FINDING PSEUDOPERIPHERAIL NODES
IN GRAPHS

Jan K. Pachl
Department of Computer Science
University of Waterloo
Waterloo, Ontario
Canado N2L 3G1
Research Report C5-82-20

June 1982

This research was supported by the Natural Sciences and Engineering
Research Council of Canada under grant A7403.

1. Overview.

SPARSPAK, Waterloo Sparse Linear Equations Package,. contains a subrou-
tine called Pseudoperipheral Node Finder, whose goal is to find a node with
large eccentricity in a given sparse graph [4] [5]. In their bock, George and
Liu ask whether the execution time of the subroutine can be worse than

linear in the number of edges ([5], p. 75).

This paper answers the question: the worst case execution time of the
subroutine on graphs with m nodes and e edges is at least Q{evm). No
upper bound of the same order secems to be known for the SPARSPAK algo-
rithm, but there is another algorithm for finding pseudoperipheral nodes,

whose worst case execution time is O{evr).

2. The SPARSPAK pseudoperipheral node finder.

Let G=(X.E) be a graph with the set X of nodss and the set F of edges.
Assume that for every two nodes z,y€X there is a path from z to y; the
length of the shortest such path is called the disfonce between z and y and
denoted d(z,5}. The eccentricity of z€X is defined by

I{z) = max [d{z) | yeX |,
and the diometer of G by
0(G) = max { Uz) | zeX { = max { d{zy) | z.yeX |.
A node zeX is called peripheral if L(z)=6(G).
Experience shows that several node ordering algorithms used in sparse

matrix computations perform well when their starting nodes have large

eccentricity. Peripheral ncdes are expensive to find; the best algorithms
lmown have time complexity O(M(n)logn} for dense graphs [2] and O(ne)
for sparse ones [3]. SPARSPAK uses pseudoperipheral nodes instead. We say

that z€X is a pseudoperipheral node if there exists y€X such that

Uz) = d(z.y) = Ly).
The term is used in a different meaning in [4], where z€X is said to be
pseudoperipheral if I{z) is "close" to §(G). The present terminology is less
vague, and it rernains consistent: the pseudoperipheral node finder indeed

finds a pseudoperipheral node.

The fcllowing description of the SPARSPAK pscudoperipheral node finder
employs a function Furthest_from(z), which returns y<X such that
d(z.y)=l{z); if there are several such ¥ then one is selected arbitrarily.

This is the algerithm:

zg := any element of X
j=0
x, ;= Furthest_from/{z,)
repeat

ji=F+1

Ty o= Furthest_from(z;)
until d(z;.2;) = dizgz;_g)
claim z; is pseudoperipheral

We first consider the question of how many times the algorithm calls the

function Furthest_from.

2.1. Theorem. If w(n) denofes the worst cose number of calls to
Furthest_from by the SPARSPAK pseudoperipheral node finder on graphs
with n nodes, then

Proof. There is a sequence of graphs Gy, Ga ..., such that for each
k=1.2,..

(i) G, has n=k®+9k+3 nodes and n edges;

(ii) there is a node ry of G such that the pseudoperipheral node finder

starting at zgp calls the function Furfhest_from 2k +1 times.

Figs. 1 and 2 show two graphs in the sequence, Gy and &z For a general
k=1, the graph (G consists of a cycle whose ncdes are, consecutively, Yo, ¥
- Yer+1. 80d linear segments attached to certain nodes in the cycle. A seg-
ment of length s is attached to the node y; if and only if either j=2i,
s=i+1 and 0=i<k, or j=3k+2i, s=i+1 and I<i<k.

From (i) and (ii) it follows that on a graph with n=k®+89k +3 nodes and

n edges the algorithm makes 2\/’n+%9~-— B =2vn + 0{1) calls to the

function.

o

2.2. Conjecture. There is ¢ constant c such that, for every graph on n
nodes and for every starfing node xzq, the pseudoperipheral node finder

caolls the function Furthest_from af most cvVn times.

Fig. 1. The graph G2 . X

Fig. 2. The graph G3 .

P

3. The worst case execution time.

In BPARSPAK, the node y=Furthest_from (z) is computed by the breadth
first search ([3], p. 12). The graph is represented by its incidence lists ([3],
p. 4). Ii we assume the uniform cost criterion ({1], 1.3) then one call to

Furihesi_from requires time proportional te e, the number of edges.

Hence the conjecture in section 2 states that the worst case execution
time of the SPARSPAK pseudeperipheral node finder for the graphs with n
nodes and e edges is Olevn); and from 2.1 it foliows that Q(eva) is a

lewer bound for the algorithm.

Although we do not know whether the complexity of the algorithm is
really O(evn'), we are now going to see that the complexity of the problem

is not worse than O(evn').
Let G=(X,E) be a graph with » nodes and e edges, and let & be a posi-

tive integer. We say that a set YCX is k-discrete if d(z,y) > k whenever

Tz YEY, x#Y.

3.1. lemma There is an algorithm thot construefs a mazimal

k-discrefe sef of nodes end whose worst case ezxecufion fime is Ofe).

Proof. Denocte
B(z) = tyeX | dz.y)<k | .
If Bi(x) is computed by the breadth first search, then the following algo-

rithm accesses no edge more than twice and its worst case execution time is

Ofe).

S=¢
repeat

z = any element of X

S =85 vizx]
X =X - B(z)
until X = ¢

claim S is a maximal k-discrete set

a

3.2. lemma [f n > k/2 then every k-discrete set YCX has aft most

En/k mnodes.

Proof. Dencte h = |k/2]. The sets By{x) and 5,(y) are disjoint when
ry&€Y, z#y. Moreover, if n = k/2 then every B,(z) has at least k/2 ele-

ments (because G is connected). Hence the cardinality of Y is at most

n__ 2n

k/2 &
0

3.3. Lemma. There is an olgorithm fo find, for every YCX, fws nodes

70YgEY such that

d(zoyo) = max { d{z.y) | z.ycY § ;
the worst case erecution time of the algorithm is Ofme)}, where m is the
cordinalily of ¥

Proof. All distances d(z.y) for a given x can be computed by the
breadth first search starting at z, which requires time O(e). Therefore all

the distances d(z,y), z,y<Y, can be computed in time O(me).

a

We are ready to construct the Ofevn) algorithm for finding

pseudoperipheral nodes.

3.4. Theorem. There is an algorithm that finds o pseudoperipheral node

in worst case time O{evn).

Proof. Let k=|r\/ﬁ. The algerithm has three parts:

1. Find a maximal k-discrete set YCX.

2. Find =g ye€Y such that

d{zoye) = max { d(zy) | zyeY .
3. Execute the pseudoperipheral node finder of section 2 with starting

node zg.

By 3.1, 3.2 and 3.3, steps 1 aﬁd 2 can be executed in worst case time
O(e) and O(evn'), respectively. To estimate the execution time of step 3,
observe that for any two nodes z,y€X there are z'y'eY such that
d{z.z)<k and d(y.y)<k (because Y is maximal k-discrete). Therefore

L{zg) = d(zoyp) = 6(G)—2k .
The sequence =zpx; - - generated by the pseudoperipheral node finder

satisfies

S(Gy—2k < I(zg) < Uz)) < -+ - = 6(6) .
Hence the pseudoperipheral node finder in step 3 repeats its loop at most

2k times. It follows that the worst case execution time for step 3 is
Olevn).

0

4. Concluding remarks.

The worst case time cost of the algorithm in section 3 is O(evn), which
is not worse than the worst case time cost of the SPARSPAK pseudoperi-
pheral node finder. Nevertheless, the SPARSPAK algorithm seems to execute
in time O(e) on "typical" graphs arising in sparse matrix computations, and
is therefore better in practice.

The space cost of both algorithms is dominated by the memory needed

to stere the graph; it is proportional to n+e.

Acknowledgements. ! wish to thank K Booth, A Gecrge and D. Rotem for

their comments and helpful suggestions.

-10 -

References.

[1] A V. Aho, J. E. Hopcroft and J. D. Ullman: The Design and Analysis of
Computer Algorithms, Addison-Wesley (1974).

f2] K. S. Booth and R. J. Lipton: Computing extremal and approximate dis-
tances in graphs having unit cost edges, Acta Informatica 15 {1981),
319-328.

[3] S. Even: Graph Algorithms, Computer Science Press (1979).

[4] A George and J. W. H. Liu: An implementation of a pseudoperipheral
nede finder, ACM Trans. Math. Software & (1979), 284-285.

[6] A. George and J. W. H. Liu: Computer Solution of Large Sparse Positive
Definite Systems, Prentice-Hall {1881).

	
	
	
	
	
	
	
	
	
	

