OO0

:

WATERE
WATERL
WATERLO

3
OF

I'[Y

NVERSEY
UNIVERSITY
UNIVERSITY

Sort Theory

M.A. Nait Abdallah

Research Report
CS-82-19

September 1982




Sort Theory
by
M.A. Nait Abdallah

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
N2L 3Gi

Research Report C5-82-19
September, 1982



Sort Theory



Introduction

We give in this paper an intuitive and tutorial presentation of the
basic ideas of sort theory. The originator of sort theory is L. Nolin, who
describes his work [7,8,9,10] as "une theorie des algori thmes spécia]ement
concue pour les besoins de 1'informatique" (e.g. "an algorithm theory
especially conceived for computer science purposes"). Although a careful study
shows that this notion of an algorithm has operational connotations as well,
as we illustrate in the present paper, it does differ, however, from the
usual notion of an algorithm. It is in fact closer to that of a generalized
type, or an algebraic sort, than to algorithms as they are known in complexity

theory. Whence our term "sortﬂ for what Nolin calls "algorithmes".

The author is going to give here his interpretation of sort theory,

although this interpretation is influenced by what Nolin told him.

The aim here is twofold. First we would like to remedy the Tack
of literature by giving an accessible account of the basic ideas of sort
theory. Second, we would like to give an illustration of the relevance of these
igeas for solving some problems of program semantics, and outline a comparison

with the usual cpo approach,

Qur contribution in the present paper is a stepwise mathematical
and critical analysis of various features of sort theory, including applications
to applicative and logic programming. We show in a companion paper [61
how a consistent formalization of sort theory makes it necessary to use a

specific algebraic structure called a double bundie structure.



1. Computing with sets:

When a computation is designed, or when a mathematical problem is
solved, one starts from an il1-defined value of the result, belonging to some
set. This set is usually specified by a declaration stating where the solution
is to be found, and it corresponds to the initial state of uncertainty about
the resuit. The larger the set, the larger the uncertainty. It is, in a way,
the initial vatue of the result. Solving the probiem amounts to restricting

this set to some subset in order to obtain the final value of the result.
Example 1: Let a , c ¢ Z (where Z is the set of all integers)
A1?bel a=bhbw=c
The result here is b . Its initial "value” is Z . Its final vaiue is

be if c=0 then if a=0 then Z

ol o

else if

ol
m
I~
o
=
®
=

else ¢

or in a more compact form:

be if c=0 then (if a=0 then Zelses) else {%} nz.

This solution is best expressed by using sets. The starting
information about b is that b belongs to a "large" set Z, and the
computation consists in restricting this set in order to get more and more
information (i.e. less and Tess uncertainty) about b . The restriction
process is performed by using suitable intersections with other sets.

The optimal information (from the point of view of most deterministic

programming languages) is obtained when the set is reduced to a singleton



-2 -

(here b e {%} < Z) , although in general the solution may or may not be

unique. The set can also be empty (% £2Z) and b« {%} NZ=g¢), which
corresponds, in the case of programs, to contradictory specifications

(overflow, underflow, errors).

In this example the initial and final sets were obvious, but the
actual computation leading from the initial set to the final set was not given.
Our second example will be a Prolog program, and will show the actual
computation. The reader is referred to [4] for details of the Prolog

syntax and computation rules.

Example 2: Consider the following Prolog program
1. sam (0, x , x) «

2. sum {s(N) , x , s(M}} < sum (N, x , M)

3. < sum (s%(0) , ¥ » 2)

The first line asserts that 0+ x = x , the second line that
N+x=M=s(N) +x=s(M) (here s( ) denote the successor function
over natural numbers), and the third 1ine that 1 (52{0) +y=2z) which

amounts to the query
2 -
3?7y,2 s(0)+y=1z2

A top-down execution of this program performed by the Prolog interpreter

runs as follows:

4, « sum {s(G) s ¥ » ml} if z-= s(m]) (By lines 2, 3
and Modus Tollens)
5, «sum (0, ¥y, mz) if m o= s(mz) (By lines 2, 4

and Modus Tollens}



-3-
. ~ . _ _ 2 _ 2
6.0 if y=x,m=x1.e z= s(m]} =5 (mz) = s°(x)
(By 1ines 1, 5)

where [I denotes the contradictory clause. Thus the final result is:
all y, z suchthat z=y+ 2. If we consider the program (1., 2.)
then the Herbrand universe Hu associated with it is the set of all variable

free terms
K= 10, s(0) 5 s2(0) 4ooes ST(0) 5oud

The Herbrand base Hb is the set of all variable-free atomic formulae:
Hb = {sum(a ,b,cl:a,b,ce Hu}

since we are working with deductions, our universe ("large set") will be
Hb and the initial value of the resuit is the set o of variable free atomic

formulae associated with the query
+ sum (52(0) s ¥, 2)
namely
g = {sum (52(0) ,d,e):d,ec Hu}

The computation is going to transform this set, and the set transformation

associated with the program is defined by
T: P(Hb} - P(Hb)

= ! 1= i
T{s) = {A' ¢ Hb | A A8, A+ B] Avuuh Bm is

in the program, and B]e ,...,Bme e S

for some substitutions 8 }



-4 -

Thus T(S)
S,

We now successively compute:
Hy = {sum (a , b
T(Hb) = {sum (0 ,

u,a,

Tz(Hb) = {sum (0 ,

sum (sz(a)
T3{H ) = {sum {0 , u
b k4l

sum (52(0)

......

T"(Hb) = {sum (0 , u

sum (s"(a)

c)

-

-

»

i)

E

Thus Tn(Hb} excludes all false additions

Now, as mentioned above, the initiail value

also

is obtained from S by applying a one-step modus ponens to

using the clauses contained in the program.

ta,b,ce Hu}

u) , sum {s(a) , u,

s{c)):

H)

s(u))

u) , sum {s{0) , u,
u,s2e)) su,a, ety
u) 5 sum (s{0) , v, s(u)) ,

w, s2u)) L sum (s3a) L u o, s3(e)):

usagceHu}

u) , sum (sK(0) , u, K(u))

u,s'(c)) ra,u,ce Hu H

k=1,...,n-1}

of the form sum (s"(0),...) .

of the result is o . We have



-5 -
o NH =0 = {sun (52(0) s Y.z ry, zeH)

¢ n T(Hb) = {sum (52(0) ; a,s{m)) :u,me Hu}

o 0 T(Hy) = Gsum (2(0) 4 u, sP(m) u L me Ky
N ?3(Hb) = {sum (53(0) LU, sa(u)) rue Hu)
g N T"(Hb) =g N T3(Hb) if n>3

Now comparing the sequence of sets {o N T"(Hb)}nem , with the execution of

the program we notice that:

(i) ¢ = o n TO(Hb) corresponds exactly to the state of the

computation in Tine 3. of the program
(ii) o n T](Hb) is in the same relation with line 4.
(iti) o n TZ(Hb) is in the same relation with line 5.
{(iv) o n T3(Hb) is in the same relation with line 6.

Thus the decreasing sequence of sets o 0 T"(Hb)} describes

ne IN
exactly the operational behavicur of the program during its execution by

the top-down resofution methed.

By comparison, a Scott-Strachey-1ike approach (bottom-up computation)

would give:



-6 -
T{) = {sum (0, u,u) :uce H}

T2(¢) = {sum (0, u, u) 5 sum (s{(0) , u, s(u)) :uet}

TMe) = {sum(0 , u , u) seees sum (s"71(0) , u, STy s e H,b
and the sequence f{o N Tn(da)}ném has values

o n 1) =

=9
o NT(e) =9
o nTe) = s
o 1 T3s) = tsun (s2(0) , u s sP(W)) ¢ e M)

anTPe) w=23

This sequence converges to the same limit but does not give as
much information about the intermediate states of computation as
N T“(Hb)}nEIN if the Prolog program is executed as described in Tines &.

through 6. above.

To further illustrate this approach, we give ancther Prolog

example, which yields several results.

Example 3:

Consider the following Prolog program (lines 1, 2, 3) together

with its execution. {MT is an abbreviation for Modus Tollens)

1. sum {0, x , x) +



-7-
2. sum (s(N) , x , s(M)) « sum (N, x , M)
3. «sum (x 5y, s5(0)

4.0 x=0,y=s%0  (1.3)

5. «sum (X' 5y, s2(0)) . x=s(x) (2,4 MT)

6.0 x' =0 y=s20) (x=s(0)  (1,8)

7. + sum (;c" s ¥ s s(0)) 5 x' = s(x") (2,5 MT)
8.0 x=0 y=s(0) (x=s%0)

9. <« sum (x™ , ¥y, 0) ,x" =s(x*) (2,7 MT)
10.0 x" =0 y=0 x= 540

It gives all the decompositions of number 3 into two numbers.

Here the Herbrand pniverse, the Herbrand base and the
transformation T are the same as for example 2. The initial value of the

result is now
o= {sum {x , ¥, 53(0)) Tx, yeHJ

We do not need to recompute the T"(Hb) , since they are the same as in

example 2. The sequence {5 N Tn(Hb)}nEIN yields:
g NH = {sum (x , ¥ » 53(0)) PXL yeHy)

o N T{H,) = {sun (0, s3(0) , s3(0)) , sum (s{a) » b, s3(0}) :

a,bsHu}



-8 -

(this gives the result of line 4 and an anticipation of the other results)

2
(

o 0 THH) = tsum (0, 53(0) , s%(0)) , sum (s(0) , s2(0) , s2(0))

sun (s2(a) , b, s°(0)) a ., b < H)
{see line 6)
o 0 T3H,) = sun (0, 70) 4 2(Q) L s (s(0) L SP(0) L $(0))
sun (s2(0) » s(0) , s3(0) , sum (s%(a) L b, S%(O))
a,beHy}
(compare with 1ine 8)
o 0 THH,) = (sum (0, s°(0) , $°(0)) , sum (s(0) , s2(0) , s*(0)) ,
sum (s2(0) , s(0) , s3(0)) . sum (s3(0) , 0, s}(0})}

{compare with 1ine 10)

As a comparison with the bottom-up approach we have:

aflg=¢=

o 0 T(e) = {sum (0, $3(0) , s3(0)))

o n T2(s) = tsum (0, s3(0) , s2(0)) » sum (s(0) , s(0) , s3(0))}

o0 1) = s (0, $°(0) , $°(0) , sum (s(0) , s%(0) , s}(ON)}
sum (s2(0) , s{0) . s°(O))}

o1 146} = tsum (0, s30) » S0, s (s(0) , s2(0) , S2(0))

sum (s2(0) , s(0)} , s3(0)) . sum (s°(0) , 0 , s3(0))}



-9 -

Thus it appears that {o N T"(qs)}nEIN records only the finite,
successful computations once they have succeeded. It does not give any
information about unfinished, current computations, whether these may eventually
succeed or not. In particular it gives no information about the infinite
computations. iIndeed in Scoit's theory the latter are all denoted by the

undefined element L

This approach applies to applicative programs as well, as we

illustrate in the following examples.

Example 4:

Consider the program over the natural numbers:
F(n)<« if n =0 then 1 else n « F{n - 1) fi
If we define the transform T by
T=2Xg+An+ if n=0 then 1 else n*g(n-1) fi
then this can be rewritten as the functional fixpoint equation
F = T(F)
The universe ("large set") is here the set of functions:
H={f: IN+ IN}
Transform T canonically maps P(H) into P(H) by:
T{S}) = {T{s) : s ¢ S c H}

We now successively compute:



- 10 -
H={h: IN > IN}

T(H) = {h' e H: h'(0) =1, h'(pt1) = (p+1} = h{p} , h e H , p ¢ IN}

—

—

=y

p—
]

={h" ¢ H: h"(0) =1, n"(p+1) = {p+1) * h'(p}) , h' « T{H) , p e IN}

= 0™ 0oy =1, wM iy = ey« 0 gy

-
=
—_
=
-
|

Ay e

The sequence of sets {T"(H)}nEIN is strictly decreasing, and is
constituted by the successive approximations of the set of solutions of the
fixpoint equation F = T(F) . Its limit n T"(H) constains a single element,
which is the factorial function, as may eas?ijube seen.
The connection here with the Prolog examples is as follows. Consider
the function call (= query) F (4) . Then what we must consider here is the

sequence of sets {Tn(H)(ﬂ)} where

nelf
T (H)(8) = £h(4) : h « T(H)}

Thus we have:

H(4) = {h(4) | h e IN - IN} = IN

"

T{H)(4} = 4. IN = {4 p : p e IN}

T2(H)(4)

4«3« IN=12 -« 1IN

(1) (8)

4«32+ IN=24+ IN

T™HH)(4) =

1
F
.
w

+ 21+ IN=24 - 1IN



-1 -
TS(H)(8) = {24}
T5+n(H)(4) = {24} for any n e IN

Notice that here again we have a desciption of the operational behaviour of
the call F(4) :

F(4) (see H(4))
~ 4 % F(3) {see T(H}{4))
>4 % (3% F(2)) (see T2(H)(4))
~ 4 % (3% (2% F(1))) (see T3(H){4))

>4 x (3% (2% (1% F0))) (see THH)(4))
>4 %« 3%x2 %1 %1 (see TS(H)(“'))'

Example 5:

Consider the applicative program:
F(n)<=ifn=0 then 1 else F(n+ 1)+ (n+ 1) fi
Here we have

T=dg:an if n=0 then 1 else U2 f

and we take H = [IN + IN] = {h : IN = IN} - The sequence {T"(H}}
yields:

ne IN

H={h: IN - IN}

T(H) = {h' :h'(0) =1 h'{P*']):%)',(heH),pe IN}



- 12 -

1]

T2H) = {ht s (o) =15 he(p e 1) = 2RE2) ey o

b2

{n-1)
) = ey <0 WM ey - ﬂ~%5—;1§§31-, A1) Ty e N

The Timit n T'(H) of this sequence is then
n
ATYHY ={h: IN=IN | h(0) =1, h{n+1)=a-(n+1),acIN}
n
It has infinitely many elements, and among those we have the factorial function.
This is exactly the set of solutions of the functional equation defined by

the program.

2. Data types as objects; normal functions:

We have been computing with sets until now. Intuitively sets
correspond to data types. So we can already outline a semantic domain where
data types would be objects Tike any other objects. This corresponds to the
usual way typed programming languages are compiled, where types are attributes,
as much as values are attributes of computation objects [1]. Besides there
are at least three reasons to prefer such a type-system to those based on
Church's theory of types [3] ([14]}:

(i) a data object may have several types {intersection of sets),
and a type may be a subtype of another (inclusion)

(11} polymorphism is the rule rather than the exception: a function
can have many types

(iii} types and data objects would belong to the same domain, and we

could have some useful equalities such as:

eveninteger + 1 = oddinteger

which make no sense in a Church system,



- 13 -

Carrying out such a scheme in the usual denotational semantics [15],

which uses comptete partial orders {c.p.o.) and continuous functions as its

basic tools, leads to some seriocus difficulties.

We recall that a c.p.o. is a partially ordered set having a least
element (L) , and where every increasing chain has a least upper bound. The
least element denotes the least possible amount of information, i.e. the highest
degree of uncertainty. If we compute with sets as in §1, this corresponds to

the targest possible set, and the ordering is the inverse inclusion.

Consider a programming language L for computing with natural
numbers : 0,1,2,... . Assume that in L numbers are either values, or
indices in one-dimensional arrays. No index is 0, and indices can only range
over segments [1,...,n] , ne IN. Thus L has ground data types IN, 1,12,
123 5...5 12...n , n e IN\ {0} corresponding to the fact that some numbers
lies in IN , {1,2} , etc. Simce IN is the largest set (= bottom element),
we obtain the following c.p.o. where the objects and data types are incorporated

together in a single unified domain:

i~
jwo
|-
o



- 14 -

This c.p.o. reflects faithfully our information-ordering. Now consider the

pragram
F(n) <= if n <2 then n else F(n-1) +n fi

According to [15], the function f computed by this program is the least

fixpoint of the functional it defines. Now let us do some type checking.

F(1) =1, f(2) = 3, so we guess T(12) C 123

Now:

f(312) = if 12 <2 then 12 else f(12 - i+ 3

Taking the canonical extensions of +, -, < we get:

12<2=1<2012<2

true [1 faise = boolean

1Z2-1=1=-1N2-1=0M11=1IN=1:

according to our information ordering.

Therefore

f(12) =12nN (f(312 - 1) +12) =120 (L +12) = ¢

Thus the lTeast fixpoint f , evaluated at any type 12...n , always

yields 1 and gives no useful informaticn for type checking purposes. The
reason is that hare the least fixpoint cperates in a threshold manner,

giving expected values at 1,2,3,... and L elsewhere, thus ignoring completely

the process of approximating sets through intersections of supersets de-

scribed in §71,



- 15 -

Shamir and Wadge [14] patch the construction by putting the c.p.o.
upside-down, and adding a new bottom element. The following complete lattice

is then obtained; it will be called A in the sequel

LN

| e

.
o
[}
=

The consequence of this is that the bottom element does not correspond
.any more to the least amount of information, and would rather correspond to the
empty set, i.e. the intersection of contradictory information. {Compare with

{Tn(¢)}nEIN and {T"(Hb)}"EIN in the Prolog examples).

In [14] the authors take as functions the least extensions of
continuous functions defined over the sub c.p.o. INl = INNn {1} (called
tight functions). However continuous functions over INl are just the monotonic
ones, and there exist functions that are continuous over INL and have no

continuous least extension to the whole domain. As an example:
f=axe N . if xe {0,.} then x else 1

is computable and continuous over INl . Its least extension f is defined

by:



- 16 -
FO.n) = fFO) Ui f(n) =1 vone
Fw) = FO) U FOI2) ..U fleun) Uee. =0T = IN

and 1s discontinuous at point IN, since {l...n :ne IN+} is an ascending

chain converging to IN , and
BIN) = U {F(Qeen) sne NP =0 (3 :ne V') =1

Another difficulty comes from programs containing conditionals.

Consider the program [14]:
F(n) <= if n =0 then n else 0

If f s the Teast fixpoint then it seems that f(IN) C 0, but this cannot

be proved in the system since

H

f(IN) = if IN=90 then IN else 0

INLUD=IN

The problem is in this step where no use is made of the test in the con-
ditional. Here one may also follow [14] in introducing an extra type
rzi = {1,2,3,...} (non zero intkger), and since nzi = 0 is false we

get the desired result:

fUIN) = f(O U nzi) = £{0) O f(nzi)
= (if 0=0 then 0 else 0) U

(if nzi = 0 then nzi else 0) =

ouo0=0



- 17 -

But this partition IN = 0 ) nzi introduces a type which is outside
of the domain, and has no theoretical justification in the construction. Thus,
if the theory is to reflect reality, it appears that the regularity property
which is needed here for our functions is not plain Scott-continuity, but
must also take care of bizarre partitions such as IN =1 U nzi. In other
words we need alternative notions to continuous functions and cpo's. This

leads to the concepts of normal function and domain, which were introduced

*
in [5] in an algebraic setting( ),

We are computing with sets. So let T be a “large" set (total

set), and X c P{T) . An element x e X is atomic iff

v {yi}_ =X x=1U ¥y = 31 %=y
i i

el
Intuitively an atomic element cannot be decomposed as the union of "smaller”

elements for type checking purposes.

We say that X is a domain iff
(i) ¢, TeX
{(ii) ¥ xex x=UyeX: yatomicc x}
(iii) X 1is closed through intersection.
The motivation for our definition of domain is to abstract away the algebraic
structure which we have seen at work in the examples discussed, in particular

for the conditional if then else problem,
A function f : X~ X is normal, iff

¥ x e X f{x) = U{f(y} : y atomic c x}

[*jThese concepts were implicit in Nolin‘s work, but were first studied as
such ia [5 7.



- 18 -

where 0 denotes the least upper bound in the complete lattice X .
One easily verifies that normal functions are monotonic.

Now if the set A 1is as above, then A c P(IN) , IN=T,
#=1 and A has ¢ , 0=1{0} , 1 = {1},.... as its sets of atomic

elements. And we easily verify that it is a domain.

Shifting the algebraic structure of A from a cpo to that of a
domain, and considering only normal functions, solves all the problems
we have met so far in handling data types as objects in the cpo/continuous
functien framework defined in [14]. In particular, the if then else
does nct appear any more like a teratological case which needs special
care, but fits smoothly in this new general framework. A1l what is needed
is the normél extension of McCarthy conditional to non atomic elements

[+ 7 pp. 168, and regular compositicn of functions [* ] pp. 125.

The advance which is made here above [14], besides the solution
of the technical difficulties encountered in [14], is a conceptual cne.
Indeed it appears that the algebraic structure we need in the present case
is nothing but a particular case of ancther more general structure, which

does appear everywhere in semantics and which is called a bundle [* ].

In cpo theory, the function computed by a program is the least
fixpoint of some functicnaf, and computations are made upwards, as Cadicu
theorem shows ([5], ). But shifting from cpo's to domains leads to
another important idea: since computations are mace downwards through
intersections, the function computed by a program is the greatesti
fixpoint of the functional it defines [5]. This was clear in the Prolog

and applicative programs examples given in section I of this paper;
[*] A. Nait Abdallah, Faisceoux et Semantique des programmes, These Etat
Paris, 1980.



- 19 -

one may also check that this is true atso for the applicative programs
defined above. It may happen that the greatest fixpoint and the least

fixpoint coincide, but this is not always the case.

3. Functional types and their intersections:

A further step in the theory is to take into account the fact

that procedures can aiso be typed; for example

integer procedure p(x} integer x

begin ... end

gives the set of functions where the value of the function fp computed

by p must be found:
fp‘€ FIN IN = {g computabie | g(IN} < IN}

This is in a way, the "initial set" of the computation described by the
body of p (cf. §1). This initial set can be sometimes given more

precisely; for example:

(even » odd) and {odd - even) procedure p(x)}

means that
fp e (F even odd) N (F odd even)
i.e.

fp ¢ {g computable | ¥ n e IN g(2n) = 2p + 1 for p e IN}

N {g computable | ¥ n < IN g(2n+1) = 2p for p < IN}



- 20 -

This set is obyiously smaller than the first one, and thus gives more

information about fp .

A Timit case is the specification of an array, as a notion of a

set is canonically associated with any array definition. Indeed, if
Fab = {g computable | g(a) c b}
where a , b are sets of objects, then the set intersection
t=F{iHa}n F{Z}{az} n...n F{S}{ag}

defines an eight element "array", containing ay in store 1 . We will

show that the evaluation of t at {j} yields:

t [{3}] = {a;} if i =], T otherwise

where T 1is the total set (= maximum amount of uncertainty.)

We note that this defimition of array t is completely independent
of any implementation or descriptien in some language. One may as well

say that it is a function, whose domain is a segment of integers.

If t' =t nFO) {ag}, then t' is more defined than ¢t
since it is a smaller set, and its domain is targer. This shows how
functicns computed by programs, or represenied by arrays, are approximated

in a natural way by sets of the form
Fab={g computable | g(a) < b}

where g(a) = {g{a) : a e a} . Types are thus fundamental objects

in the construction, and do not appear oniy later on as retracts, as in

[13].



- 21 -
The definition of eyaluation is closely related to the definition
of Fab . Infact we have the following deducticn

1. feFab (i.e. f isof type Fab)

{no information available about f(x) if cf£a .

This leads to the following definition of evaluation

(Fab) [c]=ifccathen b eise T

where T denotes the least available amount of information (= total set).
If A 1is any intersection of F a b's , this generalizes to
A[c]. =n{{Fab)[c] : AcFab}=
Nib:AcFcb}
because (Fab)[c] =b<=>cca or b=T.
4. Sort coliections:

The next stage is to have a functionally closed space, containing
objects and data types of any level of functionality. This is the most

complicated part of sort theory,

The objects of the theory are types, or sets, like those we
have met so far, and will be called sorts. We have used two operations
on these objects:

(i) F:x,y~1f ...] f(x) <y}

{(ii) intersection (possibly infinite)



- 22 -

F in this setting is defined later on. The aim here is to define a space
which contains these objects as elements and is closed for these operations.
{(*)

The space s called a sort collection: We give the technical

details first, and a few comments afterwards.

The basic notion of the theory is that of a collection, its
intuitive meaning being the space we have in mind and that we want to

define.

Let T be a non-empty collection. Let P{T) be the power-
coilection of T (i.e. the collection of all subcellections), and
A c P{T) such that T, 4 A and A 1is closed through infinite inter-

section.

An element x ¢ A 1is atomic iff

v {xi{

cA x=Ux; => 31 X =x
- PR | i
iel i

If {xi}iel < A then the completed union of this family is its least
upper bound for the complete lattice structure of A, i.e..

Ux, =N{zeA:V¥iel x;c 2z}
il !
A function f : A > A is normal iff
¥ xeA f(x}=0{Ff(y) :yatomic c x}

All these definitions we have met earlier in §2 for domains. What is
new is the setting for cbtaining the functional closure and which is as

follows:

(*) "collection d'algorithmes” in [8].



_23_
Define
(1} ¥%x,yeA Fxy={f:A>4Anormal |f(x) < y}

(i) AF is the smailest collection containing all the fxy

and closed by infinite intersection.

Defipition of sort collections: [7]

If T is a non-empty collection, a subcollection A c P(T)
is sort collection if and only if it verifies the four conditions:
(i) there exists B c P(T) such that ¢ , T < B and such that
A is the closure of B under infinite intersection and under F .
(ii) FxT=T
(iii} if Ag is the closure of B under infinite intersection then

¥ X e AB \ T} » ¥V ye AF , and x and y are incomparable

for the inclusion relation
{iv) ¥ xeA x=1U{y:yatomic ¢ x}

(v} T is atomic.

Another important definition is the evaluation, which generalizes

the one given in 83 , and proceeds from the same idea:
VxoyeA x[yl=n{zeA: xcFyz}

We now give one theorem and the proof of this theorem in order to show how

the theory works.
Theorem [8]: If u= U z,cA, 124
then



- 24 -

We use the following lemmae in the proof of this theorem
Lemma 1: Fxy c Fx1y] <=> @ither = T or X EXAYCy

Proof:

=> :let f=xu.if zcx then y else T.

Then f ds normal and f ¢ Fxy < I-‘x]y1 .

Thus f(x])'—'ﬂx]gxg'grlye_Tg_Tgyl

i.e. either yp =T er (xT < x and y5y1)
<= : If y1=T,then

VfeFxy f(x) cycsT and f(x7) =T since T is the largest element,

i.e. nyg_Fx]yI. If xyex and yc y, then
) = flx) sy = v
by monotonicity of normal functions. Thus
vf flx) ey = f(x]) =¥ i.e.
Fxy ¢ Fxi¥q
Lemma 2: (i) ;1 Fxy; = Fx ((1] ¥;)
(1) F (U x;)y = 0 Fxgy
i i
proof: (i) fe N Fxy;: <=>v 1 fe nyi <=>
i
Vi f(x) <y <= f(x) sfil yi <= f e Fx (1@ ¥;)
(ii) feF (iU x].)y <=> f (E[J Xy} =y <=>

{(f is normal) Df(xigy <=> vy i f(xi}gy
i

<=> f ¢ N iny
.i



- 25 =

Lemma 3:

{Fxy) [z] = if z

|n

% then y eise T

proof: (Fxy) [z]=n{u: F xy < F zu} = (lemma 1)
Ndu: {usT) or (zex and ycyl=
if zcx then y else T.

Lemma 4: The operation

(u,v) -+ ulv]

in monotonic in u and v

proof:
u' cu=>u'[vl =0 {b:u'" cFbv}c
N {b: uc Fbv} = ulv]
We also have:
viev=ulv']=n{b:ucFvy'b}

since, by Lemma 1, v' < v => Fvb < Fv’'b
ulv'len {b: uc Fybl = u[v]

Lemma 5:

x[Y ¥;] = U x[y;]
1 1



-2 -

proof:
x[Uy;T=nib: x e F (Uy)b}=
i i
(lemma 2) =0 {b : x < N Fy; b} =
i
ni{b: vi x < Fy, b} =n {b: Vi x[yi]gb}
=0 x{yi] by definition of the completed union.
i
Lemma 6: NFExy. < F{nx.) (N y.)
= PO A B s R
i i i
proof: n Fx; ¥; €N F (n xi)yi by lemma ¥, which is equal to
i i i
F (n x1.) (0 y;} by lemma 2.
i i

Lemma 7: Let v e A be atomic. Then we have n inyi < Fvw iff
either w=T or 3Jd=2¢ Jcl,ve nx'.1§rI|d n y.cw.

- T ges d jeo 9T
proof: Llet v e A atomic. Assume n iny_i < Fvw . Define the
nermal function e

fla) =n {y; : acx;} if a is atomic

U {f(b) : b atomic < a} otherwise

The evaluation of f(v) gives two cases:

ist case: 3Jcl ve N X5 - Take J maximal; then
Jed
flv) = N0 y.<c w
Jed J

2nd case: ¥ iel vgx;, then f(v) =Tcw fe. w=T



- 27 -
Conversely:
w=T=> ﬂ iny,i < Fyw = FvT by lemma 1
i
3Jdclve N X3 and N y.cw>
jed jea d
n inyi < F(F_i Xi) (n yi) by lemma 6, which
i i i

is inciuded in Fvw by lemma 1 .

proof of the theorem: Suppose u is atomic; then

(n inyi) [u] = (definition) N {we A : N Fx,¥, < Fuw}
jel iel !

= (lemma 7) =
ﬂ{w:3J=¢,JcIu5ﬂx.,ﬂyjiw}=
jed I jed

N {w : ucx;

; and y; < wh = (Temma 1)

N {w: Fx;y; < Fuw} = {(lemma 3) N (inyi[v])
i

Now if u= U zjsA, z. atomic,
Jed J

@ Fxiy;) [thJJ 2,1 = (Temma 5) g ((l1_7 Fxpyy) [24)

0 n (inyi[zjl) (by the preceding argument.}
Jed iel

0 n Ly, @z, %}
jed der 7 4T

The definition of sort collections states a fixpoint equation

A=AB+AF

with equality, whose solution is implicitly assumed to be given. The

notion of coliection is not formally defined, and Nolin writes about this:




- 28 -

“At first sight at the very least, my "sets", except for the ground sets (*),
cannot be described as such in any known set theory." ("A premiere vue tout
au moins, mes "ensembles", a 1'exception des ensembles de base (*), ne

peuvent é‘tr‘equaHfiés tels dans aucune theorie des ensembles conmue"

([10] p. 267). An examination of the above definitions and the proof of

the theorem shows that, explicitly or implicitly the following axioms from the

Zermelo-Fraenkel set theory (ZF) are assumed to apply to collections:

1. Extensionality axiom:

VX, y{x=y<>vz(zex<>2zey))

i.e. two collections are equal iff they have the same elements. This is

applied in the proof of Lemmae 1, 2, etc...
2. Null set axiom:
Ax Y yi(yex)

i.e. there exists an empty collection. This appears in the definition

of algorithm collections.
3. Pairing axiom:
YxyJzwu{uez<e—u=xvu=y)

z is denoted {x,y} and its uniqueness can be shown by using the

extensionality axiom. Using this axiom we can define ordered pairs
<x,y> = {{x}, {{x,y}} (*)

Relations are defined from ordered pairs by: A 1is a relation iff

(] i.e. elements of AB



- 29 -~

Vx(xeA+{3y)(32z)(x=<y,z2) and functions by:

f is a function iff f 4is a relation and
YxYyyz{aoyefa<x,zpefrys=z)

Without something 1ike (*), it is impossible to develop a theory of
reiations or normal functions unless the notion of ordered pairs is taken

as primitive.
4, Union axiom
¥X3Iyvz(zey<>3w{zewawex)})

i.e. if x s a collection, so is wx . This appears in the definition

of atomicity and in the statement of the theorem.
5. Powerset axiom:
Y x3yvVz(zey<>Vwiwez+wex})

i.e. if x 1is a collection, so is P(x} . This appears in the definition

of A c P(T)

6. For computation purposes, we need the natural numbers, i.e. the
finite numbers. For obtaining cardinal numbers in ZF , there are.
at Teast two ways:

(i) dintroduce a special axiom for cardinal numbers, which merely

states that cardinal numbers exist:

¥ xy (K{x) = K{y) <> there exists a bijection
between x and y)

(i1) define cardinal numbers as certain ordinal numbers, and use the



- 30 -

axiom of choice to show that every set has a cardinal number. The axiom

of choice can be stated as follows:

¥ x3f (f is a function with domain x

and ¥z, z non-empty and z < x -~ f(z) ¢ z)

One of these ways has to be taken in order to show that we have

the natural numbers.
7. Infinity axiom:
3Ix(3ylyeavVylyex>3z2lyczazex)))
i.e. infinite collections exist.

This axiom is needed because the main purpose of algorithm
theory is to provide a general thecry of recursive definitions. There-
fore there must exist an infinite collection in order to have the existence

of the collection of natural numbers.'
8. Separation axiom:
Vx3yvz(zey<>zexagp(x))
where ¢ is a formula in which 2z has no free occurrence.
i.e. {z e x :o{x)} is a collection.
This axiom is used for example in the statement of the theorem.

It appears from the above that the connection between sort
theory and set theory needs to be made precise. Indeed in [17,12] the
authors claim the existence of sets haying algorithm collection structures.

This matter is discussed in a companicn paper [6].



- 31 -

5. An example : denotational semantics of a typed imperative program:

In this paragraph we assume that a set A is given, which contains
all the sorts we need. For more details see [6]. The framework is
similar to the one in [15].
{i) environments
Definition: Let A be a set of sorts, V a set of variables. An
environment K = (K! ,K2) is a couple of total functions
K} 5 Kyt V> A such that ¥ x e V , K{x) = Ko(x) .
For any xe V, K](x) is the yalue of x and Kz(x} is the type of x . O

As an example (Ax e V. T, Axe V. T) 1is the least defined

environment.

If K is an environment, x e V and a , be A, Kx < (a,b)
is defined as being the environment k such that YV ze V , z # x
k{z) = K(z) and k(x} = (a., b) . This notion of environemnt is ane

of the main features of the present semantics.

If e is an arithmetical or logical expression, and K = (K} , Kz)
is an environment, Val(e}{K) will designate the value of expression e
under the interprefation associated with function K] rV=A ., If I is
a program instruction, M(I) denotes the environment partiai transformation
associated with 1, i.e. M{I)(K) denotes the environment resuiting

from the execution of I in K , whenever this execution terminates.

(ii) procedure

Consider the following imperative procedure, inspired from [8 J:




- 32 -

0. procedure nat s (u : F, nat (F nat nat)nat, v : F nat nat, x : nat)

begin

1. naty,z;

2. y:=03;2:=0:;

3. while y < x do

4. begin z :=uf{z , v(y)) s y =y +1 end;
5. return z

end

Here we need a few explanations: nat means "natural number" ;
Fo nat (F nat nat)nat means F nat (F (F nat nat)nat). In the sequel
each program line will be referred to with its number. Thus “1" means

"nat y , z"°

(iii) Semantic analysis of the procedure

0. As we have seen earlier (2.3 a procedure typing of the general form:
procedure b s {w:a )
begin B end
is interpreted, if fB is the function computed by the body B , as defining

the functional sort

N, b{fg) = ¢ Fwl{Fa fa(w) o b)[w] n b) =

Aw.if w < a then fB(w) nbelseb

1}

where a , b are the sorts named by a , b . {an alternative interpretation

is:
* .
Ny plfg) = Aw.if w = a then fo(w) n b eise T)

In the present case, calling B the body of our procedure, the function

will be




- 33 -

f
Nep INGFFIN IN IN) , F OIN IN , INs,IN (fg)

and the value of the function fB will be given by:
fg = A UVX . Val(z) M(1; 2; 3; 4) (k)
with k being the initial environment defined by

k= OXTAT) ) C(u,F INEF IN IN IN) , v < (V,F IN IN), x <{X, IN)

and M{1; 2; 3; 4) being the environment transformation defined by the

body of the procedure.
1. The declaration statement
naty, z
has a semantic

MO = 2K Ko, ), 2 < (IN, IN)

2. As for the procedure typing statement, there are two possible
semantics for the assignment statement u := e , differing by the new
value they give to u . The choice between these two possibilities is

another main feature of the present semantics. The first one is:

(lu == e)(K); (W)
if val (e)(K;)

In

Ky(u) then Val {e)(K,) else Ky{u)
The other one is:
(M(u := e)(K))q(u) = val(e)(Ky) n Ky(u)

and seems more reasonable in the present case. (It is the one used in



- 34 -
Algol, Pascal,... compilers). Thus:

(M(2.)(K));{y) = {0} n IN = (M(2.)(K))(2)

3. M{3) s being defined as the partial function

M(33} = AKM{(45. .. 30X (K)
n times

where n 1is the smallest natural number p such that

Val(y < x)M(4;...,84)(K) = false
p times

4, We have here

HOTKY = Ky o (u[vap(z)(K), vIVal(¥)(K)]] o IN, IN)

y« ({n FMaa1H)[Val(y) (KT o IN, IN)
ne IN

Thus the environment transformation defined by the body of the procedure

is
M1 25 35 4) = AK . M{3)(M(2)(M(1){K)))

whence the functional sort computed by the procedure.



- 35 -

Acknowledgement: The author would 1ike to thank Ed Ashcroft for his

valuable comments.



(1]

[2]

(3]

[4]
[5]

(6]

7]

(el

L9l

[10]

(]

[12]

_36 -

References

A. Aho, J. Ultman: Principles of Compiler Design, Addison Wesley,
1978.

K. Apt, M.H. van Emden: Contributions to the theory of logic
programming, University of Waterlco CS report #CS-80-12, October
198t.

A. Church: A formulation of the simple theory of types, Journal

of Symbolic Logic, Vol. 5, 1940, pp. 56-68.

R. Kowalski: Logic for problem solving, North Holland, 1979.

M.A. Nait Abdallah: Ordres &lémentaires, ler Colloque AFCET/SMF

de Mathematiques Appliquées, Palaiseau, 1978, Vol. 2 pp. 115-123.
M.A. Nait Abdallah: The necessity of double bundle structure in
algorithm theory (to appear).

L. Nolin: Systemes algorithmiques, systemes fonctionnels, 1st
ICALP (1972).

L. Nolin: Algorithmes universels, RAIRO, revue rouge, Mars 1974,
pp. 5-i8.

L. Nolin: Les modeles informatiques du A-calcul, in A-caiculus
and computer science theory, Springer LNCS 19, 1975.

L. Nolin: Pour le theorie des algorithmes, d'aprés A. Nait Abdallah,
in Lambda-Calcul et Semantique formelle des Tangages de programmaticn
{6 Ecole de Printemps d'Informatique theorigue, La Chatre), LITP,
1978, pp. 267-275.

L. Notin, F. Le Berre: L'existence des espaces informatiques,
C.R.A.S. t. 292, serie I, pp. 499-502.

L. Nolin, F. Le Berre: Les espaces informatiques, leur existence,
leurs rapports avec la logique combinatoire et Tes A-calculs, Revue

technique Thomson /CSF Volume 13, No. 3, 1981, pp. 599-633.



~37 -

[13] D. Scott: Data types as lattices, SIAM J. Comp. 5, 1976, pp. 522-587.

[14] A. Shamir, W. Wedge: Data types as objects, in Springer LNCS 52,
1977, pp. 465-479.

f15] J.E. Stoy: Denotational semantics: the Scott-Strachey approach to

programming language theory, MIT Press, 1977.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

