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ABSTRACT

In this paper we use a fringe analysis method based on a new
way of describing the composition of a fringe in terms of tree col-
lections. We present a closed tree collection of AVL trees contain-
ing three types and obtain bounds on the expected number of rota-
tions per insertion and on the expected number of balanced nedes.
A new way of handling larger tree collections that are not closed is
presented. An inherent difficulty posed by the transformations
necessary to keep the AVL tree balanced makes its analysis
difficult when using fringe analysis methods, We derive a technique
to cope with this difficulty and again obtain bounds on the
expected number of rotations per insertion and on the expected
number of balanced nodes.
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Expected Behaviour Analysis of AVL Trees

Goston H, Gonnet
Nivio Ziviani

1. Introduction

Balanced tree structures are efficient ways of storing information
They provide an excelient solution for the dictionary data structure prob-
lem. For a linear list of length N the operations find, insert, and delete can
be done in O(logN) units of time. The most popular are AVL trees.

AVL trees were introduced by Adel'son-Vel'skii and Landis {(1962). A
binary search tree is AVL if the height of the subtrees at each node differ by
at most one. A balance field in each node can indicate this with two bits:
+1, higher right subtree; 0, equal heights; — 1, higher left subtree.

The process of insertion of a new key consists of three parts:

{t) Foliow the search path until it is verified that the key is not in the tree
{i.e., find the place of insertion).

(ii} Insert the new node and set its balance field to 0.

(iii) Retreat along the search path and check the balance field at each
node. At this point a transformation may be necessary, as described below.

In phase 3 rebalancing occurs if the balance field indicates that the
node becormnes more unbalanced with the insertion (cccurs when the direc-
tion of the search path and the present balance coincide). In this case a
single or double rotation occurs, depending on the balance field of the node
and on the balance field of its son, which is along the search path. Figure
3.2.2, in Section 3.2, illustrates the AVL tree transformations. As the height
of the rotated subtree is the same as the height of the subtree before the
insertion, at most one rotation per insertion is necessary. Of course if the
balance field indicates that the subtree becomes less unbalanced, a
modification of the balance field is sufficient.

The first valuable attemnpt to analyse & balanced search tree was per-
formed by Yac (1978). In his work Yao presented a method which he used
to obtain a partial analysis of 2-3 trees and B-trees. The method used by
Yao (1978) was later used by Brown (1879) to obtain a partial analysis of
AVL trees. In his analysis Brown considered the collection of AVL, subtrees
with three or less leaves and called it the fringe of the AVL tree. By analys-
ing the fringe of large AVL trees Brown was able to derive bounds on the
expected number of balanced nodes in the whole tree.

An improvement on Brown's results for AVL trees was obtained by
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Mehlhorn {1978a), through the study of 1-2 brother trees (Ottmann and Six,
1976). The main technical contribution of Mehlhorn's paper is a method for
snalysing the behaviour of 1-2 brother tree schemes where the rebalancing
operations require knowledge about the brother of a node. Using the close
relationship between 1-2 brother trees and AVL trees (Ottmann and Wood,
1978), Mehlhorn was able to improve the bounds on the expected number of
balanced nodes in AVL trees. 'Mehlhorn (1979b) presented a fringe analysis
of AVL trees under random insertions and deletions.

To improve the results on AVL trees we need larger tree collections.
However, the use of larger AVL tree collections represents a complex
problem. An inherent difficulty posed by the transformations necessary to
maintain the AVL trees balanced makes its fringe analysis quite difficult.
(cf. Section 4.) In Section 5 we present a technique to cope with this
difficulty which permits us to obtain bounds on the expected number of
balanced nodes and the expected number of rotations per insertion.

Consider an AVL tree T 'with N keys and consequently N+1 external
nodes. These N keys divide all possible key values into N+1 intervals. An
insertion into T is said to be a random insertion if it has an equal
probability of being in any of the N+1 intervals defined above. A
random AVL tree with N keys is an AVL tree constructed by making N
successive random insertions into an initially empty tree. In this paper we
assume that all trees are random trees.

We now define certain complexity measures:
{i) Let 5(N) be the expected number of balanced nodes in an AVL, tree after
the random insertion of N keys into the initially empty tree;
(ii} Let r{N) be the expected number of rotations required during the
insertion of the (N+1)* key into a random AVL tree with N keys;
(iii) Let Prino rotation] be the probability that no rotation occurs during
the (¥ +1)* random insertion into a random AVL tree with N keys;
(iv) Let m (N) be the maximum number of rotations that may occur outside

the fringe of an AVL tree during the insertion of the (N+1)" key into &
random AVL tree with N keys:

(v) Let ¥(N) be the expected number of unbalanced nodes in an AVL tree
after the random insertion of N keys into the initially empty tree;
(vi) Let F(N) be the expected number of nodes in the fringe of an AVL tree
after the random insertion of N keys into the initially empty tree.

In Section 2 we present the Iringe analysis technique used to analyse

AVL trees. In Section 3 we present a new closed AVL tree collection which
improves the lower bound cn the expected number of balanced nodes. In
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Section 4 we study weakly-closed AVL tree collections, and in Section 5 we
present a technique to deal with weakly-closed AVL tree collections. In
Section 6 we present larger weakly-closed AVL tree collections and discuss
the problems involved in their analyses. Finally we present some equivalent
results for weight-balanced trees.

Table 1.1 shows the summary of the results related to AVL trees.

Tree Collection
M | e I8
Size | Characteristic
2 closed 057N | [0.28,0.88] | [0.48+0.48/ N, 0.86-0.14/ ¥
for N=6 for N8 for N»€
3 closed 086N | [0.28,0.86] | [0.51+0.51/ N, 0.86-0.14/ N}
ambiguocus for N26 for Na6 for N=6
4t | weakly-closed | 089N | [0.29,0.61] | [0.61+0.51/ N, 0.81-0.18/ N]
ambiguous

1 Results are approximated to O(N-11/3)

Table 1.1 Summary of AVL tree results

2. Fringe Analysis Technique

In the first part of this section we introduce the concepts and the
definitions necessary to describe the Markov chain used to model the
insertion process in search trees. In the second part we study the matrix
recurrence relation involved in the Markov process.

2.1. The Markov Process

Let us define a tree collection as a finite collection € = {T,, - - - . Ty} of
trees. The collection of AVL trees with three leaves or fewer forms a tree
collection, as shown in Figure 2.1.1.

R

[S—)

type 1 type 2
Fig. 2.1.1 Tree collection of AVL trees with three leaves or fewer
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The fringe of a tree consists of one or more subtrees that are
isomorphic to members of a tree collection C. Typically, the fringe will
contain all subtrees that meet this definition; for example the fringe of an
AVL tree that corresponds to the tree collection of Figure 2.1.1 is obtained
by deleting all nodes at a distance greater than 2 from the leaves. Figure
2.1.2 shows an instance of an AVL tree with eleven keys in which the fringe
that corresponds to the tree collection of Figure 2.1 is encircled.

Fig. 2.1.2 An AVL tree and its fringe that corresponds to
the tree coliection of Figure 2.1.1

The composition of the fringe can be described in several ways. One
possible way is to consider the probability that a randomly chosen leaf of
the tree belongs to each of the members of the corresponding tree
collection. In other words, the probability p is

p(N) = Frpected number of lem);s*'t;f fype i in o N—key tree (1)

Yao (1978B) describes the fringe in a different way. His description of
the composition of the fringe considers the expected number of trees of
type i, while we describe it in terms of leaves as in Eq.{1). As we shall see
our description of the composition of the fringe simplifies the notation
necessary to present the fringe analysis technique, and also makes easier
the task of finding which complexity measures can be obtained from the
analysis of each search tree.

In fringe analysis problems we always deal with a collection

C=iTy, ..., Ty} of trees. We now introduce some concepts asbout the
fringes of search trees.

Def. 2.1.1. A tree collection C=1{Ty, ..., Tm} is weakly-closed il for all
J€[1....m] an insertion into 7; always leads to one or more Ty, i€[1,..m].

Def. 2.1.2. A tree collection € ={T,,..., T,{ is closed when (i} C is
weakly-closed and (ii) the effect of an insertion on the composition of the
fringe is determined only by the subtree of the fringe where the insertion is
performed.
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The tree collection of Figure 2.1.1 is an example of a closed tree
collection. Brown (1978) proved that this tree collection is closed. On the
other hand the collection of AVL trees with more than 2 and fewer than 7
leaves (see Figure 2.1.3) is not closed. This is because an insertion into a
type 2 tree of Figure 2.1.3, when the type 2 tree is part of the fringe of an
AVL tree, may cause a rotation higher in the tree, and the composition of
the fringe depends on this rotation at the higher level. Figure 2.1.4 shows
an instance of an AVL tree where an insertion into a type 2 tree does not
lead to a type 3 tree as expected.

o o dadp ot Iy, oA

typel type2 type 3 type 4

Fig. 2.1.3 Tree collection of AVL trees with more than 2 and less
than 7 leaves (leaves not shown)

@)

Fig. 2.1.4 Example of an insertion that unexpectediy changes the fringe of
an AV], tree (dotted edge shows the point of insertion)

Def. 2.1.3. Atreecollection C ={T,, ..., Ty} is ambiguous when a tree in
C appears as a subtree of another tree in C. Figure 2.1.5 shows an AVL tree
collection that is ambiguous, since a tree of type 1 is a subtree of trees of

° %P B

———
type 1 type 2 type 3

Fig. 2:1.4 Tree collection of AVL trees with more than 1 and
less than 5 leaves (leaves not shown)

The transitions between trees of a tree collection can be used to model
the insertion process. In an insertion of a key into the type 1 tree shown in
Figure 2.1.1 two leaves of type 1 are lost and three leaves of type 2 are
obtained. In an insertion of a key into the type 2 tree three leaves of the
type 2 are lost and four leaves of the type 1 tree are obtained.
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Clearly the probability that an insertion in one type of a tree collection
C leads to another type of C depends only on the two types involved, and so
the process is a Markov process (cf. Cox and Miller, 1985; Feller, 1968). A
sequence {Xy} = {Xp. X\, ' - - { of random variables taking values on a state
space S is a Markov chain if

PriXy =il Xy =3, Xn2=51. - Xo=in-ad = PriXy =1 | Xy = 51
for all €,7,3y, -, jy—1 €S. The current value of Xy depends on the
history of the process only through the most recent value Xy ).

To illustrate this fact consider the tree collection of AVL trees shown in
Figure 2.1.1. In this context, let Xy and Yy be respectively the numbers of
type 1 and type 2 leaves after the N** insertion. Since the tree collection is
closed, the value of Xy depends only on the value of Xy_, and as &
consequence {Xy} {or equivalently {¥x{} is a Markov chain.

The transition probabilities of the chain {Xy] are given by
I P
T e S
N =t Xy=ji= -
' %-7— izj+4

while those of Yy are

}l;i- i=j -3
PriYy =i| ¥y =ji= Ned ieies
N
Let jy = E(Xy) and ky = E(Yy). Then
in = E(Xy) = E[E(Xy | Xy-1.¥Yy-1)]
=E X‘;,‘ - (Xy-,—2)+ Y"; ! (XN_,+4)1

X 2 . 4
= IN-1m it ka-:
and similarly
3 3 .
ky = kN-l—FkN—l"” NN

But, by definition
JN-1 = Npy(N-1) dy = (N+1)p(N):
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kn-y = Npe(N~-1). ky = (N+1)pg(N).

Substituting these equations into the previous equations we get
(N=2)pi(N—-1)}+4pa(N -1}

Pi(N) =

N+1
and
3p(N—1)+(N-3 N=-1
PaAN) = s ( );(“1 P2l )
In matrix notation
’ N-2 4
[m{N) _ W+ W [pl(N—l)
pAN)] T |_3  N-3[(paN-1)
N+1 N+1
or
[pI(N)}_ P [p,(N—i)
pz(N)) T |1 W] [patv-1)

-3 4 _jto
where H = 34 andl-olv

Thus the probability of an insertion occurring in each of the subtrees
of the fringe can be obtained from the steady state solution of a matrix
recurrence relation in a Markov chain. In general, let p(N) be an m-
component column vector containing p; {N). Then

- H
PN) = [n m]pw-n (@)

where [ is the m x . identity matrix, and ¥ is the transition matrix.

Extensions to other tree collections with more than two types requires
consideration of a vector process {Xy{ where X;n is equal to the number of
type j leaves at time N.

2.2. The Matrix Recurrence Relation

In fringe analysis problems we always deal! with a tree collection
C ={T....Tn} of trees. Let I; be the number of leaves of 7;. An insertion
into the k™ leaf, k€[1,....L;]. of T} will generate L;(k) leaves of type T;. Let
Pi{N) be defined as in Eq.2.1-1. Then Eq.2.1-2 can be written as
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N+1 l"(N 1) )

where

Hp = 117— lu(k)] . Hy=diag{Ly...Lm) .
k=1
angd [ is the m x m identity matrix.

Def. 2.2.2. Consider a fringe analysis problem. Eq.(1) is the associated
recursion equation, where H = H,—-H,—I= (h.g) is its transformation
matrix. We have

Mo = BB )ty +1)
J k=1

where 6 is the Kronecker symbol.

Intuitively, the elements in the diagonal of A represent the number of
leaves lost due to an insertion minus one, and off diagonal elements
represent the number of leaves obtained for each type times the
probability that each type is reached in a transition.

Def. 2.2.3. A fringe analysis is connected if there is an [€[1...m] such that
det (Hy )#0, where Hy is matrix H with the {* column and I** row deleted.

The following theorem shows that the real part of the eigenvalues of
the transition matrix A are non-positive. The proof of this theorem and all
the following theorems may be found in Ziviani (1982), or in Eisenbarth,
Ziviani, Gonnet, Mehlhorn and Wood (1982).

Theorem 2.2.1, Consider a connected fringe analysis problem with a mxm

transition matrix H as in Definition 2.2.2. Let A, ..., Ay be the

eigenvalues of H. We can order them so that M=0 and

0> Redpg=ReAg= - - - = Reln.

Def. 22.4. Let T3~ T if glﬁ(k) >0, i.e. T; can produce T;. The symbol 3
k=1

is the reflexive transitive closure of -+,

The following theorem describes a test for connectedness.

Theorem 2.2.2. A fringe is connected if and only if there is a 7; such that
T; > T; tor all je[1..m].
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It remains to solve Eq.(1) for connected fringe analysis problems. In a
previous version of the proof of the convergence of the matrix recurrence
relation (Gonnet, Ziviani, and Wood, 1981, Lemma 2.1, p.4) the eigenvalues
of the transition matrix are assumed to be pairwise distinct. The following
theorem extends the proof to the general case.

Theorem 2.2.3. Let H be the m x m transition matrix of a connected
fringe analysis problem. Let Ay, ..., Ay be the eigenvalues of H, where
A =0>Redy > Redg> ...> Reh,,, and let g be the right eigenvector of H
corresponding to A, = 0. Then for every vector p(0) there is a ¢ such that

lp(N)—cg| = O™
where p(N) is defined by Eg.(1).

It is important to note that:

(i) Consider an m x m transition matrix H of a connected fringe analysis
problem. Theorem 2.2.3 says that p(N), the m-component column vector
solution of Eg.(1), converges to the solution of

Hg =0, as N+= (2)

where g is also an m-component column vector that is independent of N,
and

P{N) = ayq + O(N™) (3)

-g is the right eigenvector of H corresponding to eigenvalue A, =0.
Furthermore, the eigenvalues of H do not need to be pairwise distinet.

(ii} Let 4(N) be the expected number of trees of type ¢ in a random search
tree with N keys. Let I; be the number of leaves of the type i tree, We
observe that Eq.2.1-1 can be written as

pwy = AL 0

3. Closed AVL Tree Collections

The only previously known closed tree collection for AVL trees is the
one composed of trees with three leaves or fewer. This tree collection is
studied in Sectien 3.1. In Section 3.2 we present a new closed tree
collection for AVL trees comnposed of trees with four leaves or fewer.
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3.1. Tree Collection of AVL Trees with Three Leaves or Less

The tree collection of AVL trees with three leaves or fewer is shown in
Figure 3.1.1. Brown (1979) proved that this tree collection is closed,
obtained bounds on the expected number of balanced nodes, and gave a
lower bound on the expected number of rotations. For completeness we
derive again the results obtained by Brown and present also an upper
bound on the expected number of rotations.

A AR

S——
type 1 type 2

Fig. 3.1.1 Tree collection of AVL trees with three leaves or fewer

4
For the AVL tree collection shown in Figure 3.1.1 H = | g _4] - From
Eq.2.2-2 we have Hp(N) = 0, and therefore p,(=) = 4/ 7, and pal=) = 3/7.
Since the eigenvalues of H are 0 and —7, we observe that p,(N) = 4/7, and
p2{N)=3/7 for N>6. To simplify notation p;{N} is written as p;
throughout the remainder of this paper.

Lemma 3.1.1. The expected number of rotations in a random AVL tree with
N keys is bounded above by

(i) 7(N)= 1—Prno rotation]

and

(i) r(N)=<r(N)in the fringe +m(N)
Proof : For case {i} it is known that the maximum number of rotations per
insertion in an AVL tree is 1. For case (ii) 7 (N) must be less than or equal

to the number of rotations per insertion in the fringe plus all possible
rotations per insertion that may occur outside the fringe. =

Theorem 3.1.2. The expected number of rotations in a random AVL tree
with N keys is bounded by

(%) g_PZST(N)si-;—'Pz for N=1

and
.y B 2
(#@) g Pzs T{N)= FP2tP for N>1

Proaf : The left hand side of (i) and (ii) are obtained by observing Figure
3.1.1. The right hand side of (i} and (ii} are obtained by using Lemma 3.1.1.
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Oorollary. %—s r(N)< 3— for N26

lemma 3.1.3. The expected number of single rotations (sr(N)) in a
random AVL tree with N keys is bounded by

é—pz <sr{N)< 1—é—pg for N=>1
Froof : The above expression can be obtained by observing Figure 3.1.1 and-
by using Lemma 3.1.1. »

Coroliory, <sr(N)< g— for N>8§

1
7
lermma 3.1.4. The expected number of double rotations {dr(N)) in a

random AVL tree with N keys is bounded by

%—-pa <dr{N) < 1—é—pg for N21

Proof : Similar to the proof of Lemma 3.1.3. =

=dr(N)<

'QIO,

for N>86

2|

Coroliary.

Lemma 3.1.5. The expected number of nodes in the fringe of an AVL tree
with N keys that corresponds to the tree collection of Figure 3.1.1is

Fn = [’—’—‘—+z”—2](N+1) for N>1
Ly L
Proof : From Eq.2.2-4 we have f{N) = A)(N)+24,(N).»
i _ & 4
Corollary.  f(N) = 7—N+7— for N>8

Lemma 3.1.6. The expected number of balanced nodes in a random AVL
tree with N keys is bounded above by

(i) 5(N)=N-T(N) for N=1

and

(i) 6(N} < b(N)in the fringe + [N~f(N)] tor N=1
Proof : For case (i) b{N)+Z(N) = N. For case (it) 5(N) must be less than
or equal to the number of balanced nodes in the fringe pilus all nodes
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outside the fringe. =

Theorem 3.1.7. The expected number of balanced nodes in a random AVL
tree with N keys is bounded by

[?’_1+ B_](Nn) <b(N)= N—p—E(NH) for N=1
Ly, ILp L

Proof : The left hand side is cbtained by observing Figure 3.1.1 and by using
Eq.2.2-4. The right hand side is obtained by using lLemma 3.1.8, by
observing Figure 3.1.1, and by using Eq.2.2-4. =

3,8 8™ _8 1
Corollary. 7+7NS R T for N=6

Brown {1979, p.40) showed that an improvement on the lower bound of
the result of Theorem 3.1.7 can be obtained by observing that, when the
number of type 1 trees is greater than the number of type 2 trees, then at

least (%——il)(!f +1)/ 3 balanced nodes lie outside the fringe, Thus
1 2

-~ P, Pz 1{P1 Pz
b(N)= I, +Lz (N+l)+3[Ll Lz](N+1) for N=1
or
N 10 10
b(N)= —,N21 +21

8.2. Tree Collection of AVL Trees with Four Leaves or Less

To improve the results obtained in the previous sectiocn we need larger
tree collections. A tree collection with three types is shown in Figure 3.2.1.
The first step necessary to perform the analysis is to show that the AVL tree
collection of Figure 3.2.1 is closed. (cf. Definition 2.1.2.)

© % o
[ —— e " | S——
type 1 type 2 type 3

Fig. 3.2.1 Tree collection of AVL trees with four leaves or fewer

Theorem 3.2.1. The AVL tree collection shown in Figure 3.2.1 is closed.

Proof : An insertion into the type 1 tree always leads to a type 2 tree, and
an insertion into the type 2 tree always leads to a type 3 tree. An insertion
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into the type 3 tree may cause a transformation higher in the tree, since
the root of a type 3 tree is balanced. By inspecting Figure 3.2.2 we can see
that a transformation has no effect on the nodes which are outside the
transformed subtree. Furthermore, if the fringe of the transformed
subtree is entirely contained in the subtrees Ty, T, Ty and T, of Figure
3.2.2(b) then the transformation has no effect on the composition of the
fringe. (ie. T,, T Ty and T, are moved without change by the
transformation.)

However, there are six cases in which the fringe of the transformed subtree
is moved with change by the transformation, as shown in Figure 3.2.3. Inall
six cases the number of type 3 trees decreases by one and the number of
type 1 and type 2 trees increases by one. Note that each one of the three
transformed trees shown in Figure 3.2.3(a and b) contains one 3-nodes
subtree which is not considered as a type 3 tree, but as a subtree composed
of two type 1 trees. =

(b) Double rotation

Fig.3.2.2 AVL tree transformations (symmetric transformations oceur)

Theorem 3.2.1 says that the transitions in the tree collection of Figure
3.2.1 are well-defined, so the theorems of Section 2 can be applied. Thus

-3 0 2
H = 3-4 3
0 4 -5
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Doubte
( rotation O

Double m
rotstion .
o}

2

or
O
(a)
Single
rotation

>

O
(b)

Double
rotation

(e)

Double
rotation

{d)

Double
rotation

{e)

Double
rotation

: 0]
O
0
Fig.3.2.3 Cases in which the fringe of the transformed subtree is moved
with change (symmetric transformations oecur)
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From Eq.2.2-2 we have Hp(N)=0, and therefore p,{=) =8/ 35,
P2(=) = 15/ 35, and pa{=) = 12/ 35. Since the eigenvalues of H are 0, -5,
and ~7, we observe that p,(N) = B/ 35, po(N) = 15/ 35, and ps(N) = 12/ 35,
for N=6.

Theorem 3.2.2. The expected number of balanced nodes in a random AVL
tree with N keys is bounded by

Py P2 . P3 y _Pz
{L; +Lz +3Ls ](N+1)sb(N)sN I. {(¥N+1)

Proof : The left hand side is obtained by observing Figure 3.2.1 and by using
Eq22-4. The right hand side is obtained by using Lemma 3.1.8, by
observing Figure 3.2.1, and by using Eq.2.2-4. =

18 18 _ B(N) _6 1
Coroliary. 35 +35N = NS 5 7N.forN26

Lemma 3.2.3. The expected number of nodes in the fringe of an AVL tree
with N keys that corresponds to the tree collection of Figure 3.2.1 is

F(N) = |PLypP2  oPs
J(N)y = [Lx +2L2 +3La

Proof : From Eq.2.2-4 we have f(N) = 4,(N)+242(N)+34;5(N).»

(N+1)

Corollary. F(N) = g%(}\Hl), for N>6

The results on the expected number of rotations derived in the
previous section cannot be improved by the use of this tree collection. This
tree collection corresponds to the tree collection used in the previous
section augmented by the type 3 tree, and the type 3 tree does not contain
any information about rotations.

4. Weakly-closed AVL Tree Collections

If the effect of an insertion on the composition of the fringe is
determined not only by the subtree of the fringe where the insertion is
performed, but by some other transformation that may happen outside the
fringe, then the tree collection is weakly-closed (Definition 2.1.2). We wil
show that the tree collection of AVL trees with five or less leaves shown in
Figure 4.1 is not closed.
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2 B fo  Fadpap e

type 1 type 2 type 3 type 4
Fig. 4.1 Tree collection of AVL trees with five or less leaves

Iemma 4.1. 1f the trees shown in Figure 4.1 form the fringe of a random
AVL tree with N keys and N+, then an inserticn into a leaf of a type 3 tree
(i) decreases by one the number of type 3 trees and increases by one the
number of type 4 trees; or (ii) decreases by one the number of type 3 trees
and increases by one the number of type 1 and type 2 trees; or (iii)
decreases by one the number of type 1 trees and increases by one the
number of type 2 trees.

Proof : We will denote the probability of the second of these alternatives by
sy the probability of the third by fy, and the probability of the first by
1—-sy -t N

Case {i): This case is obvious: the type 3 tree is transformed in a type 4
tree. If there is no transformation higher in the tree then this is the
transition.

Onses (ii)and(ii): If a transformation takes place higher in the tree, which
is possible since the root of a type 3 tree is balanced, side-effects on the
composition of the fringe will occur. By inspecting Figure 3.2.2 we can see
that a transformation has no effect on the nodes which are outside of the
transformed subtree. Furthermore, if the fringe of the transformed
subiree is entirely contained in the subtrees T,, Tz, Ty, and T, of Figure
3.2.2 then the transformation has no effect on the composition of the fringe,
because T,, Tz T3, and T, are moved without change by the
transformation.

Figure 4.2 shows the five cases in which the fringe of the tree to be
transformed is moved with change by the transformation, and this change
produces side-effects on the composition of the fringe.

In cases (a) and {b) of Figure 4.2 the number of type 1 trees decreases by
one and the number of type 2 trees increases by one. This case occurs with
an unknown probability we call £y.

In cases (c), {d), and (e) of Figure 4.2 the number of type 3 trees decreases
by one and the number of type 1 and type 2 trees increases by one. This
case occurs with an unknown probability we call sy. =

Lemma 4.1 tells us that any AVL tree collection that contains the types
3 and 4 shown in Figure 4.1 is not closed. (i.e. it is weakly-closed.} In fact it
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Fig. 4.2 Cases in which transformations change the fringe
(Symmetric transformations occur)
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is not difficult to show that every AVL tree type that contains more than one
internal node and has its reot node balanced suffers from the same type of
misbehaviour Lhat occurs with type 3 (i.e. consider the AVL tree with six
nodes). Consequently an AVL tree collection that contains a tree type with
the root node balanced and has more than three types is weakly-closed.

We know from Lemma 4.1 that an insertion into the type 3 tree shown
in Figure 4.1, when it belongs to a fringe of an AVL tree with N keys,
produces a transition that is not well defined: the transition depends on two
unknown probabilities sy and ¢y which also depend on N. First of all let us
give a more precise meaning to sy and fy. Let J be the expected number of
leaves in an AVL tree with N keys such that an insertion in one of the [
leaves causes one of the three transformations shown in Figure 4.2(c, d, and
€). In a similar way let J be the expected number of leaves such that an
insertion in one of the J leaves causes one of the two transformations
shown in Figure 4.2(a and b). Thus

_ I
SN = N1
and
J
ty = —— .
¥ =N

Although the probabilities sy and fy are unknown they cannot assume
arbitrary values between 0 and 1.

Lemma 4.2. The probability ty is bounded by 0<ify< -%—

Proof :

Case {i): Let g, be the probability that an insertion is made into any of the
subtrees of Figure 4.3, Let 1—g, be the probability that an insertion is
made inte any of the subtrees of Figure 4.4.

Consider a N-key AVL tree with all subtrees in the fringe being of the type
shown in Figure 4.3, the type shown in Figure 4.4, or a mixture of the two.
Let us consider one tree of Figure 4.3 and one tree of Figure 4.4, as shown
in Figure 4.5. The arcs show the probabilities of two possible transitions.
Then

3(1-9,)

=9
5N N

cn'w

org, =
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FARA

Fig. 4.3
Fig. 4.4
3(1-g,) g1
=R )
1-q, g
Fig. 4.5
Fig.4.6
(@) gz 192
o= ﬂ .
2 - 1-ge

Fig. 4.7
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If Aty* is the increment in £y then

3-8q,
5N '

so ¢y cannot increment beyond g, =3/B and g, = 3/B is the maximum

Atyt <

2
value for g,. By definition iy = g—‘. which gives

A

-b|b—~

D<ty

Cuse (ii): Let gp be the probability that an insertion happens into any of the
subtrees of Figure 4.3. Let 1—g, be the probability that an insertion
happens into any of the subtrees of Figure 4.8.

Consider a N-key AVL tree with all subtrees in the fringe being of the type
shown in Figure 4.3, the type shown in Figure 4.8, or a mixture of the two.
Let us consider one tree of Figure 4.3 and one tree of Figure 4.8, as shown
in Figure 4.7. The arcs show the probabilities of two possible transitions.
Then

9z _ 1792
N N
or gp = é— where g, = 1/2 is the maximum value for g, By definition
2
ty = _g_z which gives

1

Lernma 4.3. The probability sy is bounded by O0<ssy<

c»|-—-

Proof :

Case(i): Let v, be the probability that an insertion happens into a tree of
the type shown in Figure 4.8. Let 1—r, be the probability that an insertion
happens into any tree of the types shown in Figure 4.8. Notice that an
insertion into a tree of Figure 4.9 gives a tree of Figure 4.8 with probability
3/ 11. Furthermore, it is not difficult to see that the trees of Figure 4.9
represent the main source of subtrees that under a new insertion are
transformed into a tree of the type shown in Figure 4.8. (The trees of Figure
4.B may be obtained from other scurces by performing rotations on larger
subtrees, but the probabilities in these cases are smaller than the
probabilities related to the trees shown in Figure 4.9.)
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A2

Fig. 4.B (Symmetric cases occur)

2 S ARy

Fig. 4.9 (Symmetric cases oceur)

3(1—-r} r
1IN w
1-n L

Fig. 4.10

Te 1-re

N N

Ty :
Tz 1-rp

Fig. 4.11 {T, is a tree obtained from an insertion
into a tree of Figure 4.B)
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Consider a N-key AVL tree with all subtrees in the fringe being of the type
shown in Figure 4.8, type shown in Figure 4.8, or a mixture of the two. Let
us consider one tree of Figure 4.8 and one tree of Figure 4.8, as shown in
Figure 4.10. The arcs show the probabilities of two possible transitions.
Then

3(1_7'1) - T
1IN N
3
147
If Asyt is the increment in sy then

orr,=

3—-14r,
lin '
so sy cannot increment beyond r, = 3/14 and r, = 3/ 14 is the maximum

Asyt <

value for r,. By definition sy = TB—I which gives
1

< = — -
0 &N 14

(nse(ii): Let vz be the probability that an insertion happens into any of the
trees of Figure 4.8. Let 1-r; be the probability that an insertion happens in
one of the trees one may obtain by inserting into a tree of Figure 4.8.

Consider a N-key AVL tree with all subtrees in the fringe being of the type
shown in Figure 4.8, the type one may obtain by inserting into a tree of
Figure 4.B, or a mixture of the two. Let us consider the two trees shown in
Figure 4.11. The arcs show the probabilities of two possible transitions.
Then

12'__ 1""'2
N~ N

or rp= é— where 7z = 1/2 is the maximum value for r;. By definition
sy = 235-, which gives
O<sy< 1,
6
In the following section we present a technique to deal with weakly-

closed tree collections, in which unknown probabilities appear in the
transition matrix.
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5. Coping with Weakly-closed AVL Tree Collections

Consider again the tree collection of AVL trees with five or fewer leaves
shown in Figure 4.1. As shown in Section 4 this tree collection is weakly-
closed. In this section we present a technique to deal with weakly-closed
AVL tree collections.

From the resuits of Lemma 4.1 we can examine the insertion process
and obtain

-3 0o 2(sv-ty) g/s5
3 -4 3{sy+ty) 12/5

HisndN) =t o 4 —s+aty  12/5 eV
-0 0 s{1-sy-ty) -6

where sy and fy depend on N. Figure 5.1 shows how the values of celumn
three of H(sy.ty) in Eq.(1) were obtained.

- +
oy o I oY,

v
PIosn ~4(1-sy—ty) S(1—sx—tx)

N\
o 00

Probability sy
—~4sy 2sy 3sy

Propar
byl Y o QO ¢+ %
-2ty 3ty

Fig. 5.4.1

The characteristic polynomial of H(sy.ty) is
det{H(sy.by)—A) = A4{18—4ty) A3+ (107-52t ) A2+(210-18B¢y)A,
the eigenvalues are A; =0, Ag = ~B+4ty, Ag = -6, Ay = -7,

and the eigenvectors are
4(1+sy—3ty)
, [Be+asy—aty) o
zl(letN) = 55:-2-5?; 12 ' conSIdenng p‘+pg+P3+p‘—1
10{1-sy—ty
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-3"‘2(51\"“‘]\')
3(—1+SN+tN)
(S 13 ): _1_
T2\SN N = Tary, 1+4ty
5{1-sy—ty
2
113
Ig = '5— [V}
)
3—4sy -2ty
1 S5—Bsy—Bty
To(sw.tw) = 5 2

10{—1+sy+ty)

where z,(sy.tx). Ta{sy.ty). Zg and z,(sy.ty) correspond to the eigenvalues
A1, Ae(sw.ty), Ag. and A4 respectively.

If the matrix H# = H(sy,fy) is independent of N, has one eigenvalue
equal to zero, and the others have negative real part, then p(N), the
solution of Eq.2.2-1 converges to the solution of Hg = O (cf. Theorem 2.2.3).
However the matrix H(sy.ty) in Eq.(1) contains the unknown probabitities
sy and ty that depend on N, and consequently H(sy,.fy) depends on N. For
this reason we have to prove the following result:

Theorem 5.1. Let p(N) be defined by
_ Hisy.ty)
pN) = [1 o ]p(N -1), N>4 (2)

and p(4) = (0,0,0,1)7 (an AVL tree with four nodes is the type 4 tree shown
in Figure 4.1, with probability 1), where {sy.ty}n>4 is a given sequence of
probabilities. Then there exists a sequence [sy.fylysq such that p(N)
converges to g{N), the solution of

H(snty)g{N)=10" (3
Proof : We will construct a sequence {sy,ty} and, in each iteration, express
p({N) in the basis of eigenvectors of H(sy.ty). In this basis
PIN) = ay(N)z\(sy.tx)+oa{N)zo(sy Ex) +ag(N)zsto (N)z(sy.ty)

where a;(N) = 1. Because p;+pp+ps+p, = 1 the components of x,(sy,tx)
add to 1. The initial vector is
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28 = Esit(e)

where E~(s,.t,) is the matrix that produces the spectral decomposition
for H{ss.ty). (E{s,t) is the matrix of eigenvectors of H{s t) )

We want to prove that (a;(N), az(N), ag(N). m(N)) converges to
(1, 0,0, 0)T, as N+,

Assume at step N—1 we have (a,(N -1}, az(N 1), a,(N-—l).tu(N-l))r
and we have already constructed {sq.f4; - - isy_1.txy—1]. In the next step

£
we compute the effect of applying (I +—— HF::’ IN) ) to

(o (N-1).0a{N~1).as(N—1).a{N-1))" and at the same time express the
new probability vector in a different basis of eigenvectors.

This is equivalent to the effect of one random insertion into the tree,
H(sw.ty) Hswt) y
N+1
to zi{sy1.tvoy). Ze(svorfyo) x5 and Zy(sy-1.ty-1), and obtain the
spectral decomposition in each case. Then

i.e. going from N—1 to N nodes. To compute this we apply ([ +

o, (N) ﬂl(N -1)
::Eﬁ) = C(sy.tyisy-1.t-1) aag-—g
ou(N; (N —1)

where C(sy.fy:sy-;.ty-1) i3 the matrix that operates the transformation
with parameters sy and £y due to one insertion on the basis z;{Sy-1.tx_1)
zo{sy-1.ty—1 ), T, TalSn-1.ty—1). Then

1 0 0 0
5—4t
cl2.1] 1- j;il” 0 C[24]
C(SNJNISI'V—D"‘}'J—J = 6
c[3.1] c¢[32] 1- el C[3.4]
0 0 0 1—
where
__ =4B(ty—ty)
claa] = P(4ty_; —5)HN+1)
tn—ty_
Clz.a4) = 4(ty—ty )

N+1
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B0(4sy—1tn—5ty —4sntn-y +5ty_ —Sy+Sy_y)

c[3.1] = : _
(6] Taty_ +1) {4ty —B){(N+1)
_ ~5{4sy_sEy~Bty—4syly_y +5ty_ =Sy +Sy 1)
choa= (4ty 1 +1)(N +1)
Clo4] = —SUAShtn Oty ~sutio +5tiry ~Sw+siny)

(4ty_ +1)(N+1)

At this point the new probability vector is still expressed in the basis of
eigenvectors of H({sy_;.fy-;). Now we will change to a new basis of
eigenvectors, for suitably chosen sy.fy. let B(sy.tysy-1.ty—;) be the
matrix that changes basis. In this case

oy {N) prp]
zix% = BlsytyiSh-1.th—1) :Eﬁ:}g
oy (N) el 1)

Notice again that o, (N} = o;(N-1) = 1. Then the matrix 8 is

1 o 0o o
e [21] 1 0 B[24]
B(swtwisn-vtv-1) = [pi31] B[3:2] 1 B[3.4]

0 0 0 B[44]
where
—48(ty—ty_1)
B[2.1] = - 4
21) = o)ty —5)
2(ty—ty_,)
4] = ———
Bj:z ] Riy+1
B[3.1] = —10(4sy_ 1ty —Bty—4syty_) +5ty_1 —SN+8Sx_1)
T (4ty+1)(4ty_, ~5)
B[3.2] = 5{4sy_ 1ty —~Bty—Asyty_y +5ty_ ) —Sy+sy_,)
T (4ty+1){aty_; +1)
—5{4sy_En~Sty—aSytn_y +5En -y —SN+Sh_
4] = MDA iy i)
By, +1
Bl4,4] = ———
[4 4] Qin+1

The combined effect of these two transformations is the matrix
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A(SNEniSN ENSN-1 EN-1) = B(SNtySn-y -1 IXC{Sp taiSH-1 EN 1)
Then
1 0 [+] 0

5-4t
[21] 15— 0 A[24]

[3.1] A[32) 1—N—i-1-4[a.4]
0 0 0 Al44)

Al{sytyisy SNy by ) =

where
—4B(tn—ty_1) —4B(ty ~ty)
T(4ty—5)(4ty_y —B)  T(4ty_, =D)(N+1)
alty=tv) [ 7 )(2ti~the)
N+l | N+l 2ty
—10(4sy_yEy—Sty—4syty_, +5ty_1 ~Sy+sy_y)
7(4ty+1)(4ty-y ~5)
~48(ty—ty-1)  [5(4sn-1fn—Sty—4snty-1 +5ty 1 —Sn+sn-1) |
4ty , ~5)(N+1) | (4ty+1){aty_ +1)
B0{4sy _ 1ty ~Bly—4syty_ +BEy_y —Sy+Sy)
T4ty +1){aty_y —B)(N+1)

A[21]=

AlR4]=

A[31] =

—5(4sy 1ty By —dsyty_y +5ty_y —Sy+Sxn_1)

A[32] = (4tyo +1)(N+1)

S—4ty
+[1_ N+1 ]

5(4sn-1tn—Bty—4syty—y +5ty_; —Sy+sNn-1)
{4ty +1)(4fy_y +1)

—5{4sy_ En—Bty—4Syty_y +5ty . —Sy+5y.1)
(4ty 1 +1}(N+1)
+ 4(tn—tn-1) [5{4sn_1tn—Bty—4syty 1 +5ty_ ~SK+SN-1)
N+1 {4ty +1){aty_ +1)

N ~5(4sy_1tN—Dtn—asyty_y +5Ex_y —SN+SN 1)
N+1 4ty+1

Al3.4] =

7
N+l

Al4.4]= [ -

Riy+1
Bty
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Let us show what happens when we go step by step. Recall that sy, ty
represent the current values of the auxiliary sequence, and sy, ty
represent the current values of the unknown probabilities in the transition
matrix. Then

| )
az - ﬂz _ . .. ot B
GS(N) - QS(N) - A(SNItN'sN'tN‘SNF‘ ‘tN-l)x T

W(N)] (V)
Alsato:Setass.ts)XA(Ss Episetsseta B ss te)p(4) .

To prove that (ctl(N).ag(N),as(N).m.(N))r converges to (1.0,0,0)7 it is
enough to prove that

1000
im [ H st biimetersia i) = 5959 @
k= 000D,
This would mean that
1000 A
T I o
o) = oo oo| E(sata)p(4) =g
o (N) goo

or that the probabilities converge to an eigenvector associated to A = 0 of

H(sy.ty). Notice that this is independent of p(4) and of the choice of s4.£4.

The entries A[2,1] and A[3,1] are the critical ones for the convergence

of the []A(sy.Exisw EniSn-1.En-1) to the matrix (4). Let us solve A[2,1] =0
N

for fy. Then
= (N+1)ty-y +5(ty—ty 1)
N = : (6
N+1+4(ty—ty-1)
Now we substitute £y in A[3,1] = 0 and solve for sy. Then
. _ B{ty=ty_ J+6{sy—sy_, )+H{(N+1)sy,
Sy = g (6)
N+1+4{ty—tn_y)

Before we go ahead to compute the [JA(sy.fyisy.tyisy_y.ty_y) with
N

A[2.1] = 0 and A[3,1] = 0 we have to show that ¢y in Eq.(5) and sy in Eq.(8)
are bounded.

Proposition 5.2. For 0<ty_, ty< —:1;-— the value of ty in Eq.(5) is bounded
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by
O<iy< =
3

Proof :
Case (i): ty = O is equivalent to

(N+1)ty +5(ty~ty1) =0 ,
which is true.

Case (ii): ty < %—is equivalent to

(N + Dty #5(Ew—tyy) < IN+1+4(th—ti )]

Pv+1—5+§—]t},_. +[5—%—

The left hand side of the above expression is maximum when

or

1
ty < 3 (N+1)

ty =ty = %— Then

1 1
5—(N+1) < 3—(N+1) .

Proposition. 5.3. For 0<sy < é—, _15T sy, < i—, and 0< ty_, by < é—
the value of sy in Eq.(8) is bounded by

Proof :

Case (i): sy = —%is equivalent to
B{ty—tir—1)+8(sy—sioa )+ (N + Dsiiy = — T[N +144(ty—ti-1)]

or

80 ' . 5 ,
T:(t‘v—tﬁ_] )+H(N-5)sy_, +Bsy = — F(N"'l) .

The left hand side of the above expression is minimum when fy =0,
o= o= c =_5
ty-y = 3 .Sy =0, and sy 14 Then
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-5 5
y {(N+1) = g (N+1)

Cose(ii): sy < 14—1-is equivalent to

Sty —tir- P+B(s—Sn-1 )+ (N+ )iy € T[N +1+4(ty—ty)]
or

i’i’—{:,,—t,;,_,)»f()v-s)s,',_, +6sy < -1"‘1—(N+1) -

The left hand side of the above expression is maximum when iy =

-

thy =0, sy = %. and sy = %—. Then

4 4
i1 (N+1) = 1 (N+1)
Now we compute [ JA(sy.tyiSn.tnSn-1 N1
N

Alsytyisy dnisn-1.8na )xﬁA (k. Exise B isp o b ) =

k=5
1 0 0 0 1 0 0 0
DuND‘UN OO-NI by DGNDbN
=0 wy zv yn| |0 ona leew 1} 0 cy dy ey
00 02y [0 0 0 fyu 0O O fx

where
ay = Gy-jUuN
by = by un+fnUn
CN = EN 1 TNHON WY
dy = dy_1Zy
ey = byywytey 1 TntIn-ayN
In = Fyazn
and

5—aty
N+1

N = 1~
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vy = A[2,4]
wy = A[3.2]
B
N+1
yy = A[3.4]
zy = Al4,4]

Ty =1-

Notice that:

we e

(i) dy = 0 for N=5
(ii) fx = O for N=6

- 5—4¢,
(iii) ey = kﬁs[l——]kﬂk skﬁa[ -

o4
= -11/
Fr1 | T O

31

(iv) by = by_juy since fy =0 for N26. Then by is like ay, or
by = O(N-1V/3),

The recurrences for cy and ey are the remaining ones. Considering
that fy = 0 for N=6, and that ay and by have the same type of recurrence

onclude that cy and ey are similar.

Let us lock at cy. The solution for oy can be found in Sedgewick (1975,
pp. 297-298). Then

cy = ﬁz,-[c5+ ﬁwkak_lﬁ 214]
=" k=7 J=1%j
= [ﬁ"ﬁ]cs+ f:‘wkﬂt-aL ﬁ z,]
=7 k=7 =k+1

Considering that

then

ﬁzj =@(N Y,
=T

ceg = 0(1),

ay = O{N"1V/3)
wy = 0{1),

ﬁ x; = 0(1).
J=k+1
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Cy = o(N-—WB) .

We conclude that if the value of tjg is selected according to Eq.(5) and
the wvalue of sy is selected saccording to [Eq.(6) then

1000
TIA(sh.tyisy.EniSy—1.En-1 ) converges to E g g g] _—
¥ 00O,

The theorem we just proved tell us that the solution of Eq.{2) converges
to the solution of H(sy,ty)p{N) = 0, where H(sy.ty) is s in Eq.(1). Then

4(1+S~—3tw)
P1= T35 ent
N
_ 3(3+2$~—2fN)
Pz 3528ty
=12
Ps = 35 28ty
_ 10{0-sy—ty)
P4= T35 081,
for some value of sy,ty, according to Proposition 5.2 and Proposition 5.3.
Since the eigenvalues of A are 0, ~5+4fy, —6, and —7, and considering that
0<ty<1/3 (cf. Proposition 5.4.2), using Eq.2.2-2 the asymptotic values of
p{N) obtained from Eq.2.2-3 are approximated to.the O(N-1V3),

Theorem 5.4. The expected number of rotations in a random AVL tree with
N keys is bounded by

Ps

() 2—+2L

P2 P4
< 1[5 432
=r(N)=1 (Lz +3L4 )
and
.. P2 Py Pz Ps
L < [aLEW, Tk
(4d) zLa +2L4 T{N)= ZLZ +2L4 +p,+ps
Proof : The left hand side of cases (i) and (ii) can be obtained by observing

Figure 4.1. The right hand side of cases (i} and (ii) can be obtained by using
Lemma 3.1.1 and by observing Figure 4.1.»

In the following corollary the bounds for r(N) are obtained to hold for
any values of sy and iy in the range given by Proposition 5.2 and
Proposition 5.3:

Coroliary. —+0(N-“/3)sr(1v)< 12 Z2_LO(N1V?)

1
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Iemmma 5.5. The expected number of nodes in the fringe of an AVL tree
with N keys corresponding to the tree collection of Figure 4.1 is

_ Pz Pa 4
= L +3L I (N+1)

Proof : The above expression can be obtained by observing Figure 4.1 and
by using Eq.2.2-4. =

In the following corollary the value for f (N) is obtained to hold for any

values of sy and ty in the range given by Proposition 5.2 and Proposition
6.3:

Corollary.  J(N) = 281

L (N+1)+0(N-119)

Lemma 5.6, The expected number of unbalanced nodes outside the fringe
of a random AVL tree with N keys is at least %’——(NH).

1
Proof : The above expression is obtained as follows: a type 1 tree shown in

Figure 4.1 must always have a type 3 tree as brother, otherwise it
constitutes a type 3 or a type 4 tree. Thus the father node of a type 1 tree

is always unbalanced, and the number of trees in this situation is i’—l .
1

Theoremn 5.7. The expected number of balanced nodes in a random AVL
tree with N keys is bounded by

—+ i’—hsi—’hz—-— (N+1)sB{N)<N- [—+ —+z—— (N+1)
2

Proof : The left hand side of the above expression is obtained by observing

Figure 4.1 and by using Eq.2.2-4. The right hand side is obtained by using
Lemma 3.1.6, Lemmma 5.5, and Lemma 5.6, =

_ In the following corollary the bounds for &(N) are obtained to hold for
any values of sy and {y in the range given by Proposition 52 and
Proposition 5.3:

18 82 15 -
Cb'roum-y 35 —t—— 35N +O(N II/S} = —(—)- —r;;?”-— TIN +O(N ll/a)
Experimental results show that r(N)NOA-'? {Ziviani and Tompa, 1980},

and b (N)~0.68N (Knuth, 1973).
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8. Larger Weakly-closed AVL Tree Collections

In Section 4 we showed that any AVL tree collection that contains a
tree type with its root node balanced and has more than three types is
weakly-closed. This happens because every AVL tree type that contains
more then one internal node and has its root node balanced suflers from
the same type of misbehaviour that occurs with type 3 of Figure 4.2, es
described in Lemma 4.1.

It is easy to prove a lemma similar to Lemma 4.1 for the tree collection
shown in Figure 6.1. The only difference in the proof of such lemma is that
the trees shown in Figure 4.2(a and b) do not cccur, and consequently the
unknown probability ¢y does not exist. The transition matrix corresponding
to the tree collection shown in Figure 8.1 involves one unknown probability
sy, as follows

-4 35y 12/5 3
4 -Bb—4sy 0 4

H(sw)=| p 5(1-s4) -8 © m
D sy, 18/5 -7

oF Fo Fadp s IR, o

S
type 1 type 2 typed type 4

Fig. 6.1 Tree collection of AVL trees with more than 2 and less
than 7 leaves (leaves not shown)

The transition matrix in Eq.{1) contains only one unknown probability,
and the corresponding tree collection shown in Figure 8.1 contains more
information than the tree collection used in the previous section. Now
comes the question: Is it possible to apply Theorem 5.1 to this tree
collection? Unfprtunately we were not able to show convergence in this
case. We feel that a similar proof may exist for the tree collection shown in
Figure 6.1. In fact the ideal situation is to prove a general theorem about
matrix recurrence relations involving unknown probabilities, but it seems
too difficult to obtain.

What can we say about s as a functionof N ?

Unfortunately we cannot say much about sy. For trees of size N = 10
and N = 11 we are able to obtain sy exactly {5/154 and 3/77, respectively).
Table 6.1 shows simulation results for larger trees, obtained with a 95%
confidence interval. From Table 6.1 the value of sy seems to converge to
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B/900 when N is large, but we are not able to prove it. Moreover sy may
oscillate smoothly, in such & way that simulations cannot detect. (e.g.
consider sy = cos(lnN)/ 100.)

Number &y (percent)
Tree Size of
Trees Fig.4.4(e) Fig.4.4(b-c) Total
49 10000 0.4204 + 0.0250 | 0.5088 + 0.0388 | 0.8292 + 0.0454
88 5000 0.4368 = 0.0257 | 0.48680 + 0.0383 | 0.9328 + 0.0459
4989 5000 0.4201 + 0.0113 | 0.4036 + 0.0173 | 0.8138 + 0.0204
899 2000 0.4212 + 0.0125 | 0.4944 + 0.0183 | 0.9156 + 0.0230
2899 1500 0.4154 + 0.0083 | 0.4740 + 0.0127 | 0.8883 + 0.0152
4999 1000 0.4101 + 0.0076 | 0.4810 + 0.01189 | 0.86910 + 0.0141
9999 1000 0.4132 + 0.0055 | 0.4806 + 0.0086 | 0.8938 + 0.0101
14999 200 0.4092 + 0.0106 | 0.4773 + 0.0153 | 0.8865 + 0.0183
19989 300 0.4086 = 0.0070 | 0.4836 + 0.0109 | 0.8922 + 0.0126

Table 6.1 Results for sy

It is also possible to prove a lemma similar to Lemma 4.1 for the tree
collection containing 10 types shown in Figure 8.2. The corresponding
transition matrix, which involves eight unknown probabilities
§, §,, 5z, 83, S4, 55, t and 1, is shown in Figure 8.3

When the number of unknown probabilities involved in the transition
matrix is greater than one the problem of dealing with these unknown
probabilities becomes a mathematical programming problem. This fact is
important beceuse the bounds for any complexity measure are obtained
from the minimurn over all possible values of the unknown probabilities in
the transition matrix.

Assuming that a convergence theorem exists for (i} the AVL tree
collection containing 4 types shown in Figure 6.1, (ii) the AVL tree collection
containing 10 types shown in Figure 8.2, and (iii) the AVL tree collection
containing 15 types shown in Figure 8.4, then the solution of

p(N) = [1+%(§3—]pw-1)

converges to the solution of

H(N)p(N)=0. ®
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Fig. 6.2 Tree collection of AVL trees with 10 types (leaves not shown)

2 |
oo e
&(1-u) -6 2,:#(5—33,)4--1;54 % 2 ?—i
6u -1-55- -7 ——274—ss‘g+$—t 2 %
% -7 —%—4~sss+g—t H 171 %f—
Tu 7 7 ~B-4s5+3¢ a =
af—(l—si-ssl-t) -8
%g—ss, % -10
%ﬁ—ss; %’— -10
%-.L:s‘; 23—0- 23—0— -11
{ %é-:s,, —?g— —12'

Fig. 8.3 Transition matrix corresponding to the tree collection
of AVL trees shown in Figure 5.5.2
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Solving Eq.(2) for the three AVL tree collections just mentioned, and
taking the minimum over all possible values of the unknown probabilities

for each complexity measure considered, we obtain the results shown in
Table 6.1, .

Tree Collection

M| e bm
Size | Characteristic

4 | weakly-closed | 075N | [0.38, 0.74] | [0.53 + 0.53/ N, 0.78 — 0.22/ N]
10 | weekly-closed | 0.83N | [0.40,0.72] | [0.58 + 0.68/ N, 0.76 — 0.24/ N]

15 | weakly-closed | 0.86N | [0.43, — ] | [0.60 + 0.60/ N, 0.74 - 0.26/ N]

PUAN £ ANOD
PO B
Ah f3 - An g - LY,

Fig. 6.4 Tree collection of AVL trees with 15 types (leaves not shown}
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7. Application to Other Binary Search Trees

Weight-balanced trees (WB[a]) were introduced by Nievergelt and
Reingold (1973). A binary search tree is #5[a] if the number of leaves in
the left subtree of the root node over the total number of leaves in the tree
is in the interval [a, 1—a]. The root balance « of a complete binary search
tree is 1/2. Like AVL trees, WB[a] trees are balanced by single and double
rotations.

Another class of weight-balanced trees were introduced by Baer (1975)
and also Gonnet {1982). They derived an aigorithm that can be described as
a counterpart of the AVL trees: perform single or double rotations whenever
these rotations can reduce the total internal path of the subtree.

The closed AVL tree collections of Figure 3.1.1 and Figure 3.2.1 are also
closed weight-balanced tree collections. Consequently, the AVL results
ghown in Table 1.1 for these tree collections are exactly the same results
one would obtain in the analysis of weight-balanced trees using these same
tree collections.

8. Conclusions

In Section 2 we present the fringe analysis technique. We show that the
matrix recurrence relation related to fringe analysis problems converges to
the solution of & linear system involving the transition matrix, even when
the transition matrix has eigenvalues with multiplicity greater than one
(i.e., the eigenvalues of the transition matrix do not need to be pairwise
distinet).

In Section 3 we present a closed AVL tree collection containing three
types. In Section 4 we show that an AVL tree collection containing four
types is not closed. An inherent difficult posed by the rotations necessary
to keep the AVL tree balanced forces the introduction of two unknown
probabilities sy and fy into the transition matrix. In the main theorem of
Section 5§ we prove convergence of the matrix recurrence relation involving
the unknown probabilities sy and ty.

Like AVL trees, weight-balanced trees are balanced by single and
double rotations {Knuth, 1873, § 6.2.3). For this reason only small tree
collections of weight-balanced trees are closed. For large tree collections
we find the same type of difficulties showed for AVL trees. Consequently,
the technique presented for the analysis of AVL trees is also sujtable for the
analysis of weight-balanced trees.
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