer | promoted | demoted | active c/e
17a%2b > 33 0/0 |
17728 = {17a?2b)’ -
17£22b = {17a%2a)'

17a%4c < 34 0/0
17174¢ < 35 0/0
17a74'c = (17124c)’

17f?4'c = (17a?4c)’

17a?7a < 36 0/0
17a27b > 28 0/0
17a%c > 37 0/0
17272 = (17a?7c¢)’

17(27b = (i7a?7b)’

1727 = {17a%7a)’

17a%ila < 38 0/0
17a?ilb < 3¢ 0/0
17a?llic, > 40 G/0
17%11a < 41 0/0
17f711b < 42 c/0
171%11e, > 23 ©/0
17a?11'a = (17f?11a)

17a?11’c, = (17f%11cy)

17?11'a = (17a%?11a)’

17£711'b = (17a?11b)’'

171211'c, =(17a%1lcy)’

17a%17a > 29 0/G
17a217f > 44 D/0
17£217f =(17a?17a)’

1Ba > 18a 30 4/2 2
1Bb > 18a,b 1.1,1 14
18b < 18b.ey.cacs | 1 8/ 5 | 1.9%86
1Bc < 1Be 11

18 - 18ab ' L1 |2 |B
18a > 18a B 13 7
19 - igbene; |12 |27 2|87
19b < 19b,e;.ep 1,2 15

19 - 180 101 | 27 R (1878
19c.e, >.< 18c 19e, 1.7 4/2 2
19d < 19d 31

19 - 19c 1,11 |90

Table 2 {continued)




(115)

(118)

117)

(118)
(119)

(120)

(121)

(122)

(123)
(124)
{125)
(1286)

(127)

(128)

(129)

(130)

(131)

(132)

(133)

(134)

-22-

comparison | answer | promoted | demoted | active c/
EDa,b,e >.>.> ZUa.b,e 1.1.1,2 31 16
20 - 20d.g 211 | 575 | 199
R0cy.d.g <5< 20c,,d.g R7 34 18
20 - 20a.b 11,4 |57 5 | 18889
20f < ZOd.f,g 1,11 34 18
20 - 20a,b 114 | 575 | 18889
2iabef >>.<<|21ab 2ief 11,1 | 15/8 1.875
21C1 < 2la Bch 2,7 B/4 2
21d > 21a,d 23

' . 52 , 28
21d < 21d.ef 11 57 5| 18571
22a,,d >< 22a, 224 2.7 8/4 2
ngl > 22a1.b1 1,1 1
22 - 224 v | 4R 2
22¢, < 22c,.d 2.7 15
22 22a, b, 111 |7 |18
23a.f, >< 23a 231, 3.7 8/4 2
23b > 23a,b L1111 | 48 g
23 - 28e.f,0; |8 57 5 | 18848
23c, < 23a 25c, 211 18/4 2
23d > 236..[1 3,3 58 . 32
23 - 23e.f1.I 8 57 5 | BIRS
R23e > 23a,d,e 1,1.3
23e < 28efify | B 1377 118571
24a,b,d >>> | 24ab.d 1,13
24 - 2scfify | 111 |11/6 118333
24c,ef, <,4,< Repefyf, | 1.7 26 , 18
24 - 24a,b 11,11 | 37 3 | 18
2ba,b,dé >.2>.2> 25a,b.d 1,11 15
25 - 25h 711 | 272 |1B7
25c,h <, < 250‘}_'1 7.7 11
25 . 25a,b 114 | 273 | 1633
25e.f >> 25a,e,1 1,4 19 . 5
25 - 25h 711 | 272 | M0
2bg < 26g.h 2,11 28 14
25 - 25a,b 25h 11,7 | 37 3 187

Table 2 (continued)




{133)

(138)

(137)

(138)

(139)

(140)
(141)
(142)

(143)

(144)

(145)

(146)

(147)

(148)
(149)

(150)
(151)
(152)

(153)

-23-

camparisen | answer | promoted | demoted active c/e
26a,b.d >>> |26abd 11,2
o ’ obc.ef as” |18s7 1.8571
26c.e.f <, &<, < R6e,e f 2,2
26 - P6ab.d 112 [18/7 1.8571
26 - 26a,b,d e |27z |*P
27 - 27e,f 37 |3”% |1833
282,51 >>> |28abf 127
by 2>, b, 2 49 28
28 - 28g.h 117 |57 5 | 1884
2Bg.h << 28a.h 117 | 19
28 ; 28a. 47 575 |18
2Be.d.e << 28c.d.c 211
28 - 2Ba.b,f 1o | 187 1.8571
281 N 2811 2.32
28 - 28degh 117 |90
29a.d >> | 29ad 417 | g 20
29 ; 29ethi  |277 |87 8 |1®
29b > 26a.b.d 1217
b, 217 | 49 26
20b < 2obcefhil127 |37 5 | 16846
29e,fh,i <,£,£,< R%e,f h.i 27,7 97 52
29 - 29a,b.d 1,217 | 77 & |1.8854
29¢ < 20cefhi | 227
efih, 2, 125 17
29 - 28a,b.d 1217 | 8 7 g | 18382
29j.k >> | 2odjk 1732 | o2 12
29 - 29ethi 1277 | v v |18333
291 < 29a.b.d | 29nil 1122 26/14 | 1.8571
R9g?la < 29g,h.i 1,717
29g7%1a > 29ab.d 1.2.26 | 1176 1.8333
R9g7Ra < 29g.h.i 2,717
2972 < 29ab.d 1ppy |11/6 1.8333
29g72b < 29z hi 27,17
292725 > 29a.b.d 1233 |11/8 1.8333
29g74c < 298,00 47,17
295%4c < 29ab.d 1094 |11/6 1.8383
29574’ < 29z.hii 4717
295%4'¢ > 29ab.d 1,236 | 11/8 1.8333

Table 2 {continued)
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comparison|answer| promoted demoted active c/e
R9g?7a < 29g.h,i 77,17

(158 295974 < 29ab.d 1236 |11/68 18333
202770 < 29z.h.i 77

(159 Somonn |5 29ab.d & 1ppp (1176 |1.8333
29g77c < 29g.hi 77,17

s0)|5otove |5 29a.b.d ¢ 1pgy (1178 18333
20g711a  |< 292 711,17

(595059118 < 29a.b.d 1238 |11/6  |1.B333
20g%11b 1< 292 hi 711,17

(158) og5011b__ < 29ab.d 123g  |11/6  |1.B333
209¢711c  |< 29g.hi 711,17

L P 29ab.d ¢ 1p40  (11/6 ]1.8333
26g711'a < 292 b 71117

(80)oge011g |5 29ab.d 1pa1 (1178 1.8333
29g711'b  |< 29z b1 71147

(80 59eo11h |5 29ab.d ¢ ipap [11/6  ]1.8333
poa7ite |< 29a.hi 711,17

(8p9220110c < 20ab.d 1243 |11/6  ]1.8333
p9g217t |< 29g.0.1 717,17

(8Nogao19r  |s 29a.b.d ¢ 12,44 |11/6  |1.8333

(s0l2057178 < 5 0/0
295729g < 2% h,i 7,17.29

(183) oo 0000 1> 2olab.d ¢ 145  |11/6 118333
299729 (< 29a,b.d.g.1.k 1,1,2,2,29

(188)| 59 50004 |< 29'ab.d.eik 1.1.2.2p9 |F0/14 |1.8571

(187)(30a > 30a 48 8/0

(168)[30b, < 30b, 3 472 2
3ia, N 81a, 11 5

(189)|5; - 3ibenes |11 57+ (187
31h > S1ay,60.b 11

D) bk z auée Sibic..cs 1 13/7 1.8571
3lc = {31a)"

(171)|3Ra.e >< 32a 3R¢e 3 26/14 1.8871
32b > 32a,b 1,2 B2 . 44

(72) 5oy, < 3bede |1 M

(173) ggc < 32ab 3Ree ! 24/13  |1.8462
32d > 32ab.d 1.1

b , 122 , 68
(7)) 354 < 32d,e 7 "5 7 518486

Table 2 {continued)




(175)

(176)

(177)

(178)

(179)

(180}
(181)

(182)

(183)
(184)

(185)

(186)

-25-

(187)

(188)

(289)

{190)

(181)

(182)

comparisonlanswer, promoted demoted! active c/e

33 - 33a,b,d 12.2 19 5

33 N 33h 117 T’z 1P

34 - B4i 1,27 11

34 - et |78 7% 18333

35 - 35g.i 1,1,17

a5 - ’ 35b,e.f (12,4 %4 Lo

36 N 386, 2,17

36 - ; BBef 4.7 %4 1.9167

37 - BTa,b.d 1.2,7 31

37 - 37 2,17 2% 193

38 - 3Bg.h 3Be.f 11,17 15/8 1.B75

39 " 3%.h 3%e f 1.1,1.7 15/8 1.B75

40 - 40a,b,g.h 1,14

40 - ) 401 717 %% 18571

41 N 41g.h 41b.c L7 15/8 1.B75

42 = 420.h 42b.c 1,1,1.7 15/8 1.875

43 - 4Bdie 7.14' 11

43 - 43j 7,17 37% 18333

ud N senor oy 1877 (18571

45a;,b, d >.>,> 4ba;, b, d 1,2,29

P o aBghi 717,17 221,5 1.9167

45g.h,i <<, < 45ghi |7,17,17 |03

15 X 45a8,,b,,d, 1229 |78 (L9167

45c,,ey,f) 45c,e),f,8.hi 1,2,7,17 og

5 X 453, b,.d, Loze |16/ % [1.B469

451,k >> 4Ba,,a89,b1,bg,d;,ds.J. K LLL&&?TM 94

45 - abghi [7arar |17 118
z < hait 12,17,

:f—i - 45a,,b,,d, oen 1.;.72;7 ?;? %2" 1.6654

468, < 4Ba. 8 4/2 2

Table 2 (continued)



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

