MENT
MENT

DEPARTMENT

BEPAE
DEPA B

The Theory of Fringe Analysis
and Its Application to
2-3 Trees and B-Trees

Bernhard Eisenbarth

Nivio Ziviani
Gaston H. Gonnet
Kurt Mehlhorn
Derick Wood

CS-82-17

September, 1982




The Theory of Fringe Analysis and Its Application to 2-3
Trees and Btrees

Bernhard Fisenbarth !
Nivio Ziviani®
Gaston H, Gonnet ?
Kurt Mehlhorn !
Derick Wood ®

ABSTRACT

We present a fringe analysis method based on a new way of
describing the composition of a fringe in terms of tree collections.
We show that the derived matrix recurrence relation converges to
the solution of a linear system involving the transition matrix, even
when the tranmsition matrix has eigenvalues with multiplicity
greater than one. As a consequence, we obtain bounds and some
exact results on the expected number of splits per insertion and
on the expected depth of the deepest safe node in 2-3 trees and B-
trees, on the expected height of 2-3 trees, and obtain improve-
ments of the bounds on the expected number of nodes in 2-3 trees.
We also obtain bounds and some exact results for 2-3 trees and B-
trees using an overflow technique.

Key phrases: Analysis of algorithms, fringe analysis, 2-3 trees, B-
trees, number of splits, number of nodes, storage
used, deepest safe node, overfiow technique.

Permanent addresses:

1 Universitat des Searlandes, Fachbereich 10, D-8800 Saarbrucken, W. Germany
2 Depto de Ciencia da Computacéo, UFMG, Belo Harizonte MG 30000, Brazil
3 Dept of Computer Science, Univ. of Waterloo, Waterloo Ont. N2I SES, Canada

The work of the second author was mupported by a Brazilian Coordenacao do Aper-
feicoamento de Peswonl de Nivel Superior Cantract No. 4769/77 and by the University of
Waterloo, the third by a Natural Sciences and Engineering Research Council of Canada Grant
g:. A-3353N 3 and the fifth by a Natural Sciences and Engineering Research Council of Canada

ant No. A-7700.

June 3, 1882
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2-3 Trees and Btrees

Bernhard FEisenbarth
Nivia Ziviani
Gaston H. Gonnet
Kurt Mehlhorn
Derick Wood

1. Introduction

Balanced search trees are efficient ways of storing information. B-
trees, 2-3 trees, 1-2 brother trees, symmetric binary B-trees, AVL trees,
weight-balanced trees, etc, are examples of balanced search trees. These
structures have been known for many years (e.g. AVL trees appeared in
1962, B-trees in 1972), and their worst case behaviour are well-known
{Knuth, 1973). However, no analytical results were known about the
expected case behaviour of balanced search trees prior to the pioneering
work of Yao (197B) on 2-3 trees and B-trees. Yao (1978) presented a tech-
nique of analysis now known as fringe analysis, which he used to find bounds
on the expected number of nodes in a B-tree.

The fringe analysis technique is based on a method that considers only
the bottom part of a tree structure. By considering only part of the nodes
of a tree one is able to obtain bounds on most complexity measures and
also some exact results. We show that the matrix recurrence relation
related to fringe analysis problems converges to the sclution of a linear sys-
tem involving the transition matrix, even when the transition matrix has
eigenvalues with multiplicity greater than one.

B-trees were presented by Bayer and McCreight (1972) as a dictionary
structure primarily for secondary storage. In a B-tree of order m each
node has between m+1 and 2m +1 subtrees, and the external nodes appear
at the same level. The interest in B-trees has grown in the recent years to
the extent that Comer{1978a) referred to them as ubiquitous. Comer
(1879a, 1979b) described several systems which use B-trees.

2-3 trees were introduced by John Hoperoft in 1970 (see Knuth, 1973,
p.46B8). In a 2-3 tree every internal node contains either one or two keys,
and all leaves appear at the same level. According to this, a 2-3 tree is a B-
tree of order m =1, as shown in Figure 1.1. Unlike B-trees, 2-3 trees are
more appropriate for use in primary than secondary storage. For this rea-
son they became equal contenders with AVL trees, often being the pre-
ferred data structure (Aho, Hopcroft and Ullman (1974), Huddleston and
Mehlhorn (1980)).
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Fig. 1.1 A2-3 tree with 11 keys

Consider a B-tree T with N keys and consequently N +1 external nodes.
These N keys divide all possible key values into N+1 intervals. An insertion
into 7T is said to be a random insertion if it has an equal probability of
being in any of the N+1 intervals defined above. A random B-free with N
keys is a B-tree tree constructed by making N successive random
insertions into an initially empty tree. In this paper we assume that all
trees are random trees. Random R-3 trees are defined in the same way
random B-trees are defined.

The first analytical results about 2-3 trees and B-trees were obtained
by Yao (1978). Although his results were slightly extended by Brown (1879),
many questions of interest were left open. Some of these questions are:

(i) The expected number of nodes in a B-tree after N random insertions is
certainly of interest, since this measure indicates storage utilisation. We
extend and refine the results of Yac with regard to this measure;

{ii) When considering insertions, the most expensive operation is surely that
of splitting an overfull node, since this involves not only the creation of a
new node but also an insertion into the next higher level of the tree. Knuth
(Chvatal, Klarner, and Knuth, 1972, Problem 37%) raised the following
question related to 2-3 trees: " how many splittings will occur on the nt*
random insertion, on the average, ...". We present the first partial analysis
of this measure for 2-3 trees and B-trees;

(iii) A different insertion algorithm for B-trees, which uses a technique
called overflow, was presented by Bayer and McCreight (1872, p.183) and
also by Knuth (1973, pp. 477-478, § 6.2.4). In the overflow technique, instead
of splitting an overfull node, we look first at its sibling nodes and make a
rearrangement of keys when possible. The effect of the overflow technique
is to preduce trees with fewer internal nodes on the average. This results in
a better storage utilisation. We present an analysis of 2-3 trees and B-trees
using an overflow technique which is a particular case of the overflow
technigue presented by Bayer and McCreight;

(iv) Consider the concurrency of operations on B-trees; see Kwong and Wood
(1980) for a survey of the techniques used. One basic technique identified
there was first used by Bayer and Schkolnick (1977), namely lock the
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deepest sale node (dsn) on the insertion path. A node is insertion-safe if it
contains fewer than the maximum number of keys allowed. Then a safe
node is the deepest one in a particular insertion path if there are no safe
nodes below it. Since locking the deepest safe node effectively prevents
sccess by other processes it is of interest to determine how deep the
deepest safe node can be expected to be. Our results enable us to provide
some insight into this question.

Part of the results about 2-3 trees and B-trees presented in this paper
appeared in Gonnet, Ziviani and Wood (1981), and part of the results
presented in Section 2 appeared in Eisenbarth (1981). Finally, most of the
results presented in this paper appeared also in Ziviani (1982).

In Section 2 we present a fringe analysis theory containing a general
analysis of the matrices that appear in fringe analysis problems. In Section
3 we perform the analysis of 2-3 trees related to the four questions
considered above. In Section 4 we perform the analysis of B-trees and also
derive results related to the four questions mentioned above,
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2. A General Investigation of Matrices in Fringe Analysis Problems

In the first part of this section we introduce the concepts and the
definitions necessary to describe the Markov chain used to rmmodel the
insertion process in search trees. In the second part we study the matrix
recurrence relation involved in the Markov process.

2.1. The Markov Process

Let us define a tree collection C as a finite collection of trees. Consider
the class of 2-3 trees of bounded height as an example. The collection of 2-
3 trees of height k (k>0) forms a different tree collection for each value of
k. Figure 2.1.1 displays the two possible types of trees in a 2-8 tree
collection of height 1. The dots represent the number of keys in each node.

Iat A

type 1 type 2
Fig. 2.1.1 Tree collection of 2-3 trees of height 1

The fringe of a tree consists of one or more subtrees that are
isomorphic to members of a tree collection C. Typically, the fringe will
contain all subtrees that meet this definition; for example the fringe of a 2-
3 tree is obtained by deleting all nodes at a distance greater than k (k>0)
from the leaves. Figure 2.1.2 shows an instance of a 2-3 tree with eleven
keys in which the fringe that corresponds to the tree collection of 2-3 trees
of height 1 is encircled.

(s@

Fig. 2.1.2 A 2-3 tree and its fringe of height 1 subtrees

The composition of the fringe can be described in several ways. One
possible way is to consider the probability that a randomly chosen leaf of
the tree belongs to each of the members of the corresponding tree
collection. In other words, the probability p is

p(N) = Expected number of lewj]i?! type i in o N—key tree (1)
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Yao (1978) idescribes the fringe in e different way. His description of
the composition of the fringe considers the expected number of trees of
type i,'while we describe it in terms of leaves as in Eq.(1). As we shall see
our description of the composition of the fringe simplifies the notation
necessary to present the fringe analysis technique, and also makes easier
the task of finding which complexity measures can be obtained from the
analysis of each search tree.

The transitions between trees of a tree collection can be used to model
the insertion process. In an insertion of a key into the type ! tree shown in
Figure R.1.1 two leaves of type 1 are lost and three leaves of type 2 are
obtained. In an’insertion of a key into the type 2 tree three leaves of the
type 2 are lost and four leaves of the type 1 tree are obtained as a result of
node splitting.

Clearly'the probability that an insertion in one type of a tree collection
C leads to another type of C depends only on the two types involved, and so
the process is a Markov process (¢f. Cox and Miller, 1965; Feller, 1968). A
sequence {Xy] = {Xp.X), - - - | of random variables taking values on a state
space S is a Markov chain if

PriXy=ilXya1 =7 Xn-z=f1 - XoZina) = Pridy =i | Xy = §)
tor allvi,j.j,. - .3y-1€S. The current value of Xy depends on the
history of the process only through the most recent value Xy _,.
Toillustrate this fact consider the tree collection of 2-3 trees of height
1 shown in Figure 2.1.1. In this context, let Xy and Yy be respectively the
numbers of type 1 and type 2 leaves after the N* insertion. Since the tree

collection is closed, the value of Xy depends only on the value of Xy_, and
as a consequence { Xy (or equivalently { ¥x}) is a Markov chain.

The transition probabilities of the chain {Xy] are given by

{v— izj—2
PriXy =i| Xy =j4) = i

N =

- i=j+4

while those of Yy are

L i=s
WPri¥n =il Wa=J31=] y_;

N=i

N i=j+3

Let jy = E{Xy) and ky = E(¥y). Then
In = EXXy} = E[E(Xx | Xy-1.Yn-1)]
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Xn-1
v

¥y

=F N

(X (N—1 —2) +

(Xn-1+4)

R 2 . 4
= IN-1m TNt k-
and similarly

ky = ’CN—l"%kN—l"' %jﬂ—l :
But, by definition
IN-1 = Npy(N-1) gy = (N+1)py(N);
dy_y = Npa(N~1). ik = (N+1)p,(N).

Substituting these equations into the previous equations we gdt

- (N-2)p\(N-1)+4pe(N 1)
N+l

Pi(N)

and

pa(N) = 3p,(N -1)*151: IB)pz(N ~1)

In matrix notation

N-2 4
[PI(N) _ |N+1 N#1 [Pl’(N“l)
PAN)] T |_8 _ N=3|(piN-1)
. N+1 N+1

or

[-‘Pl(N) P [Pl(”‘l)
pe(N)] T |1 T R pet-2)

-3 4 1o
where H = { 3 _4] and 7 =;[0 1]'

Thus the probability of an insertion occurring in eagh of theisubtrees
of the fringe can be obtained from the steady state solution of la matrix
recurrence relation in :@a Markov chain. In general, let p(N) HYe an m-

cemponent column vector containing p;(N). Then

p(N) = [m e ]pw—a)
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where / is the m x m identity matrix, and # is the transition matrix.

Extensionsito other tree collections with more than two types requires
iconsideration of a vector process { £y} where Xjn is equal to the number of
type j leaves atitime N.

2.2. The Matrix Recurrence Relation

‘We start this section by presenting a formal definition of the
components of ithe matrix # in Eq.2.1-2. In fringe analysis problems we
always deal with a tree collection .C =§Ty...Tn} of trees. Let I be the
number of leaves of T;. ‘An insertion into the k** leal, ke[1,.. L) of Ty will
generate L; (k) leaves of type 7;, As.a consequence we must have

i—g g Li(k) = Li+1, *for 1=j=m (1)

‘ff i=1 k=1
This leads to the following definition:

Def. 2.2.1. Afringe:analysis problem of size m consists of

(i) m integers L, . . . , Ly,

(i) non-negative reals &;(k), for 1<i,j<m, 1sk<I;, such that
1 é , ,
T y(k) =Lj+1, for isjem,
1;‘] 5;-21 k=1 l",( ) 4 7

Let p;(N) be defined as in Eq.2.1-1. Then Eq.2.1-2 can be written as

o) = e B @
where
Hp= {_Lgk,(k)] . Hy=diag(Ly,...L,).
L i3 1% jEm

-and 7 is the m x m identity matrix.
iDej. 2.2.2. Comsider a fringe analysis problem. Eq.(2) is the associated

recursion equation, where H = Hp—~H)~I = (hy) is its transformation
matrix. 'We have

= 27'?; Ly (k)B4 ( Ly +1)
k=]

where By; is the Kropecker symbol.
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intuitively, the elements in the diagonal of A represent the number of
leaves 'lost ‘due to an insertion minus one, and ofl diagonal elements
represent the number of leaves obtained for each type times the
probability that each type is reached in a transition.

Def. 2.2.3. A fringe analysis is connected if there is an L€[1...m] such that
det (Hy)#0, where Hy is matrix H with the I** column and 1% row deleted.

The foliowing theorem shows that the real part of the eigenvalues of
the transition matrix / are non-positive.

heorem 2.2.1. Consider & connected fringe analysis problem with a mxm
transition matrix A as in Definition 2,22 Let A, ..., A, be the
eigenvalues of H. We c¢an order them so that A;=0 and
D> ReAg=ReAg= - - - = Rel,.

Proof ::Consider the sum of the elements in the % ¢olumn of H:

Eh\l = il[zngfﬁ(k)—éﬁLj —Bq]

i=1 =1

= Ll—f g L) ~ (L;+1) by Eq.(1)
J i

=1 k=t

= Lj+1-(L;+1) = 0

From Gerschgorin's theorem (see Wilkinson, 1965, Chapter 2, § 13) it is
known that all eigenvalues of / are contained in the union of the disks with
center hy-and radius },jh;| Considering that the sum of the elements in

i

any column of H is zero, then all eigenvalues of H have non-positive real
part.

P&Dm:zhﬂi = 0, for 1<j=m, we infer that the vector E™) = (1,...,1)
W=1
is a left eigenvector of A with eigenvalue 0. To show that 0 is an eigenvalue
of multiplicity 1, let us look at the characteristic polynomial of H:

det (H=N) = (-A)"+8,(-A)" "+, .+ 5, _(-A)+S, =0,
where S; is the sum of the principal minors of order g of the matrix H,
g =1;2 .., m (see Gantmacher, 1959, Chapter 3, § 7). We know that

S, = 0,:and

Sy =~.2, det (Hy).
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‘where H is the matrix H with the i row and the i column deleted. FH
dsan (m—1} by {(m<1) matrix. Application of the Gershgorin criterion to
Hy :shows that all ejgenvalues of Hy have non-positive real part. Thus
det(Hy) = (—1)™ |det{Hy) | . Hence Sm-1. the linear term of the
«hareteristic polynomial, is zero'if and only if det(FHy) =0 for all i. But
det{Hy) #D for some i because wedeal with a connected fringe analysis
iproblem. Thus the linear term:of the characteristic polynomial of H is
non-null, which irgplies that 0 is an eigenvalue of multiplicity 1, »

Def. 2.2.4. Let T;»T, it 'ﬁz‘,(k)» 0,:ie. T; can produce 7;. The symbol
k=1

is the reflexive transitive closure of ».

The following theerem describes a test for connectedness.
Theorem 2.2.2. Afringe is connected if and only if there is a T; such that Ty
3 Tforall je[1.5m].
Froolf : Consiler H asin Definition 2.2.2.

Let i besuchthat T; 3 T for all §. We will show that det (Hg)#0.

Assume otherwise, i.e. det (Hy) ='0. Let 2 ={u,, - - VUi Uy, L Uy ) be
a left eigenvector of Hy corresponding to eigenvalue 0. Let u; be a
'component of maximal absolute value in 2 {without loss of generality u,=0)
and let J =, uy = wic[l.m]<f]. Since 7; 3 T, for all jeJ and i£J
there must be some k£J and some:j€J such that Tj+T;. Hence hy;>0.

Since fhu = 0 {c¥. proof of Theonem 2.2.1) we have
i=1

ﬂ“zhu = Yaghy + Yughy
ib=l led BES
thef 4wt

= Yt by~ 3 gy
ics Iy
ini
>3 4,20, a contradiction.
ing

The above inequality follows because # is a real vector and hy=0 for
LEJ il#4.

Assume det (Hg)#0. We will show ; 3:7; for all 5.
Assume otherwise. Theén there is some j such that - Ty 5 T LetJ =L T;
3T} Then¢ # J = [1..m] end hy=0ifor all k27 and 1€J. We may assume
without loss df gemerality that J = §1,.../}{. Then H has the form
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H H"
H =

0o g

‘where H'is a J x J matrix. Note that det (Hy) = det (H')-det (Hy), where H;
:is.H" with i® column and i** row deleted. But H' comes from the transition
‘mmtrix of a fringe analysis problem (namely the restriction to J) and hence
:dét (H')=0 by Theorem 2.2.1, a contradiction. »

It remains to solve Eq.{2) for connected fringe analysis problems. Ina
previous version of the proof of the convergence of the matrix recurrence
-relation (Gonnet, Ziviani, and Wood, 1981, Lemma 2.1, p.4) the eigenvalues
of the transition matrix are assurned to be pairwise distinct. The following
theorem (Eisenbarth, 1981) extends the proof to the general case.

Theorem 223 lLet H be the m x m transition matrix of a connected
fringe analysis problem. let Ay, ..., A be the eigenvalues of H, where
‘A; =0 > ReA; = Redg = .= Rel,,, and let =, be the right eigenvector of H
corresponding to A, = 0. Then for every vector p{0)} there is a ¢ such that
Re
lp(N)—cz,| = O(N™)
where p{N) is defined by Eq.(2).
Proof: For NeN let fy:C-C be given by the polynomial

7u@) = [l

et f(z)= }Iig}_f;v(z). Then f(0)=1,f(zx)=0 for Re(z)<D, and
71z)~fniz) = O(NR*=)) for Re (z)<D, because

suiz) = Tlo+ 5
=1l

i=1
o (E+1)(z+2) (x4 N)
N

- I‘!N+n:+i2 R
= N+ DIN+1) (cf. Abramowitz, 1872, Eq. 6.1.21)
= O(N*®).

Furthermore, p(N) = [!+ W}-II-T]P(N_H = fy{H)p(0), and

ple) = }Rnp(N) = f(H)p(D). {cf. Gantmacher, 1959, Chapter 5).
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Let
J
1 Jo 0
J = THT ! =
0 Ji
be the Jordan matrix corresponding to H, where Jy, . .., J are the blocks

of the Jordan matrix. We have J, = (0). i.e. J, is a one by one matrix whose
only entry is zero. Also

Ao
gy = ' :: . with Re(N) <0,
N
where X is an eigenvalue of multiplicity {.

Considering that fx(z) is a polynomial in z then
) Y

JH)=f(T7T)y = T f(J)T = 7! - T

o I ()

Next we have to compute f{J). We have (cfGantmacher, 1959,
Chapter 5, Example 2)

FRC I AT
JN) = (ri—1)!
F(n)=
0 )

where 7, is the multiplicity of A;, and £*) is the k* derivative of f .

Hence f (/,) = (1), the 1 by 1 matrix with entry 1, and J(4)) = (0), the r; by
7, matrix with all entries 0,
10--0
00
Thus f(H)=771QT where@ = .
0-- 0



12 Eisenbarth, Ziviani, Gonnet, Mehlhorn and Wood

and

0
Hp(=) = Hf(H)p(0)=T'THT'QTp(0) = T"JQ Tp(0) = T-'0Tp(0) = [ []
0
since J@ = 0, the all zero matrix.
This shows that p{=) is a multiple of z;, say p(=) = cx,, because
Hz; =Mz, or Hzy = 0for A\; = 0, and Hp(=) = 0,

Furthermore
Iwt) 1+5(N) (N} - - &(N
pmer| e R Y
In(de) £(N)

where e(N) = O(N®™),
5(N)

Thus p(N)-p (=) = (fN(H)-f (H))p(0) = with 6(N) = O(N™*).

6(N)
This finishes the proof of the theorem. =

it is important to note that:
(i) Consider an m x m transition matrix A of a connected fringe analysis
problem. Theorem 2.2.3 says that p(N), the m-component column vector
solution of Eq.(2), converges to the solution of

Hg =D, as Noa= (3)
where ¢ is also an m-component column vector that is independent of N,
and
>N
P(N) = ouzy + O(N™) (4
where z, is the right eigenvector of H corresponding to eigenvalue A;=0.

Furthermore, the eigenvalues of # do not need to be pairwise distinct.

(ii) Let A4 (N) be the expected number of trees of type ¢ in a random search
tree with N keys. Let L; be the number of leaves of the type i tree. We
observe that Eq.(1) can be written as

A(N)L,

pi(N) = N T (5)
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3. An Analysis of 2-3 Trees

3.1. Motivation

In a 2-3 tree every internal node contains either 1 or 2 keys, and all
external nodes appear at the same level. The class of 2-3 trees is a special
class of B-trees, and they are more appropriate for primary store.

The process of insertion of a new key consists of;

(i) Follow the search path until it is verified that the key is not in the tree
(i.e.. find the place of insertion);

(ii) Insert the new key into the node. To insert into a node that contains
only one key, we insert it as the second key. If the node already contains
two keys, we split it into two one-key nodes, and insert the middle key into
the parent node. This process may propagate up if the parent node already

contains two keys. When there is no node above we create a new root node
to insert the middle key,

Following the notation presented by Chvatal et al. {1972, Problem 37),
where the dots indicate keys, the first three steps in the growth of a 2-3

a&f{}s

and the fourth step is either

We now define certain complexity measures:

(i) Let Z(N) be the expected number of nodes in a 2-3 tree after the
random insertion of N keys into an initially empty tree;

(ii) Let Pr{j splits] be the probability that j splits occur on the (N+1)
random insertion into a random 2-3 tree with N keys;

(ili) Let Pr{j or more splits] be the probability that § or more splits occur
on the (NV+1)% random insertion into a random 2-3 tree with N keys;

(iv) Let 5(N) be the expected nurnber of splits that occur in a 2-3 tree
during the random insertion of N keys into an initially empty tree;

{(v) Let E[s(N)] be the expected number of splits that will oceur on the
(N+1)* insertion into a random 2-3 tree with N keys;
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(vi) Let Pridsn at j* lowest level] be the probability that the deepest safe
node on & random search is located at the j* {(j=1) lowest level of a
random R-3 tree with N keys;

(vii) Let Pridsn above j* lowest level} be the probability that the deepest
safe node on a random search is located above the j® lowest level of a
random 2-3 tree with N keys.

In Sections 3.2, 3.3, and 3.4 we shall derive exact values for
Pri0 splits}, Pr{l split}, Pr{2 splits], Pr{3 or more splits}, and bounds on
§(N). E[s(N))]. and improve Yao's previous results on #i(N). In Section 3.5
we shall derive exact values for PriOsplits], Priisplit], Pri2or
wmore splits}, end bounds on 7i{N), §(N), and E[s(N)] for an insertion
algorithm that uses an overflow technique. In Section 3.6 we shall derive
exact values for Pridsn at 1% lowest level], Pridsn at 2™ lowest level,
Pridsn ot 3™ lowest level], end Pridsn above 3™ lowest level] for the
normal  insertion algorithm, and Pridsn ot 1* lowest level],
Pridsn at 2™ lowest level], and Pridsn above 2% lowest level] for the
insertion algorithm using an overfiow technique. In Section 3.7 we discuss
the possibilities of higher order analyses.

Table 3.1.1 shows the summary of the results related to 2-3 trees using
the normal insertion algorithm. The lower order analyses are included to
indicate the improvements achieved by the third order analysis. Table
3.1.2 shows the summary of the results related to 2-3 trees using the
overflow technique.

3.2. First Order Analysis

The analysis of the lowest level of the 2-3 tree to estimate @(N),
FPri{0 splits},"Pr{1 or more splits |, §{N), and E[s(N)] can be carried out in
the following way. The tree collection shown in Figure 3.2.1 contains two
members and its corresponding transition matrix is

-3 4
From Eq RR2-3 we have Hp(N)=0, and therefore p,(=)=4/7 and
pa{=) =3/7. Since the eigenvalues of A are 0 and -7, we observe that
pi{N)=4/7 and pp(N)=3/7 for N>6. To simplify notation p;(N) is
written as p; throughout the remainder of this paper.
Iemma 3.2.1. Let nl indicate the number of nodes at level I of a 2-3 tree
with N keys. Then the number of nodes above level I, nal, is bounded by

nl-1
2

<nal <nl-1
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First Order Second Order ¢ Third Order ¢
Analysis (N>6) Analysis (N-+e) Analysis (N +e) |
n(N) (064 +0.14/ N, | [070 +0.20/N, | [0.73+ 023/ N,
N 0.86—0.14/N] | o09-0.21/N] | 077-0.23/N]
Pri0 splits | 4/7 4/ 4/ 7
Prilor more spliis| 377 3/7 3/7
Pr {1 split} - 0.25 0.25
Pr{20r more splits] - 0.18 0.18
Pri2 splits] - - 0.10
Pr{3or maore splits] - - 0.08
[0.6¢ + 0.14/ N~ | [0.70 + 0.20/ N— | [0.73 + 0.23/ N~
s(N) Mogs(N+1)I/ N, | Mogs(N+DI/ N, | Nogs(N+1DI/ N,
0.86—0.14/ N— 0.79-0.21/N- 0.77—- 023/ N-
lloga(N+1)j/ N]_| lloge(N+1)l/N] | llogeN+1)]s N]
E[s(N)] [0.43, [061,025+ [o6s, 0.48 +
0.43|logz(N+1)]] | 0.18|toga(N+1)]] | 0.08[loge(N+1)]]
Upper bound on A(N) Jogp(N+1)~0.22 | log(N+1)-0.46 | log(N+1)-0.89
Pridsn at 1* lowest level | 47 4/ 4/7
Pridsn at 2™ lowest level | - 0.25 0.26
Pridsn ot 3™ lowest level | - - 0.10
Pr{dsn above 3 L.level | - - 0.08
1 Results are approximated to O{N~855)
t Results are approximated to O(N~437)
Table 3.1.1 Summary of the 2-3 tree results
Second Order Analysis (N-+w) 1
ol [063+013/N, 071 - 020/ N]
Pr{0 splits] 0.61
Pr1 split} 0.23
Pr{2 or more splits ] 0.16
£(N) [0.63+0.13/N —Nogs W+ 1)1/ N,
0.71 =029/ N — [logg (N+1)l/ N ]
E[ s(N)] [0.55 , 0.23 + 0.16]10g, (W+1)]]
Prdsn at 1% lowest level | 0.61
Pr[dsn at 2™ lowest level | 0.23
Pridsn above 2™ lowest level | 0.16

t Results are approximsted to O(N-481)

Table 3.1.2 Summary of the 2-3 tree results using an overflow technique
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AN

type 1 type 2
Fig. 3.2.1 Tree collection of 2-3 trees of height 1

Proof : Consider the level I as being the N+1 leaves of a 2-3 tree with N
keys. (Each leaf represents a node.) The minimum and the maximum
number of nodes above the level I is obtained when each node above level I
contains 2 keys and 1 key respectively. (That is 2nal =nl-1 and
nal = nl -1 respectively.)

Lermnma 3.2.1 and Eq. 2.2-5 lead to the following theorem:

Theorem 3.2.2. The expected number of nodes in a random 2-3 tree with N
keys is bounded by

(+ D

(N+1)=1 for N=1

_+—— N+1)——s«n.(N)s2[p‘ :2

L
b1 nN)_8 1
Coroliary. 14+ < N s,,’ 7N for N=6

The remaining results are contained in the lermmas that follow.

Lemma 3.2.3. The probability that no split occurs on the (N+1)* random
insertion into a 2-3 tree with N keys is

Prio splits} = ;'— for N=8

Proof : An insertion into a type 1 tree shown in Figure 3.1.1 causes no split,
and the probability that a random insertion into a randem 2-3 tree falls into
atype ltreeisp,. »

Lemmo. 3.2.4. The probability that 1 or more splits occur on the (N+1)*®
random insertion into a 2-3 tree with N keys is

Pril or more splits} = %» for N=6
Proof : Similar to the proof of Lemma 3.2.3. =

Lemma 3.2.5. Let A(N) denote the expected height of a random 2-3 tree
with N keys. Then the expected number of splits is

S



Fringe Analysis and Its Application to B-trees 17

Proof: From the insertion algorithm presented in Appendix B we can see
that each time a node split occurs one new node is created, except when
the node is a root, in which case two nodes are created. »

Lemma 3.2.6. The height of a 2-3 tree with N keys is bounded by

Nogg (N+1)] < A(N) < llogz (N+1)]

Froof : The lower bound and the upper bound on the height are obtained
when each node of the 2-3 tree contains 2 and 1 key respectively. »

Lemmas 3.2.5 and 3.2.6 lead to the following theorem:

Theorem 3.2.7. The expected number of splits in a random 2-3 tree with N
keys is bounded by

9 1 loge(N+1)} 6 1 Nogs{N+1)]
16 VAN T N =SN S gogp - for N6

Lemma 3.2.8, A lower bound on the expected number of splits that will

occur on the (N +1)* insertion into a random 2-3 tree with N keys is
E[s(N)]= Pr{1 or mare splits|

Proof : Similar to the proof of Lemma 3.2.3. =

Corollary. E[s(N}]> % for N26

Lemma 3.2.9. An upper bound on the expected number of splits that will
oceur on the (N+1)* insertion into a random 2-3 tree with N keys is

E[s(N)] < Pr{l or more splits {|log, (N +1))

Proof: The upper bound on Els (M)} is equal to the number of
splits/insertion in the fringe plus all splits that might occur in the nodes
above the lowest level, which might be equal to the height of the tree with
all nedes binary but the nodes on the path of splitting. »

Lemmas 3.2.8 and 3.2.9 lead to the following theorem:
Theorem 3.2.10. The expected number of splits that will occur on the
(N+1)* insertion into a random 2-3 tree with N keys is bounded by
3

=< Els(N)] < %—[ioga(NH)j for N=6
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It is interesting to conjecture that the expected value for E[s(N)}]
converges to the value of §(N). However, we cannot prove this; E[s(N)]
may oscillate between a lower bound and an upper bound, where the lower
bound is the number of splits per insertion in the fringe, and the upper
bound is the number of splits per insertion in the fringe plus the number of
splits per insertion cutside the fringe. (The upper bound is a function of
logg N )

Lemma 3.2.11. The expected number of keys in the fringe of a 2-3 tree with
N keys that corresponds to the tree collection shown in Figure 3.2.1 is

FNy= [’z—iwi—:](mn

Proof : The above expression is obtained by observing Figure 3.2.1 and by
using Eq.2.2-5. =

Corollary. f(N)=$—(N+1) for N=6.

Theorem 3.2.12. The expected height of a 2-3 tree with N keys is bounded
above by

A(N) < loga(N+1)-0.22239

FProof : Let nkal indicate the number of keys above the level I of a 2-3 tree.
Considering the second lowest level (distance one from the leaves), and
using Lemma 3.2.8 then the height h{n) of a 2-3 tree with N keys is
bounded by

Nogs(nkal +1)]+1 < h(N) <|loga(nkal +1)]+1.

Considering the expected value of the right hand side of the above
inequality then

h(N) = E[(logz(nkal +1)|+1] < E[loge(nkal +1)+1]
Using Jensen's inequality {Jensen, 1908, p.180) we obtain
h(N) <log.F[nkal +1]+1 (1)
But
E[nkal] = N-F(N)

where J(N) = -‘;—(N+ 1) for N=6 (see Lemma 3.2.11). Then

Elnkal] = ";—(NH)—L
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Substituting this equation into Eq.(1) we obtain
R(N) € 1ogs(N+1)~0.22239 »

3.3. Second Order Analysis

The analysis for the two lowest levels of 2-3 trees leads to better
bounds for #(N), §(N), E{s(N)], and exact results for Pr{1 split}, and
Pr{2 or more splits]. Yao (1978) showed that there are 12 possible trees in
the tree collection of 2-3 trees of height 2, which are grouped into 7 types,
as shown in Figure 3.3.1, The corresponding transition matrix is shown in
Table 3.3.1.

Again using Eq. 2.2-3 we obtain

P, = 1656/ 7981

P2 = 1980/ 7991

pa = b472/ 55937

Ps = 7128/ 55937 (1)

Ps = 15675/ 7991

Pe = BOO/ 7991

Py = 180/ 7991.

Since the eigenvalues of H are 0, —8.55£8.25i, ~7, —9.23+1.37i, and —13.44,
using Fq. B.2-3 the asymptotic values of p{N) obtained from Eq. 2.2-4 are
approximated to the O(N~85%),

Lemma 3.2.1 and expression Eq. 2.2-5 lead to the following theorem:

Theoremn 3.3.1. The expected number of nodes in a random 2-8 tree with N
keys is bounded by

[(3+ ;—)szl i—f—]+(4+ ;—) Léi%”(lvﬂ)—é—s A(N) < [4[&%]%@‘?4”(1% 1)-1

Garollory.

78501 . 11282 esoy o EN) _ 44343 11504 —ass
111672 *ssearn TONTO¥) € S G - e +O(N 055

To five place decimals we have

0.70160+ M’ngww-ﬂﬁ) < ﬂNﬂ-s 0.79273—&-2-;’:&+0(N-°-55).
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C2 C) o 2
£ %
—_— —— N S———!
type 1 type 2 type 3 type 4
D St T D, D, < G

. > J o > e
type 5 type 6 type 7

Figure 3.3.1 Tree collection of 2-3 trees of height 2
(stubs indicate leaves)

-5 Bx3/7 4x6/8 4x6/9
S - 5x6/8 65x6/9
6x2/5 =7 6x6/9
6x3/5 -7
7 7 -B
Bxd4/7 -9
9x2/8 -10

Table 3.3.1 Transition matrix corresponding to the tree collection of 2-3 trees
of height 2 shown in Figure 3.3.1

£ e s D A

type 4 type 5 type 6
-2 o a0 52 < P
A0 £
. ~ e “ T —
type 7 type 8 type 9

Figure 3.4.1 Tree collection of 2-3 trees of height 2 obtained by grouping type 3
and type 4 shown in Figure 3.3.1 into type 6 above



Fringe Analysis and Its Application to B-trees 21

Lemma 33.2. The probability that 1 split ocours on the (N+1)* random
insertion into a 2-3 tree with N keys is

Prilsplit] = ———égggg’ +0(N-859)

Proof : An insertion into the type 2 tree shown in Figure 3.3.1 causes one
Eplit 3/5 of the time, and an insertion into the type 3 shown in Figure 3.3.1
always causes one split. Since the probability that a random insertion into
& random 2-3 tree falls into a type 2 or type 3 tree are pp and pg
respectively, then Pr{l split| = 3/5p,+pg «

Lemma 3.3.3. The probability that 2 or more splits occur on the (N+1)#
random insertion into a 2-3 tree with N keys is

Pri{2 or more splits} = %%4.0(”—9.55)

FProof : Similar to the proof of Lenma 3.3.2. =

Lemma 3.2.5 leads to the following theorem:
Theorem 3.3.4. The expected number of splits in a random 2-3 tree with N
keys is bounded by

78501 . 11282  llogy (N+1))

~B.55 =

111874 ' 55937N N tONTEE) < 5(N) <
44343 _ 11694 Nogs(N+1)] a5
55937  55037N N HO(NTI)

To five place decimals we have

0.20189 lloge (N+1)]
0.70169+ =55 7

+O(N85%) < 5(N) <

079273 _ 02%?27 _ﬂoga(N+1)] +0

7 (N—Gvsﬁ) i

Lemma 3.3.5. A lower bound on the expected number of splits that will
oceur on the (N+1)* insertion into a random 2-3 tree with NV keys is

E[s{N)] = Pr{1 split {+2Pr {2 or more splits}
. Proof : Similar to the proof of Lemma 3.2.3. «

Lemma 3.3.6. An upper bound on the expected number of splits that will
oceur on the (N+1)* insertion into a random 2-3 tree with N keys is
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E[s(N)]= Pr{l split}+Pr{2 or more splits }|logz (N+1)]
Proof : Similar to the proof of Lemma 3.2.8. «

Lemmas 3.3.5 and 3.3.6 lead to the following theorem:

Theorem 3.3.7. The expected number of splits that will occur on the
(N+1)* insertion into a random 2-3 tree with N keys is bounded by

84158 8.5 13788 |, 1455 855
55937 =3 O(N %) < F[s( N)]SSSEJB? 7501 llogz (N +1)]+ O(N855)

To five place decimals we have

0.61065+0(N055) < E[s(N)] =0.246849+0.18208|logz (N +1)|+ O(N855) |

Lermma 3.3.8. The expected number of keys in the fringe of a -3 tree with
N keys that corresponds to the tree collection shown in Figure 3.3.1 is
Pz Ps Ps
F(N)=p3 g L +5L Ls L +BL (N+1)
FProof . The above expression is obtained by observing Figure 3.3.1 and by
using Eq.2.2-5. =

6536

~8.55
7091 —=———(N+1)+0(N"85%)

Corollary, F(N) =
Theorem 3.3.9. The expected height of a 2-3 tree with N keys is bounded
above by

R(N) < loge(N+1)-0.45736
Froof : Similar to the proof of Theorem 3.2.12, «

8.4. Third Order Analysis

In this section we present the analysis of the three lowest levels of 2-3
trees. Brown (1979) performed a three level analysis using & transition
matrix of 978 x 978 elements, and obtained asymptotic values for the
number of nodes with one key and the number of nodes with two keys at
each of the three lowest levels. However an equivalent three level analysis
can be performed on a smaller matrix by grouping trees into types, in the
‘same way the two level matrix in the previous section was reduced from
12 x12to 7 x 7. If we consider combinations of the 7 types of the two level
‘tree collection as subtrees of nodes with one and two keys then it is
ipossible to obtain a three level tree collection with 224 types. This may be
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further reduced to 147 types as we shall see in the following.

The idea behind our approach is to group all trees with the same
number of leaves into types. Thus the tree collection shown in Figure 3.3.1
Is reduced from 7 types to 6 types by grouping the types 3 and 4 into one
unique type, as shown in Figure 3.4.1. In this new tree collection the types
are numbered sequentially from 4 to 9, where the type 4 tree has 4 leaves,
the type 5 tree has 5 leaves, ..., and the type 9 tree has 9 leaves, Of course
the probability related to the type 8 shown in Figure 3.4.1 is the sum of the
probabilities related to the types 8 and 4 shown in Figure 3.3.1, and the
probabilities of the other types remain as before. (Types 4, 5, 7, 8, and §
shown in Figure 3.4.1 have the same probabilities as types 1, 2,5, 8, and 7
shown in Figure 3.3.1 respectively.)

damma 3.4.1, The 6 types of the tree collection shown in Figure 3.4.1 can be
used as subtrees of nodes with one or two keys in order to obtain a three
level tree collection.

Proof: From the trees shown in Figure 8.3.1, the ones with the same
number of leaves appear as subtrees of nodes with one or two keys having
the same probability, simply because they belong to the same type. »

{emma 3.4.2. The two level tree collection with 8 types shown in Figure
3.4.1 can be used to form a three level 2-3 tree collection with 147 types,

Proof : Following the notation presented in Figure 3.4.2, the 147 types of
the three level tree collection are represented either as type ij (4<i<9 and
1=<§<9) for the tree types with binary roots, or as type ijk (4%i<9, 4<j<9,
and i<k =9) for the tree types with ternary roots. The number of tree types
with binary roots is 21, and the number of tree types with ternary roots is
126, which gives a total of 147 types. =

Notice that the trees with ternary roots must have 4=<j<9 (and not
i€7<9 and j=k=8). Consider for example types 459 and 495. These must
be treated as different types because an insertion into the leftmost leaf of
the middle subtree of type 495 gives types 44 and 58, and an insertion into
the leftmost leaf of the right subtree of type 459 gives types 45 and 48.

Lemma 3.4.3. The transitions related to the 8 types of the tree collection
shown in Figure 3.4.1 are equivalent to the transitions related to the 7 types
of the tree collection shown in Figure 3.3.1 when both are used as subtrees
of nodes with one or two keys in order to obtain a three level tree
collection.
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type 44 type 45 type 99

a) Types formed by 2 height 2 subtrees under binary roots
yp g
(there are 21 types in this case)

o

Y ¢ )

type 444 type 999

{b) Types formed by 3 height 2 subtrees under ternary roots
(there are 126 types in this case)

Fig. 3.4.2 Tree collection of 2-3 trees of height 3 (type 44 is formed by two
subtrees with 4 leaves each, type 45 is formed by two subtrees
with 4 and 5 leaves each, etc)

Y
{b) Transitions related to the tree collection shown in Figure 3.4.1

Figure 3.4.3 Diagrams for transitions
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Proof : Figures 3.4.3(a) and 3.4.3(b) show the transitions related to the tree
collections shown in Figure 3.3.1 and Figure 3.4.1 respectively. It is
irrelevant whether we use the 6 types of the tree collection shown in Figure
3.4.1 or the 7 types of the tree collection shown in Figure 3.3.1 as subtrees
of nodes with one or two keys. In the case we choose the former types we
have to remember that (i) the type 6 shown in Figure 3.4.3(b) is composed
by types 3 and 4 shown in Figure 3.4.3(a), and (i) from Eq. 3.3-1 that types
3 and 4 shown in Figure 3.4.3(a) occur with probabilities 5472/55937 and
7128/55937 respectively,

Using Eq. 2.2-3 for the 147 x 147 transition matrix T we obtain a linear
system of 147 unknowns, which was solved using an algebraic manipulation
language called MAPLE, developed by Geddes and Gonnet (1981). An
advantage of using such a system is that we obtain rationals instead of real
numbers, avoiding computational errors. The 147 pi's obtained contain
integer numbers in the numerator and in the denominator, with
approximately 90 digits each. Since the eigenvalues of H are 0,
-4.37+B8.23%, ..., —31.49+2.02, and —-33.27, the asymptotic values for p(N)
obtained from Eq. 2.2-4 are approximated to the O(N™%37),

We shall see that the analysis for the three lowest levels of 2-3 trees
leads to better results for @(N), §(N), E[s(N)]. and exact results for
Pri2 splits |, and Pr{3 or more splits].

lemma 3.4.4. Let nn(i) indicate the number of nodes of the type i tree in
the tree collection shown in Figure 3.4.1. Then

nn(i) =3 for 4<i<5
_ 5472 7128

nn(6) = 3X 1556 +4* Tag05

nn{i) =4 for 7<i<g

Proof: For i=4,5,7,8,9, from Figure 3.4.1 the values for mn(i) are
immediate. For i = 6, consider the two trees of type 8 shown in Figure
3.4.1. We know from Eq. 3.3-1 that the tree with 3 nodes occur with
probability 5472/55937, and the tree with 4 nodes occur with probability
7128/ 55937, Normalising the probabilities we obtain

B4T2_ L., 1128

nn(8) = 8% Toe05 12600

.Let L;; indicate the number of leaves of the type ij tree (4=<i<9, i<j<0)
shown in Figure 8.4.2. Let L indicate the number of leaves of the type ijk
tree (4<i<9, 4<j<0, i<k<9) shown in Figure 3.4.2. The proof of the
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following theorem is similar to the proof of Theorems 3.2.2 and 3.3.1. Note
that the double summation contains the number of nodes of type i (4<i<),
plus the number of nodes of type j (i£7=<8), plus the binary root node (see
Figures 3.4.1 and 3.4.2), plus 1/2 for the lower bound (1 for the upper
bound) due to the number of nodes outside the fringe. (cf. Theorem 3.2.1.)
The triple summation is similar,

Theorem. 3.4.5. The expected number of nodes in a random 2-3 tree with N
keys is bounded by

L{: i:(rm i)+nn(j)+1+ 1 )(—‘L) +

=4j=i
i i g: (nn(i)+nn(j)+nn (k)+1+ L )(—L)] N+1)
i=4j=4k=i
<n(N)< [}5 );(nn(i)mnuwe)(&i?) +

nY Y (nn 0y +mn i emm (k) +2) ()

{=4j=4k=1

N+1)-1

Corollary. t
0.72683+ 0'Lﬁfﬁ—a»xo()\/-ls?) < 3‘_—%15 0.76555-%+0(N437)

Experimental results show that #i(#¥) is approximately 0.Y5N. The
minimum and the maximum number of internal nodes possible in any 2-3
tree with N keys are 0.5 N and N respectively.

lemma 3.48. The probability that 2 splits occur on the (N+1)* random
insertion into a 2-3 tree with N keys is

Pri2 splits} = 010462+ 0(N %)
Proof : Similar to the proof of Lemma 3.3.2. «

1 All the results of this section are presented as real numbers because the exact rationals
are too long to be printed. As a curicsity, the exact lower bound on n{N) is

J79B5983142008 1308052840727 221 85623462256367325207 6381 B 1937608420853 733745207 1355 7457734068

10720604 850083807760988691252514032 16808958537 506438482 7047 70534002636584C503873007782021220
= 0.72683 00574 BO536 -+ *
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Lemma 3.4.7. The probability that 3 or more splits occur on the (N+1)#
random insertion into a 2-3 tree with N keys is

Pr{3 or more splits] = 0.07745 + O(N4%7)
Proof : Similar to the proof of Lernma 3.3.2. =

Lemma 3.2.5 leads to the following theorem:

Theorem 3.4.B. The expected number of splits in a random 2-3 tree with N
keys is bounded by

0.72683+

0.22683 _[loge (V+1)]
N N

0.23444 _llogg(N+1)]
N N

+O(N427)

< §(N) < 0.76556— +O(NT)

Lemma 3.4.9. A lower bound on the expected number of splits that will
occur on the (N+1)* insertion into a random 2-3 tree with N keys is

E[s(N)] = Pr{1 split }+2Pr {2 splits }+3Pr{3 or more splits}
Proof : Similar to the proof of Letnma 3.2.3.»
Lemma 3.4.10. An upper bound on the expected number of splits that will
oceur on the (N+1)* insertion into a random 2-3 tree with N keys is
El[s(N)]= Pr{isplit]{+2Pr{2splits |+ Pr{3or more splits }[logz (N+1)]
Proof : Similar to the proof of Lermma 3.2.8. »

Lemmas 3.4.8 and 3.4.10 lead to the following theorem:

Theorem 3.4.11. The expected number of splits that will occur on the
(N+1)* insertion into a random 2-3 tree with N keys is bounded by

0.8BB10+O(N™*¥") < E[s(N)] < 0.45575 + 0.07745[loge (N +1)|+ O{N—437)

Lemma 3.4.12. The expected number of keys in the fringe of a 2-3 tree with
N keys that corresponds to the tree collection shown in Figure 3.4.2 is

Fn= Li i+ (50 + 3% P (i -1>(&%"‘—)](N+1)
=45 =i i=4j=qk=t Ly

Froof : The above expression is obtained by observing Figure 3.4.2 and by
using Fq.2.2-5. »
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Doroliary.  F(N) = 0.92255 (N+1)+0(N*57)

Theorem 3.4.13. The expected height of a 2-3 tree with N keys is bounded
above by

R(N) < loga(N +1)-0.69054

Proof : Similar to the proof of Theorem 3.2.12. =

It is important to note that the values for ®(N), §(N), E[s(N)].
Prij splits], and Pr{j or more splits| for one and two level analysis can be
obtained using the 147 probabilities we obtained from the three level
analysis. Among other verifications, this is what we did in order to check
the results of this section.

3.5. 2-3 Trees with Overflow Technique

The overflow technique was first presented by Bayer and McCreight
(1972, p.183). The idea, when applied to 2-3 trees, is the following: Assume
that a key must be inserted in a node already full because it contains 2
keys; instead of splitting it, we look first at its brother node on the right. If
this node has only one key, a simple rearrangement of keys makes splitting
unnecessary. If the right brother node is also full {or does not exist), we
can lock at its left brother in essentially the same way.

The object of this section is to present a second order analysis of the
2-3 tree insertion algorithm using an overflow technique that is simpler
than the one proposed by Bayer and McCreight. In order to make the
analysis possible we restrict the overflow technique to the lowest level, and
moreover, we only split a node when an insertion is performed in a full node
and its closest brother is also full. If this node is the middle node of a
ternary subtree then the closest non-full brother may be located either to
the right or to the left of it. Otherwise a rearrangement of keys is
performed and the closest non-full brother node will accommodate one
more key. Figure 3.5.1 shows the two level tree collection, and Table 3.5.1
shows its corresponding transition matrix.

Using Eq. 2.2-3 we obtain

P, = 1584/ 15949
Pe = 2970/ 15949
P = 3600/ 15049
P4 = 3160/ 15949
Ps = 2000/ 15949
pe = 800/ 15949
P = 45/ 389
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type 1 type 2 type 3 type 4
2 a» & {2
- ~ Nt e o)
type 5 type 8 type 7

Figure 3.5.1 Tree collection of 2-3 trees of height 2 using overflow technique

[ 3
~5 4x3/ 8 4x6/ @
5 -6 6x3/8 10x3/ 9
6 -7 6x6/ 9
7 -8
x5/ 7 -9
8x2/7 -9
L x5/ 8 ] -10 )

Table 3.5.1 Transition matrix corresponding to the tree collection of 2-3 trees
of height 2 shown in Figure 3.5.1
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Since the eigenvalues of H are 0, —-6.81+5.96i,—B.51+2.97i,-9.0, and
—14.37, the asymptotic values of p(N) obtained from Eq. 2.2-4 are
approximated to the O{N88),

Lemma 3.2.1 and expression Eq. 2.2-5 lead to the following theorem:

‘Theorem 3.5.1. The expected nurnber of nodes in a random 2-3 tree with N
¥eys is bounded by

(3+é—) éi +(4+;—)gpf (N+1)—;—£ﬁ(N)£ 4');3": +5i}pf (N+1)-1
=1 iz Li N2 I

Corollary.

20175 . 2113 ony . B(N) _ 11885 4564 .
51806 * 1o040n OO S TS T5gs0 " Togaan POV

To five place decimals we have

0.83248+ 9;.1_%,2.3?_+0(N—8.81) < ws 0.71384.dp_-._2?vﬂ6’_+0(]v—e.m)'

which should be compared to the

0.72880+ 222083 o(-a77) ﬂNﬂls 0.78556- L2344 o y-asm)

which are the third order approximation of E-(Nﬁ}— for the non-overflow
algorithm.

Lemma 3.5.2. The probabilities that no split, 1 split, and 2 or more splits
occur on the (N+1)* insertion into a 2-3 tree with N keys using an overflow
technique are, respectively

9754
15949

3600
15949

{a) Pri0 splits} = +O(N881)

(b) Priisplit]=

+ D(N'”’)
2595
16949

Froof : The proofs of (a), (b}, and (c) are similar to those of Lernmas 3.2.3,
38.3.2, and 8,3.3, respectively. =

(e) Pri2or more splits} = +O(N581)
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Lemma 3.2.5 leads to the following theorem:
Theorem 3.5.3. The expected number of splits in a random 2-3 tree with N
keys using an overflow technique is bounded by

20175 . 2113 lloga{N+1)]

~8.81 5

81898 ' 15949N N tONT) = §(N) <
11385 __ 4564 Noga{N+1)] s
15940  15949N N oW

To five place decimals we have

0.13248 _llogz2 (N+1)]
N N

0.28616 Nogs (V+1)]
m 5 +0

0.63248+

+O(N )< 5(N) =

0.71384—

(N—ﬁ,ﬂl) s

which should be compared to the bounds

0.22683 _llog2 (N+1)]
N

0.23444 llogg(N+1)] 437
N 5 +O(N437)

which are the third order approxiration of §(N) for the non-overflow
algorithm.

0.72683+

+O(N ) =< §(N) <

0.76556—

lemma 3.5.4. A lower bound on the expected number of splits that will
oteur on the (N+1)* insertion into a random 2-3 tree with N keys using an
overflow technique is

E[s(N)] = Prilsplit]+2Pr{2 or more splits}
FProof : Similar to the proof of Lemnma 3.2.3. =
Lermnma 3.5.5. An upper bound on the expected number of splits that will

occur on the (N+1)* insertion into a random 2-3 tree with N keys using an
overflow technique is

E{s(N)] = Pr{1 split}+Pr{2 or maore splits Jlogz (N+1)]
Proof : Similar to the proof of Lemma 3.2.8. =

Lermmas 3.5.4 and 3.5.5 lead to the following theorem:

Theorem 3.5.6. The expected number of splits that will occur on the
(N+1)* insertion into a random 2-3 tree with N keys using an overflow
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technique is bounded by

8790 —8.81 3600 . 2595 .81
T58a5" +O(N88) = Fls(N)] < 15040 +mlogz(N+1)j+o(N )

To five place decimals we have

0.55113+0(N881) < K{s(N)] < 0.22572+0.16270]logs (N +1)]+ O{N 881} |

3.6. Concurrency of Operations on 2-3 Trees

A 2-3 tree node is insertion safe if it contains only one key. When
considering concurrency of operations on 2-3 trees, one possible technique
to permit simultaneous access to the tree by more than one process is to
lock the deepest safe node on the insertion path. (A safe node is the
deepest one in a particular insertion path if there are no safe nodes below
it.) The object of this section is to give a probability distribution of the
depth of the deepest safe node.

3.6.1. Deepest Safe Node in 2-3 Trees with Normal Insertion Algorithm

In the following lemma we use the p's obtained in Sections 3.2, 3.3, and
3.4.

Lemma 386.1.1. The probabilities that the deepest safe node is located at
the 1%, the 2™, and the 3™ lowest level, and above the 3™ lowest level of a
2-3 tree with N keys are, respectively

(a) Pridsn at 1% lowest level} = g—

13788
55937
(c) Pridsn at 3™ lowest level] = 0.104624+ O(N~+37)

(d) Pridsn above 3% lowest level] = D.07745+ O(N~+37)

(b) Pridsn at 2™ lowest fevel} =

+ O(Nvﬂ ,55)

Proof : It is pot difficult to see that the probability that the deepest safe
node is located at j* (j21) lowest level is equal to the probability that
exactly j—1 splits occur on the (N+1)* random insertion (see Lemmas
3.2.38, 3.3.2, 3.4.6, and 3.4.7 for the proof of items (a), {b), (c}). and {d)
respectively).

From Lemma 3.6.1.1, item {d), we can see that in only B% of the time
the deepest safe node is above the 3™ lowest level of a random 2-3 tree. In
other words by locking the deepest safe node on the insertion path we lock
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at most height 3 fringe subtrees 92% of the time.

8.6.2. Deepest Safe Node in 2-3 Trees with Overflow Technique
In the following lemma we use the p's obtained in Section 3.5.

lemma 3.62.1. The probabilities that the deepest safe node is located at
the 1¥ and the 2™ lowest level, and above the 2™ jowest level of a 2-3 tree
with N keys using an overfiow technique are, respectively

8754

(e) Pridsn at 1% lowest level] = 15645 +O(N-58)
(b)) Pridsn at 2™ lowest level} = ;356;’409 +O(N-88Y)
(¢} Pridsn above 2™ lowest level] = 125599459 +O(N98Y)

Proof : Similar te the preof of Lemma 3.6.1.1 (see Lemma 3.5.2 in Section
8.5 for the proof of items (@), (b), and (c))»

3.7. Higher Order Analysis

Yao (1978, p. 165) predicted that an analysis for the k lowest levels
would be difficult to carry out for k=3 and virtually impossibie to carry out
for k=4, However, if we apply the same technique used to obtain the three
level tree collection with 147 types then it might be possible to think about
fourth order analysis.

In order to obtain a four level tree collection we define a 20 types three
level tree collection containing trees with 8, 8, 10, ... , 27 leaves, in a way
similar to the way we obtained the 8 types two level tree collection shown in
Figure 3.4.1. This three level tree collection can be used to obtain a four
level tree collection with 4410 types, by considering combinations of the 20
types as subtrees of nodes with one and two keys. Thus the fourth order
analysis will require the solution of a 4410x4410 linear system.

Again if we apply the same technique it is possible to obtain a five level
tree collection with 148137 types, which is practically impossible to handle
nowadays. Table 3.7.1 shows the sizes of the tree collections used by Yao,
Brown, and in this paper, for various levels of analysis,
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Analysis Brown Yao Ours
First order 2 2 2
Second order 9 7 6

Third order 978 224 147

Fourth order | 3.3%10° | 5.67x 108 4410

Fifth order - g 11x10% | 148137

Table 3.7.1 Sizes of the tree collections used by Brown (1979,p.57).
Yao {1978, p.165), and in this paper

Finally, we want to say something more about the expected height of
2-3 trees.

Lemma 3.7.1. Let l; indicate the number of nodes at the j% (j=1) lowest
level of a random 2-3 tree with N keys.Then

(@) 1,=N+1
[?z—:+£2—](N+1)

[ jD‘]NH)

@) = [EERC 35 8 2 Jivay

1

(i) Lo

(i) I

1

»41—: t=4j =4k =i
Proof: Case {i) is obvious: the number of external nodes is equal to the
number of keys in the tree plus one. In cases (i) to (iv) we just count the

number of trees in the fringe that corresponds to the tree collection of
Figure 3.2.1, Figure 3.3.1, and Figure 3.4.2, respectively. »

Oorallary.
(i) L,=N+1
(i) lg = 3—(N+1) for N>6
vy - 1455 .
(i) g = 7991 == (N +1)+0(N855)

(i) I, = 0.07745{N+1)+O(N45)
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Table 3.7.2 shows the ratio of the expected numbers of nodes at two
consecutive levels for the four lowest levels of a random 2-3 tree with N

keys.

Lowest level L{1=i<4) l—ll—(Zsj s4)
-1
4t 0.07745(N+1) 0.42538
v 1455
3 e TRUARY 0.42485
2nd 2—(1v+1) 0.42857
1 N+1

Table 3.7.2 Ratio of the expected numbers of nodes at two consecutive levels

Assuming that this ratio is approximately the same for the other levels
of the tree, we derive the following conjecture:

Conjecture 3.7.2. The expected height of a random 2-3 tree with N keys is
h(N) = logy,s(N+1)
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4. An Analysis of Birees

4.1. Motivation

"According to Bayer and McCreight (1972) a B—free of order m is a
balanced multiway tree with the following properties: (a) The leaves are null
nodes which all appear at the same depth. {b) Every node has at most
2m +1 sons. {¢) Every node except the root and the leaves has at least m+1
-sons; the root is either a leaf or has at least two sons §. Consequently, a 2-3
tree is a B-tree of order m = 1.

The process of insertion of a new key starts with the search for the
place of insertion, followed by the insertion of the key into a node. To
insert a new key into a node that contains less than 2m keys we just insert
it into the other keys. If the node already contains 2m keys, we split it into
two m-keys nodes, and insert the middle key into the parent node,
repeating the process again with the parent node. When there is no node
above we create a new root node to insert the middie key.

The complexity measures used in this section are exactly the same
complexity measures defined for 2-3 trees in Section 3.1, They are written
in this section with a subscript m. The only new complexity measure is:

Let 7, (N)/ [N/ (2m)] be the storage used by a B-tree T of order m, where
N/ {2m) represents the number of nodes when all the nodes of T contain
2m keys.

In section 4.2 we shall derive exact values for Pr{0 splitsi,.
Pr{1 or more splits],,. and bounds on i, (N) by considering the lowest
level of a random N key B-tree of order m obtained using the insertion
algorithm described above. In section 4.3 we shall derive exact values for
Pri{0 splits},,, Pril split},,. Pr{l or more splits], . Pr{2 or more splitsi,,,
and bounds on 7, (N) for an insertion algorithm for B-trees that uses an
overflow technique, by considering the lowest two levels of a random N key
B-tree of order m. In Section 4.4 we shall derive exact values for
FPridsn ot 1% lowest level],, and Pridsn above 1% lowest level}, for the
normal insertion algorithm, and Pridsn of 1* lowest level],,,
Pridsn at 2" lowest level},,. and Pr{dsn above ™ lowest level},, for the

t Knuth (1873, p. 473) presented & slightly different definition of B-trees. In Knuth's
definition every node in a B-tree of order m has at most m—1 keys and at least bn/2-1}
keys. Knuth's definition considers B-trees of order 2i, i=2 (B-trees containing at least i keys
#and at most 2i—1 keys), while the above definition does not consider such trees. However,
these trees present a disadvantage: the split operation divides the node into two nodes witha
different number of keys in each one, which implies that a decision about which node will
wontain more keys has to be taken,
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insertion algorithm using an overflow technique.

Table 4.1.1 shows the summary of the results related to B-trees using
the normal insertion algorithm, and Table 4.1.2 shows the summary of the
results related to B-trees using an overflow technique.

4.2. First Order Analysis

The tree collection of B-trees of order m and height 1 contains m+1
types. Figure 4.2.1 shows the one level tree collection of B-trees of order

type 4 type 5 type 7
Figure 4.2.1 Tree collection of B-trees of order m =3 and height 1
The transition matrix H corresponding to the one level tree collection
of B-trees of order m is
—(m +2) 2(m+1)

m+2 —(m+3)
m+3 —(m+4)

2m+1l —(2m+2)

Let H, denote the Harmonic numbers, H, = f: :— for n=1. From Eq.

i=1
2.2-3 we have Hp(N) = 0, and therefore

1
pm+l =
(m+z)[Hm+z'-Hm+|]
1
Pmiz = (1)
(m+3)[szn+a—Hm+;j
Pema1 = 1

(2m +2) [Hﬁm v2—Hm+ |]

Lamma 4.2.1. The probability that 1 or more splits occur on the (N+1)*
random insertion into a B-tree of order m with N keys is
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First order analysis (N +)
fim (N) 1 ) S 1 N -3
N @mz)m +(5mz 4)(1n2)m= +0(m™),
1 1 "
Emaym * BnzEme oM )]
: el (117 1 -3
Pr{0splits i I Gnsim (alnz 2) ozyme Tom™)
] 1 1y 1 i
Prilor more splits i trom e 3 e o™
Storage used El?+o(m-!)
o 1 (1 _1Y_ 1 . oim—
Pridsnat 1%1. levelln ! (2In2)m _‘8In2 z)anz)m% +0(m -3)
1 11 1 N
Pridsn above 1 L bevelln | g+ (g - ) g+ 0m)

Table 4.1.1 Summary of the B-tree results

Second order analysis (N-+%)

Tim (N 1 -
N : o 81n2 Tz 1) e HOm ™),
'élnTJ’ Binz __)"“'*0("‘_’)
i (A -3
Pr{0splits {m 1 P \EeE wieet O(m )
Pritsplit)n éﬁ*('a%l?*i“)#“’(’"")
Pri1or more splits | 1 +('é'1;"2" 1) 1 == +0(m3)
” -3
Pri2or more spliisim (4in2) -~ +0(m™3)
Storage used 1+("§;;3‘"é-'-§- —-—+ O(M'B)
o U S S S
Prdsn at 1% lowest level |, 1 Zm \BlaE "1 —=—+0(m™%)
nd 1 R R 1
Pridsn ot 2" lowest levellm | 5 — +( D mrtom™)
nd I S -3
Pridsn above 2™ lowest level |, TanoTme +0(m™)

Table 4.1.2 Summary of the B-tree results using an overfiow technique
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Pr{l or more splits},, =

1
(Bm. +2)[Ham +2—Hpmo l]

Proof: In the lowest level of a B-tree of order m a split occurs when an
insertion happens in a node with 2m keys, and such nodes correspond to
the type 2m +1 of the tree collection of B-trees of order m and height 1.
Thus, Prilor more splifsin, = pomer ®

Zemma 4.2.2. The probability that no split occurs on the (N+1)¥ random
insertion into a B-tree of order m with N keys is

1
(2111-4'2) [Harn+2"Hm ﬂj

Proof: Pri0splits}, = 1-Pr{l or more splitsi,,.»

Priosplits),, = 1—

1 1
@m  12m?
where y = 0.57721... is Euler's constant (Knuth, 1968, § 1.2.7). Then

It is well known that Hp, = Inm + y+ —

+0{m™),

Corallary.

. — 1 1 .1 1 -3
Pr{1or more splils ], = Fingym +[Bln2 2](1!12) - +0(m™9)

Iemma 42.3. Let nl, be the number of nodes at level I of an order m B-
tree. Then the number of nodes above the level I, nal,, is bounded by

nl, nl,, -1
.y snal,,,s

Proof : Consider the level I as being the N+1 leaves of a B-tree with N keys.
(Each leaf represents a node.) The minimum and the muazimum number of
nodes above the level ! is obtained when each node above the level I

contains 2m and m keys respectively. (That is 2m X nal, = nl,—1 and
m X nal, = nl,—1 respectively.)=

lLemma 4.2.3 and Eq. 2.2-5 lead to the following theorem:

Theorem 4.2.4. The expected number of nodes in a random B-tree of order
m with N keys is bounded by

(i 2 E B v~ <20 D8 2w
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R +1 ] 1y 1 Relrgly o Tm (V)
liery. 1-2)-L vy g Im) o
(orotiory [(4m2+4m)<Hzm+z—Hmu)J( W) aw O =y
1 1r, 1y 1 Fe (Ag)
1-3)——+0o(N" e
[2m(H2mz—Hmu)J( ) )
where He (A;) < 0.
1 | -3y - Tm ()
Coroliary. Ensm +[81n2 7| oy +0(m"%) = NS

1 + 1
(RIn2)m ~ B(In2)®m?

+0(m™9)

Cbrallary. Storage used = ##-O(m")

The values obtained for the storage used (cf. definition of storage used
in Section 4.1) are between 1 and 2. The value 1 corresponds to the B-tree
with all nodes with 2m keys, and the value 2 corresponds to the B-tree with
all nodes with m keys. Yao (197B) used a different measure. He defined
storage ulilisation as [N/ (2m)]/#,(N), where N/(2m) represents the
number of nodes when all the nodes contain 2m keys. However, it is known
that, in general,

1 1
E(;\T) 5

for a random variable X. Furthermore, by using the Kantorovich inequality
(see Clausing, 1982, pp. 314-330) we have

1= E(x) x () = -g— (2)

Then
Corollary. The storage wutilisation for a random B-tree of order m with N

keys is bounded by

102+ 0(m™1) < storage utilisation < g—ln2+ o(m1)

4.3. Birees with Overflow Technique

In this section we present a second order analysis of the B-tree
insertion algorithm using the following overflow technique. We restrict the
overflow technique to the lowest level, and moreover, we only split a node
when an insertion is performed in a full node and all its brothers are also
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full; otherwise a rearrangement of keys is performed and the closest non-
full brother node will accommeodate one more key.

Any tree collection of B-trees of order m using the overfiow technique
described above contains (m+1)(2m+1) types. Figure 4.3.1 shows the
transition diagram corresponding to the two level tree collection of B-trees
of order m=2. The transition matrix H corresponding to the two level tree
collection of B-trees of order m using the overflow technique described
above is shown in Table 4.3.1.

In order to obtain the vector p(N) from Eq 2.2-3, we make
P@Em+em+n=1 1 and solve for all the other p's. After this we normalise the
P's by dividing each one by their sum. Then

Plem+1)zm+1) = 1

= Bm+D(EmeN+1 _  4mPramsp
Pemyemems) = "omi)(Bm+1)  (@m+1)(2m+1)
4m3+am+2

P(2m1)s2m{2m+l) = W

_ 4AmP+am +2
Pem(zm+l) = ) m(2m+1)‘+h1.-

_ 4mBram42
P(zm)+(@m-1)(@m+1) = 2m(2m+1) (1)

Am®+4m +2

Ptman@ms) = Ty (Bm+ 1)+1

= 1— 2 _ 2m
Piem)+miem+1) = meDEm+D) 4mc+4m +2 2m—+i-(m.+1)(2m+1)

- _2m%2m+2
(m+1){(2m+1)

_ 2ml+2m+2
Pmensm@me) = (i) rm(@m +1)

1 P (em+1)(em+1) Means P(m+|)+}m+|)+,,.4(m+1)- where (2m +1) eppear 2m +1 times. Applying
this notetion to the B-tree of order m =2 shown in Figure 4.3.1, pgsess in equivalent to

P(em+1)(em+1): Pass I8 equivalent 10 Bim +1)4{m+1)+(m—-1)(Bm +1) L€
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Fig. 4.3.1 Transition diagram representing the two level tree collection for
B-trees of order m =2 using overflow technique {e.g. type 335
corresponds to the height 2 type tree containing a root node
with 3 descendants, the first one with 3 leaves, the second one
also with 3 leaves, and the third one with 5 leaves)

.
2m /(2m +1)X
=[(m +1)+(m +1)
- - Km +1)y+(m +1)
+(m = 1X2m+1))~1 +m~1X2m +1))
—{(m+1)+2m+
{m=1)X2m+1)}=1
m++  —fm+1)+ 2/(2m + Dl +1)
m2m+)]  m@m41)) =) +m (2m +1))
»
-12m +
m2m+1)) -1
ftm +1)x =ltm+1x 2m /(2m + )X
(2m +1] @m+D]=1 f(m +1%2m 4 1)}
{(m+)+(m+1)
+m(2m +1)]
L]
2m+ -[2m+
MmEm+1)]  2mQ2m41))-)
Cm+D2m+1)  —@m+12m+1)
h -1 J

Table 4.3.1 Transition matrix corresponding to the tree collection of B-trees
of order m and height 2 using an overflow technique
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1
Pmensem)+m-0@m+) = T rm Em D)

em2+2m+2— (m+1+m(2m+1))

2
2m+1

= (am3+2mP+2m)/ (2m +1)
(m+1)+m(Em+1)

_ _(4m3+2m2+2m)/ (2m +1)
P(m+1)+(m+2)+{m-1)(2m +1) = (m+l)+(m+3)+(m—1)(2m+1)

_ __(am3+2mP+2m)/ {2m +1)
Pmansimeiyim-iem+) = 70 0y m +2)+ (m—1)(2m +1)

Let S be the sumn of all p's above. Then

_ ( am3+2mP+2m
S = ( om +1 ) Hpmerem 1™ 2m2+m+1] +
(2m2+2m’+2){Hem2+3m+1_Ham'o2m+|] + &

((2171. +H1)(Rm+1)+ 1){H4mgum +2-H2m9&8m+!]

To obtain the final probabilities all the above p's have to be divided by S.

Let ¥{Z) be the Psi function ¥(Z)= FJ(E))—Abramowitz and Stegun,
1972, § 6.3.1).

lemma 4.3.1. The probability that 1 or more splits occur on the (N+1)%
random insertion into an N-key random B-tree of order m using an overflow
technique is

Pril or more splits},, =

1l em+ ) Em+1)+1 ]V(m+2+

1
Pm+1 m+1) ¢(M+1+2 +1)]

where S is as defined in Eq.(2).
Proof: Pr{lor more splits]y, = Pimi1)em+)HP(mez)am+1)t  +P (2m +1){2m +1)

- L[(2m+1)(2m+1)+1 658 1 ]
S 2m+1 . 1 ]

i=l -
(m+i)+ BTl

where ’E‘_l_l__ ¢(2m+2+2m+1 )—V/(m+1+ 2’:“) .
=1 (m-vi)+2m+1
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It is well known (Abramowitz and Stegun, 1972, § 6.3.18) that

1 1
y(m) = B Tor (m™4) -
o _ 1 1 191 -9
rollary. Pr{l or more splitsi, = s tEms "7 ;l-é—~+0(m )

lemma 4.3.2. The probability that 1 split occurs on the (N+1)* random
insertion into an N-key random B-tree of order m using an overflow
technique is

(2m+1)(2m+1)+1 ]
2m +1 ]

)#/(m+l+ 1.

Prilsplit}y, = ]

I 2m+1+

where S is as defined in Eq,(2).
Proof : The only difference from the proof of lemma 4.3.1 is that

Pril split]; = Pmademi)tBmen)em+nt TP (@m)+(@m)zm 1)

1)1
= o [Bln2 &) T HOm)

Corollary. Priisplitl,

Iemma 4.3.4. The probability that 2 or more splits occur on the (N+1)%
random insertion into an N-key random B-tree of order m using an overflow
technique is

Pr{2 or more splits}, = é—
where S is as defined in Eq.(2).
Proof : Pr{2 or more splits ), = Pr{l or more splits}m—ﬁil splits iy,

1

_ 1 lEmenEmen] 1 yl-1.
smiT| = 5

Bm 41 ]‘l,(/(Zm.+2+ ) 1}/(2m+1+

Corollary,  Pr{2or more splits},, = +0(m?

1
(4InR) m?
Lemma 4.3.5. The probability that no split occurs on the (N+1)* random
insertion into an N-key random B-tree of order m using an overflow
technique is

Pri{0 splits},, =
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1 [eme+D)em+1)+1 | 1 1
-5 1423 o jl'w(Zm+2+—2m+1)-’g&(m+1+———2m+1)

where S is as defined in Eq.(2).
Proof : Pri0splits},, = 1-Pr{l or more splits} «

1

1

LOorollary. PriO spl'i.ts}m = 1—27

.1 1,1 -9
(Ginz ~ 23z FOm™)

Lemma 4.2.3 and Eq.2.2-5 lead to the following theorem:

Theoremn 4.3.6. The expected number of nodes in a random B-tree of order
m with N keys using an overflow technique is bounded by

A(Bm)(NH)-é—:; fim(N) < A(m)(N+1)-1

where

-1 19 Pm+1)+(m+1)+{m-1){2m+1)
AX) = §{("”2*X)I(m+1)+(m+1)+(m—1)(zm+1) *

Pm+1)+{m+2)+{m-1)(2m +1) +.. 4 Plme1)Em 1)
(m+1)+(m+2)+(m-1)(2m +1) (m+1)(2m+1)

P(m+1)+(m+1)+m(2m +1) P(m+1)+(m+2)+m[2m+1) b
(m+1)+(m+1)+m(Em+1)  {m+1)+(m+2)+m(2m+1)

P (m+2){2m +1)
(m+2)(am +1)

Pim+1)+{m +2)+(2m -1)(2m+1) R P(em+1){2m+1)
{(m+1)+{m+2)+(@m-1)(m +1) (2m+1)(2m +1)

(m+3+ }{——) +

[
1) Pim+1)+(m+1)+(2m—1}{Em +1)
+o +(ame2y x)[(m+1)+(m+1)+(zm-1)(zm+1) *

and S is as defined in Eg.(2).
Substituting Eq.(1) in the expression of Theorem 4.3.6 gives:
Corollary,
1y 1 B gy _ T (N)
B(am)(1 N) s toW™ ) < el <

B(m)(l-}v—)-j{,—+0(N’“"‘=’), Re(A\;)<0
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where

84 o ®
B(X) = -—{(m+2+ 1 )l[~———~—-—-—-—-———m ;j;”i;zm x

1 1
[(m+1)+(m+1)+(m-1)(2m+1) Tme)4m(Em+1)

1 1
(2m2+2m+2)1(m+1)+m(2mﬂ) T (m+1)(Bm+1)

+

1
(4m? +4m+2)I e e T ]

1 1
m+3+ 5 2m 2+ 5

(m+D)+(m+1)+m(@m+1)  (@m+1)(@m+1)+1 *

(4m2+4m+2)[

1 1
#’(2m+1+2—m)—'¢'(m+2+ ——2m+1 )
2m+1

or

1 §1 , Bm?+10m+6
= e e e D
() S[X 2m?4+3m+2 *

4mPram+2 1 1
em+l [W(zm‘}“' Rm +1 )-1[«(m+2+ 2m +1 )]]

and S is as defined in Eq.(2).

Corollary.
e s P e +t13_]_1T+0(m4) < ﬁ'nNﬂs
“é%rf"[miz Y ri_2+[ Tzt 5|t
Curoliary. Storage used = 1+ 8__1 -1——+0(m'2)
4lne 2jm

Oorolizry. The storage utilisation for a random B-tree of order m with N
keys using an overflow technique is bounded by
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) - N N O T -2 lisati o |8 __1}18._ -2
1 I41n2 5 +0{m™®) < storage utilisation < B [4ln2 B]Bm +0{m™?)

Proof : The above bounds are obtained by using Eq.4.2-2 and the result of
the previous corollary. =

Notice that the expected storage utilization is essentially one for large
m , when the overflow technique is used.

4.4, Concurrency of Operations on Birees

A node of a B-tree of order m is insertion safe if it contains fewer than
2m keys. A safe node is the deepest one in a particular insertion path if
there are no safe nodes below it. The object of this section is to derive
probabilities related to the depth of the deepest safe node.

4.4.1. Deepest Safe Node in B-irees with Normal Insertion Algorithm

lemma 4.4.1.1. The probabilities that the deepest safe node is located at
the 1% lowest level and above the 1% lowest level of an N-key random B-
tree of order m are, respectively

1

(2m +2)[Hom o~ Hm 1)
1

@m +2){Hem 12— Hon 1]

(a) Pridsn at 1% lowest level), = 1—

(b) Pridsn above 1% lowest level},, =

Proof : Similar to the proof of Lemma 3.6.1.1.=

Coroliary,
(a) Pridsn at 1* lowest level},, =
_ 1 _f1r 1 1 -3
~Ghom [Blna 2](1nz) Eto(m™)

(b) Pridsn above 1* lowest level}, =

L +[ L 1—] 1 +0(m3)

(Rln2)m " [Bn2 2 |(In2) m?

This analysis shows that complicated solutions for the use of
concurrency of operations on B-trees are rarely of benefit, since the
solution analysed in this paper will lock height 1 fringe subtrees most of the
time.
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4.4.2. Deepest Safe Node in B-rees with Overflow Technique

Lemma 4.4.2.1. The probabilities that the deepest safe node is located at
the 1% and the 2™ lowest level, and above the 2™ lowest level of an N-key
random B-tree of order m using an overflow technique are, respectively

(@) Pridsn at 1% lowest level}, =

1

_1|Emenemen+r | 1 1
S 2m+1 jv(zm‘“a"zmﬂ)ﬂ”(m”*amn)

(b) Pridsn at 2™ lowest levell,, =

%_[(2m+1)(2m+1)+1 ”w(zwwn

L
om 41 )=y (m+1+ 2m+1)]

2m+1

{c) Pridsn above 2™ lowest level},, = -é-—

where S is as defined in Eq 4.3-2.
Proof : Similar to the proof of Lemma 3.6.1.1.»

Oorollary.

1 1 111
st = —_ = -3
(a) Pridsn at 1% lowest level], =1 [BlnE 4] 7 +0(m™3)

R —

nd S SR N S S 0 -3
(b) Pridsn at 2™ lowest level],, = o +[ Y 4]m.z +0(m™3)

(c) Pridsn ebove 8™ lowest level},, = +0(m™3)

1
(4in2) m®
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5. Conclusions and Open Problems

In Section 2 we have shown that the matrix recurrence relation related
to fringe analysis problems converges to the solution of a linear system
involving the transition matrix, even when the transition matrix has
eigenvalues with multiplicity greater than one (i.e., the eigenvalues of the
transition matrix do not need to be pairwise distinet), This makes our
fringe analysis theory flexible and general enough to permit its application
in the analysis of many different classes of search trees.

In Section 3 an analysis for the three lowest levels of 2-3 trees is
accomplished. It is indicated that if one applies the same technique used to
obtain the three level tree collection for 2-3 trees, then it might be possible
to carry out an analysis for the four lowest levels, which would imply the
solution of a 4410 X 4410 linear system.

In Section 4 an analysis of B-trees is performed. Information about the
operation of splitting an overfull node and the concurrency of operations
are some of the results presented there. In particular for large order B-
trees it is shown that the storage utilization is, essentially, 1, when using
the described overflow technique.

Clearly a central open problem is to analysize the behaviour of
balanced trees under both random insertions and deletions. Whether or not
fringe analysis techniques can be extended to accomplish this remains to
be seen The basic obstacle is that deletions do not preserve randomness,
although a first step has been made by Methorn (1979).

Finally, the original problem, namely carry out a true analysis of 2-3
trees under randem insertions, is still open. Qur analysis is merely an
approximation to the true analysis; which can be viewed as an infinite order
fringe analysis. Whether or not fringe analysis theory can be extended to
this limiting case is also open.
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