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The Fringe Analysis of Search Trees

Abstract

This thesis deals with the analysis of various search trees. These analyses
are based on a method that considers only the bottom part of a tree structure
end so it is known as fringe analysis. By considering only part of the nodes of a
{ree one is able to obtain bounds on most complexity measures considered and
also scrne exact results.

We present a fringe analysis method based on a new way of describing the
composition of a fringe in terrns of tree collections. As a consequence, we obtain
sharp bounds on the expected number of splits per insertion and on the
expected depth of the deepest safe node in 2-3 trees and B-trees, and obtain
improvements of the bounds on the expected number of nodes in 2-3 trees. {We
also give bounds for 2-3 trees and B-trees using an overflow technique.)

We present a new way of handling tree collections that are not closed. An
inherent difficulty posed by the transformations necessary to keep the AVL tree
balanced makes its analysis difficult when using fringe analysis methods. We
derive a technique to cope with this difficulty and obtain bounds on the expected
number of rotations per insertion and on the expected number of balanced
nodes,

We present an analysis of another balanced binary search tree, the sym-
metric binary B-tree, and obtain bounds on the expected number of split
transformations per insertion and on the expected number of balanced nodes.
Finally, an unexpected application of the fringe analysis method: we obtain a
lower bound on the expected height of binary search trees constructed with no
balance constraints.
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1. INTRCDUCTION

1.1. Motivation

Balanced search trees (e.g. B-trees, 2-3 trees, 1-2 brother trees, symmetric
binary B-trees, AVL trees, weight-balanced trees, etc) are efficient ways of stor-
ing information. They are particularly adequate when one needs to consider all
or some combination of requirements, such as: (i} efficient access in random
and sequential processing; (it) ease of insertion and deletion of records; (iii) high
storage utilisation; {iv} use in one-level and two-level storage.

These structures have been around for quite & long time (e.g. AVL trees
appeared in 1962, B-trees in 1972), and their worst case behaviours are well-
known (Knuth, 1973). However, no analytical results were known about the
expected case behaviour of balanced search trees prior to the pioneering work
of Yeo (1978) on 23 trees and B-trees. Yao (1978) presented a technique of
analysis now known as fringe analysis, which he used to find bounds on the
expected number of nodes in a B-tree.

In this thesis we present a fringe analysis method based on a new way of
describing the composition of a fringe in terms of tree collections, and new ways
of handling tree collections. This enables us to answer a number of open prob-
lems and improve upen previcus results on most of the balanced search trees
mentioned above.

1.2. Related Work

The first valuable attempt to analyse a balanced search tree was performed
by Yao (1978). In his work Yao presented a method which he used to cbtain a
partial analysis of the expected number of nodes in 2-3 trees and B-trees and
the asymptotic storage utilisation in B-trees. The analysis is partial because the
methed considers only the bottom nodes of a tree (e.g., the first two lowest lev-
els of a 2-3 tree in Yao's work), which allows one to obtain only bounds on most
complexity measures considered. Yao's results on 2-3 trees were slightly
extended by Brown (1979b). More recently and independently of our work on B-
trees, Eisenbarth and Mehlhorn (1980} obtained the asymptotic storage utilisa-
tion of B-trees using an insertion technique called cverflow technigue.

The methed introduced by Yao (1978) was later used by Brown (1879a) to
obtain a partial analysis of AVL trees. In his analysis Brown considered the set of
AVL subtrees with three or fewer leaves and called it the fringe of the AVL tree.
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By analysing the fringe of large AVL trees Brown was able to derive bounds on

the expected number of balanced nodes in the whole tree.

An improvement on Brown's results for AVL trees was obtained by Mehlhorn
(1979a), through the study of 1-2 brother trees (Ottmann and Six, 1976). The
main technical contribution of Mehihorn's paper is a method for analysing the
behaviour of 1-2 brother tree schemes where the rebalancing operations require
knowiedge about the brother of a node. Using the close relationship between 1-2
brother trees and AVL trees (Ottmann and Wood, 1979), Mehilhorn was able to
improve the bounds on the expected number of balanced nodes in AVL trees.

Ottmann and Stucky (1980) presented a higher order anakysis of the inser-
tion aigorithm for 1-2 brother trees by medifying it in such a way that Yao's
technique becomes applicable. Mehlhorn (1979b) presented a fringe analysis of
AVL trees under random insertions and deletions.

1.3. Contributions and Outline of the Thesis
The main contributions are:

{i).the way of describing the composition of a fringe in terms of tree collections

and the resulting derivation of a fringe analysis methed (Chapter 2);

(ii) the bounds on the expected number of splits per insertion and on the
expected depth of the deepest safe node on an insertion path in 2-3 trees; the
improvement of the best known bounds on the expected number of noedes in 2-3
trees; the bounds on the same complexity measures just mentioned for 2-3
trees, but using a particular insertion overflow technique (Chapter 3);

(iii) the bounds on the expected number of splits per insertion and on the
expected depth of the deepest safe nede on a particular insertion path in B-
trees; the bounds on the expected number of internal nedes, on the expected
number of splits per insertion, and on the expected depth of the deepest safe
node on an insertion path in B-trees using an insertion overfiow technique
(Chapter 4);

(iv) the presentation of a closed AVL tree collection containing three types
(Chapter 5);

(v) the new way of handling weakly-closed collections of AVL trees (Chapter 5);

(vi) the bounds on the expected number of rotations per insertion on AVL trees;
the improvement of the bounds on the expected number of balanced nodes in
AVL trees (Chapter 5);
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(vii) the bounds on the expected number of splits per insertion and on the
expected number of balanced nodes in symmetric binary B-trees (Chapter 8);

(viii) the lower bound on the expected height of binary search trees (Chapter 7).

Part of the results presented in this thesis appeared in Gonnet, Ziviani and
Woed (1981).

Besides the seven central chapters, Chapter B contain the conclusions, and
Appendices A, B, C, and D contains the basic definitions of AVL trees, 2-3 trees,
B-trees, and symmetric binary B-trees, respectively.

In this thesis we do not consider the effect of deletions. The reason for this
is because deletions do not preserve randomness, and it is not clear how to
incorporate them in the fringe analysis problem. It is true that Mehlhorn
{1979b) presented an analysis of AVL trees under random insertions and dele-
tions, but there is no explicit reference in his paper to the problem mentioned
above.

1.4. Notation and Basic Definitions

Let us start with the concept of a binary tree. We adopt the definition
presented by Knuth (1988, p. 315, exercise 20). A binary iree consists of a single
node, called its root, plus 0 or 2 disjoint binary trees. In other words, a binary
tree is a set of nedes such that each nede has exactly zero or two sons; when a
node has two sons, they are called the left and right sons of the node,

The number of subtrees of a node is called the degree of that node. A node
of degree zero is called an external node or leaf. (In this thesis we make no dis-
tinction between the two terms.) The other nodes are referred to as internacl
nodes. The level of a nede is defined by saying that the root is at level 1; if a
node is at level  then the roots of its subtrees are at level I + 1.

A binary search tree Ty of N = D internal nodes over an ordered set S of
keys k; <kz < -+ <ky is a binary tree such that each node is labelled with a
unique key in &, and for each node v the following property holds: all the keys
in the left subtree of v lexicographically precede the key that labels v, and all
the keys in the right subtree of v lexicographically follow the key that labels v,

In a binary search iree the internal nodes are identified with their associ-
ated keys. Each external node or Ieaf can be identified with the keys of an inter-
val of S such that for a tree containing keys k, k... ky, we define ky and kyy,;
to be kg <k <kp,; for all £ € S. Thus the leaves can be named (k;, &j4y).
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0=<j=N. Figure 1.3.1 shows one possible binary search tree of 3 nodes. In this
thesis the internal nedes are circle-shaped and the external nodes are square-
shaped.

level 1
level 2
level 3

level 4

Fig. 1.3.1 Binary search tree with 3 nodes

Searching for a key k in a binary search iree T is described as follows, If T
is a leaf, the search is unsuccessful. If k is equal to the key that labels the root
node of T then the search has located k. If & is less than the key that labels
the root node of T then search for k in the left subtree. If k& is greater than the
key that labels the root nede of 7' then search for k in the right subtree.

These concepts have generalisations to ternary, quaternary, etc. trees. We
dgﬁne a t-ory tree as a set of nodes that is either empty or consists of a root and
t ordered, disjoint £-ary trees. Like binary search trees, £-ary trees can be
associated with an ordered set of keys to form t-ory search frees. F‘igﬁre 1.3.28
shows a complete ternary search tree with four internal nedes and eight keys
associated with the nodes.

In this thesis we assume that all trees are random. trees. Consider a f-ary
search tree T with N keys and consequently N + 1 external nodes. As we have
shown these N keys divide all possible key values into N + 1 intervals. An inser-
tion into T is said to be a rendom inserfion if it has an equal probability of
being in any of the N + 1 intervals defined above. A random {-ury search tree
with N keys is a {-ary search tree constructed by making N successive random
insertions into an initially empty tree.

We analyse many different insertion algorithms for search trees. The for-
mal definitions of each tree structure and their related insertion algorithms are



-5-
presented in Appendices A, B, C and D. The complexity measures considered in
each analysis will be defined as we need them. :

The notation used throughout this thesis is standard. For well-known con-
stants and functions we adopt the notation used by Abramowitz and Stegun
{1972). The probability of a given event is denoted by Prievent].

The asymptotic notation is used as follows:

gln) = 0(f {n)) => there exists ¢ and ng such that
lg(n)[<elf(n)] forn >mn,

n)= = i ﬂE)—:
g(n) =a(f{n)) >,1351f(n) 0

g(n) =8(f (n)) => there exists c,, €5 (¢; X ¢z > 0) and ng such that
e f{n) <g(n)<eaf(n)forn >mng



2. FRINGE ANALYSIS TECHNIQUE
In the first part of this chapter we introduce the concepts and the

definitions necessary to desecribe the Markov chain used to model the insertion
process in search trees. In the second part we study the matrix recurrence
relation involved in the Markov process. In the third part we introduce scme

definitions necessary to describe the fringe of different classes of search trees.

2.1. The Markov Process

Let us define a free colleclion C as a finite collection of trees. Consider the
class of 2-3 trees of bounded height as an example.f The collection of 2-3 trees
of height & (k>0) forms a different tree collection for each value of k. Figure
2.1.1 displays the two possible types of trees in a 2-3 tree collection of height 1.
The dots represent the number of keys in each node.

AP\

type 1 type 2

I

Fig. %.1.1 Tree collection of 2-3 trees of height 1

The fringe of a iree consists of one or more subtrees that are isomorphic to
members of a tree collection C. Typically, the fringe will contain all subtrees
that meet this definition; for example the fringe of a 2-3 tree is obtained by
deleting all nodes at a distance greater than & (k>0) from the leaves. In
Chapter 7 we will restrict the fringe to contain one subtree only. Figure 2.1.2
shows an instance of a 2-3 tree with eleven keys in which the fringe that

correspends to the tree collection of 2-3 trees of height 1 is encircled.

CLEETD

Fig. 2.1.2 A 2-3 tree and its fringe of height 1 subtrees

t See Appendix B for the definition of 2-3 irees,
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The composition of the fringe can be described in several ways. One possi-
ble way is to consider the probability that a randomly chosen leaf of the tree
belongs to each of the members of the corresponding tree collection. In other
words, the probability p is

D) = Erpected number of lewest{ type i in on N—key free ~ (1)

Yao {1978} describes the fringe in a different way. His description of the
composition of the fringe considers the expected number of trees of type i,
while we describe it in terms of leaves as in Eq.(1). As we shall see our descrip-
tion of the compeosition of the fringe simplifies the notation necessary to present
the fringe analysis technique, and alse makes easier the task of finding which
complexity measures can be obtained from the analysis of each search tree.

The transitions between trees of a tree collection can be used to model the
insertion process. In an insertion of a key into the type 1 tree shown in Figure
R.1.1 two leaves of type 1 are lost and three leaves of type R are obtained. In an
insertion of a key into the type 2 tree three leaves of the type 2 are lost and four
leaves of the type 1 tree are obtained as a result of node splitting.

Clearly the probability that an insertion in one type of a tree collection €
leads to another type of C depends only on the two iypes involved, and so the
process is a Markov process (of. Cox and Miller, 1965; Feller, 1968). A sequence
{Xn) = {Xo. Xy, - - | of random variables taking values on a state space S is a
Markov chain if

PriXy =i|lXya=j.Xn2=f1 - Xo=inoad = PriXy =i| Xy, = 73
forall4,j, 7y, - -+, jy-1 € S. The current value of Xy depends on the history of

the process only through the most recent value Xy

To illustrate this fact consider the tree collection of 2-3 trees of height 1
shown in Figure 2.1.1. In this context, let Xy and Yy be respectively the
numbers of type 1 and type 2 leaves after the N insertion. Since the tree col-
lection is closed, the value of Xy depends only on the value of Xy_; and as a
consequence {Xy] {or equivalently § ¥y}) is a Markov chain.

The transition probabilities of the chain {X, v} are given by
JI,;T— i=j-2

PriXy=1i|Xy 1 =j5]=1 _,
! ——LNN i=j+a



while those of Yy are

L i=5-3
Pri¥y =i| Yy =3} = Noj iiva
N
let jy = E(Xy) and ky = E(¥y). Then
in = E(Xy) = E[E(Xy | Xy-1.Yn-1)]
= £ L (-2t T ()

= jN—x—Iz\,—.?}v—H' ﬁ,—k}v—]
and similarly
ky = kN—l_JSV_kN—ﬁ' %jN—l :
But, by definition

Jn-1=Np(N=-1); gy = (N+1)p (N}
ky_y = Npa(N-1). ky = (N+1)pa(N).

Substituting these equations inte the previous equations we get

pyN) = (N_Z)Pl(Nj;i):ﬂrpz(N_l}

and

) = AN Sl

In matrix notation

N2 &
(e INe1 N2 [PI(N_l)
PN)] T | B N-3||py(N-1)
N+1 N+l

or

[PL(N) _ H [Pl(N—l)]
p(W)) T |1 Fai] [pav-2)
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where H = [ 3_4} and [ = {D 1]-

Thus the probability of an insertion occurring in each of the subtrees of the

fringe can be obtained from the steady state solution of a matrix recurrence

relation in a Markov chain. In general, let p(N) be an m-component column
vector containing p;{N). Then

pN) = [f + N—’i;];»uwn (2)

where 7 is the m X m. identity matrix, and & is the transition matrix.

Extensions to other tree collections with more than two types requires con-
sideration of a vector process {Xy} where Xn is equal to the number of type j
leaves at time N.

2.2. The Matrix Recurrence Relation

We start this section by presenting a formal definition of the components of
the matrix H in Eq.2.1-2. In fringe analysis problems we always deal with a tree
collection C ={Ty,....Tpn} of trees. Let I; be the number of leaves of 7;, An
insertion into the k* leaf, k€[1....,L;], of 7; will generate I;(k) leaves of type T;.
As a consequence we must have

1

L,
T i Ly(k) = Ij+1, for I1=j=m (1)
q k=1

Ma

)

1
-

This leads to the following definition:
Def. 2.2.1. A fringe analysis problem of size m consists of
(i) m integers Ly, . . ., Iy
(ii) non-negative reals I (k), for 1=i,j<m, 1<k=l;, such that

Ll_zi} g_: j(k) = L;+1, for 1=j=m,

Let p;(N) be defined as in Eq.2.1-1. Then Eq.2.1-2 can be written as

Hp—H\,—I

e — ](N 1) (®)

p{N} =

where
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I
= [Ll_i‘ lﬁ(k)] . Hy=diag (Ly.o L)
J k=1

1=i,jem

and [ is the m x m identity matrix.

Pef. 2.22. Consider a fringe analysis problem. Eq.(2) is the associated recur-

sion equation, where H = Hpo—H,—[ = (hij} is its transformation matrix. We have
. L
By = 230 by ()= (L +1)
LI k=1

where d;; is the Kronecker symbol.

Intuitively, the elements in the diagonal of H represent the number of
leaves lost due to an insertion minus one, and off diagonal elements represent
the number of leaves obtained for each type times the probability that each
type is reached in a transition.

Def. 2.2.3. A fringe analysis is connected if there is an l‘e[l...m] such that
det{H;)#0, where [, is matrix A with the [** colurnn and i** row deleted.

The following theorem shows that the real part of the eigenvalues of the
transition matrix 7 are non-positive.

Thearem. 2.2.1, Consider a connected fringe analysis problem with a mxm. tran-
sition matrix H as in Definition .2.28. Let Ay, . .., Ay be the eigenvalues of H.
We can order them so that ,;=0 and 0 > ReAp= Redg= '+ = ReAp.

Proof : Consider the sum of the elements in the 5% column of H:

2’%‘ =§["_jl () =65 Ly B3
= jj_f’j ﬁ (k) = (L;+1) by Eq.(1)
= Li+1-{Lj+1} =0

From Gerschgorin's theorem (see Wilkinson, 1965, Chapter 2, § 13) it is
known that all eigenvalues of H are contained in the union of the disks with
center #; and radius ),|ky| Considering that the sum of the elements in any

i

column of # is zero, then all eigenvalues of H have non-positive real part.
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From f‘,h.;, =0, for 1sj<m, we infer that the vector Em) = (1,...,1)isa
i=1 : :

left eigenvector of A with éigenvalue 0. To show that 0 is an eigenvalue of multi-
plicity 1, let us look at the characteristic polynomial of H:

det/(H-AT) = (-N)™+S(-N™ "1+, .+ S5 (A} +Sp, =0,

where §; is the sum of the principal minors of order g of the matrix H,
g =12, ...,m (see Gantmacher, 1959, Chapter 3, § 7). We know that S, = 0,
and

Sm-1= 3 det(Hy).
i=1"

where Hj; is the matrix H with the i** row and the i** column deleted. It is easy
to see that def (Hy)#0 for some i€[1,...,m]. Thus the linear term of the charac-
teristic polynomial of / is non-null, which implies that © is an eigenvalue of mul-
tiplicity 1. =

» Def. B.2.4. Let Ty~ T if ﬁ—:llij(k) > 0, i.e. Ty can produce T;. The symbol > isthe
reflexive transitive closure of -.
The following theorem describes a test for connectedness.
Theorem 2.2.2. A fringe is connecled if and only if there is a 7; such that T; 5
T; for all je[1...m].
Praaf ; Consider H as in Definition 2.2.2.
Let ¢ be such that 7j > T; for all j. We will show that def (Hy)#0.

Assume otherwise, ie. det(Hy)} =0, Let@ = (¢, ..., Uiy, Uisn - ... Up) DE A
left eigenvector of Hy correspending to eigenvalue 0. Let ug be a bomponent of
maximal absolute value in 2 (without loss of generality u,>0) and let
d =5 u = ugjcf1..m]-§i]. Since T; 3 T for all jeJ and ©£J there must be

some k£J and some j<J such that T;-T,. Hence hy;>0. Since ﬂhﬁ =0 (cf.
=1

proof of Theorem 2.2.1) we have

m
Dby = Paghy + P uhy
=1 g L)
i%j i

= Y ughy — 3 hu
led l[g
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>¥ =0, a contradiction.
i=i

The above inequality follows because 4 is a real vector and hy;=0 for LEJ, L #4.

Assume def (Hy;)#0. We will show 7; 5 T; for all .
Assumne otherwise. Then there is some j such that -~ 75 > T;. Let J = {{; Ty >
7). Then ¢ #J #[1..m] and h,;=0 for all k2J and LcJ. We may assume
without loss of generality that J = {1,...|J]}. Then H has the form

H' 0
H=

0o H"

where H' is a J x J matrix. Note that def (H;) = det (H')-det (H;), where Hj is
H" with i*% colurn and i** row deleted. But A comes from the transition matrix
of a fringe analysis problem (namely the restriction to J) and hence det(H)=0
by Theorem 2.2.1, a contradiction. =

It remains to solve Eq.(2) for connected fringe analysis problems. In a pre-
vious version of the proof of the convergence of the matrix recurrence relation
(Gonnet, Ziviani, and Wood, 1981, Lemma 2.1, p.4) the eigenvalues of the transi-
tion matrix are assumed to be pairwise distinct. The feollowing theorem, sug-
gested by Mehlhorn {1981}, extends the proof to the general case.

Theorem R.2.3. Let H be the m X m transition matrix of a connected fringe
analysis problem. Let A;,.... A be the eigenvalues of H, where
M =0>Redg=Redg=..=Rek,, and let =, be the right eigenvector of H
correspending to A; = 0. Then for every vector p{0) there is a ¢ such that

lp(N)—oz1] = O(N""%)
whére‘ p(N) is defined by Eq.(2).

Proof : For NeN let £y : C-C be given by the polynomial fyl{z) = ﬁ(l-ﬁ-:ﬁ.
: =1

Let f(z)=lmfy(z). Then [F(0)=1f(z)=0, for Re(z)<0, and
If {z)—f ()| = O(NFsE)) for Re (z)<0, because

1x(e) = [T+ )
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_ &+

- ;ﬁ[(—ﬁ'

= (z+1)(z+B)(z+N)
N!

_  I{N+z+1
T T{z+1)T{N+1)

= O(N%).

(cf. Abramowitz, 1972, Eqg. 6.1.21)

Furthermore, p{N) = [[+ Ni—l—i]P(N_l) = Fy(H)p(0), and

ple) = Hl}}up (N} = f (H)p(D). (cf. Gantmacher, 1959, Chapter 5).

Let
Jy 0
Jz
J=THT ' = .
0 Jp
be the Jordan matrix corresponding to H, where J,, ..., J; are the blocks of

the Jordan matrix. We have J; = (0), i.e. J; is a one by one matrix whose only
entry is zero. Also

g = o with Re(N) <O,
N

where X is an eigenvalue of multiplicity 1.
Considering that fy{z) is a polynomial in x then
RACRY 0
fun =g == r
0 | F ()

Next we have to compute f(J;). We have (cf.Gantmacher, 1959, Chapter 5,
Example 2)
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O AR
ALY fgal ]
f(Jt) =
0 F{N)

where 7, is the multiplicity of A;, and f*) is the &* derivative of f .
Hence f(J;) = (1}, the 1 by 1 matrix with entry 1, and f (J;) = (0), the r, by =,
matrix with all entries 0.

e
Thus f(H)=T1QT where@ = |-
6. 0
and

0
Hp(=) = Hf (H)p(0) = T'THT?QTp(0) = T7JQTp(0) = 10 Tp(0) = ”
0

since J@ = 0, the all zero matrix.
This shows that p(=) is a multiple of z,, say p{=) = cz,, because Hz; = A\,
or Hz; = 0for A\; =0, and Hp(=) = 0.

Furthermore

Ialdy) eolN) (Y - - eN
Su(HY=T"1 ' T="771 e :EN; v gEN}
Iu(de) ' 8(}V)

where £(N) = O(Ney,
8(N)

Thus p(N)—p (=) = {fx{H)-F {H))p(0) = with §(N) = O(N™9).

, . 8(IV)
This finishes the proof of the theorem. «

It is important to note that:

(i) Consider an m X m transition matrix H of a connected fringe analysis prob-

lem. Theorem 2.2.3 says tha§ p(N), the m-component column vector solution of
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Eq.(2), converges to the solution of

Hg =0, as N« (3)

.

where g is also an m-~compoenent column vector that is independent of N, and
PN) = ayz, + O(N™™%) @

where x, is the right eigenvector of H corresponding to eigenvalue A;=0. Furth-
ermore, the eigenvalues of H do not need to be pairwise distinct.

{ii) Let 4;(N) be the expected number of trees of type i in a random search tree
with N keys. Let I; be the number of leaves of the type ¢ tree. We observe that
Eq.(1) can be written as

pu(y = AL (®)

This section was improved with suggestions from Mehlhorn {1981). In par-
ticular, the test for connectedness {cf. Theorem 2.2.2), end the generalisation to
consider the case when the matrix H does not have pairwise distinct eigenvalues
(ef. Theorem R.2.3) are Mehlhorn’s suggestions. '

1.3. Application to Various Search Trees

In fringe analysis problems we always deal with a collection
C=1{T. ..., Tn}of trees. To be able to apply the technique developed in the
previous two sections to different classes of search lrees we have to introduce

some concepts about the fringes of these search trees.

Def. 2.3.1. A tree collection C={Ty, ..., ¥} is weckly-closed if for all

jeil...m]aninsertion into 7; always leads to one or more Ty, €[1,...m}.

Def. R.3.2. A tree collection C ={T,, ..., T} is closed when (i) C is weakly-
closed and (ii} the effect of an insertion on the composition of the fringe is
determined only by the subtree of the fringe where the insertion is performed.
The tree collection of Figure 2.1.1 is an example of a closed tree collection
because inserting into either type 1 or type 2 tree results in trees of type 1 or
type 2. Infact the tree collection of 2-3 trees of height & is a closed tree coliec-
tion for any k>0. On the other hand the collection of AVL trees 1 with more than

t See Appendix A for the definition of AVL trees
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2 and fewer than 7 leaves (see Figure 2.3.1) is not closed. This is because an
insertion into a type R tree of Figure 2.3.1, when the type 2 tree is part of the
fringe of an AVL tree, may cause a rotation higher in the tree, and the composi-
tion of the fringe depends on this rotation at the higher level. Figure 2.3.2 shows
an instance of an AVL tree where an insertion into a type 2 tree does not lead to
atype 3 tree as expected.

P o Fodp o fo o, o

type 1 i type 27 type 3 type 4

Fig. 2.3.1 Tree collection of AVL trees with more than 2 and less
than 7 leaves (leaves not shown)

Double
Tvotation

Fig. 2.3.2 Example of an insertion that unexpectedly changes the fringe of an
AVL tree (doited edge shows the point of insertion)

Def. 2.3.3. Atree collection & ={T,, ..., T} is umbiguousi when a tree in C
appears as a subtree of another tree in C. Figure 2.3.3 shows an AVL tree collec-
tion that is ambiguous, since a tree of type 1 is a subtree of trees of type 3.

Y .

S et
type 1 type 2 type 3
Fig. 2.3.3 Tree collection of AVL trees with more than 1 and
' less than & leaves {leaves not shown)

o

Def. 2.3.4. Atree collection C = {Ty, ..., T} is open if it is not weakly-closed.
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.8 AN AgALsts’oraa TREES

7‘8&1 Hotlvat.lon

| ig-3 trees were mtroduced by John Hopcroft in 1970 (see Knuth 19'?3
‘p 4-68} Ina 2-3 tree every internal node contains either one or two keys, and all )
" leaves appear at the same level. The definition of 2-3 trees, the descnptmn of
the insertion algorithm, and the transformations (called sphts) necessary to "
keep the tree ba.lanced are presented in Appendix B. V

The class of 2- 3 trees is a special class of B-trees. Unlike B—trees, 2 3 trees
are more appropriate for use in primary store than secondary. For this reason
fhey have become equal contenders with AVL trees, often being the preferred
data structure (Ahe, Hopecroft and Ullman (19?4} and Huddleston and
Mehlhorn(1980)}.

The first analytical results about 2-3 trees were obtained by Yao ‘(1978).
Although his results were slightly extended by Brown (1979b), many questions of
interest were left open. Some of these questions are:

{i) The expected number of nodes in a 2-3 tiee after N random insertions is cérf
tainly of interest, since this measure indicates storage utilisation. We extend
and refine the results of Yao with regard to this measure;

{ii) When considering insertions, the costliest operation is surely that of splitting
an overfull node, since this involves not only the creation of a new node but also
an insertion into the next higher level of the tree. Knuth (Chvatal, Klarner, and
Knuth, 1972, Problem 37) raised the following question related to 2-3 trees: "
how many splittings will occur on the n** random insertion, on the average, ...".
We present the first partial analysis of this measure for 2-3 trees;

{iil) A different insertion algorithm for B-trees, which uses a technique called
overflow, was presented by Bayer and McCreight (1972, p.183) and also by Knuth
(1973, pp. 477-478, § 6.2.4). In the overflow technique, instead of splitting an
overfull node, we look first at its sibling nodes and make a rearrangement of
keys when possible. The effect of the overflow technique is to produce trees with
fewer internal nedes on the average. This results in a better storage utilisation.
We present an analysis of 2-3 trees using an overflow technique which is a partic-
uler case of the overflow technique presented by Bayer and McCreight;

{iv) Consider the concurrency of operations on 2-3 trees; see Kwong and Woed
[1980) for a survey of the techniques used. One basic technigue identified there
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was first used by Bayer and Schkoelnick {1877), namely lock the deepest safe
node {(dsn) on the insertion path. A node is insertion-safe if it contains fewer
than the maximum number cf keys allowed. Then a safe node is the deepest cne
in a particular insertion path if there are no safe nodes below it. Since locking
the deepest safe node effectively prevents access by other processes it is of
interest to determine how deep the deepest safe node can be expected to be.

Our resulis enable us to provide some insight inte this question.

We now define certain complexity measures:
(i) Let m(N) be the expected number of nodes in a 2-3 tree after the random
insertion of N keys into an initially empty tree;
(ii) Let Pr{j splits} be the probability that § splits occur on the (N+1)* random
insertion into a random 2-3 tree with N keys;
(iii) Let Pr{j or more splits] be the probability that § or more splits oceur on
the (N+1)*¥ random insertion into a random 2-3 tree with N keys;
(iv) Let §(N) be the expected number of splits that occur in a 2-3 tree during
the random insertion of N keys into an initially empty tree;
{v) Let E[s(N)] be the expected number of splits that will cccur on the (N+1)%
insertion into a randem 2-3 tree with N keys;

{vi) Let Pridsn af j*» lowest level} be the probability that the deepest safe
node on a random search is located at the 4% (5=21) lowest level of a random 2-3
tree with N keys;

. (vii) Let Pridsn above j* lowest level} be the probability that the deepest safe

node on a random search is located above the j# lowest level of a random 2-3
tree with N keys. ’

In Sections 3.2, 3.3, and 3.4 we shali derive exact values for Pr {0 splits],
Pri1split}, Pr{2splits{, Pr{3 or more splits}, and bounds on §(N), E[s(N)},

and improve Yao's previous results on 7Z(N). In Section 3.5 we shall derive exact » A_

- values for Pr{0 splits], Pr{l split}, Pr{2 or more splifs}, and bounds on ﬁ(N)
5F{N), and E[s(N)] for an insertion algorithm that uses an overflow techmque

... In Section 3.6 we shall derlve exact values for Pridsn ot 1% lowest level), i
L 'Pridsn ot 2’"‘ lowest level], Pr{dsn at 37 lowest level}, and Pridsn above3™
- lowest lauel,} for the normal insertion algomthm and Pridsn af = lawest B A

. Ie’uel} Pridsn at 2 lowest level}, and Pridsn above 2 lowest le'ueU for the
- ingertion algorlthm using en overflow techmque In Section 3.7 we discuss the
possibilities o_f higher crder analyses.

. F S .
R TG P ST R A N
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Table 3.1.1 shows the summary of the results related to 2-3 trees using the
normal insertion algorithm. The lower order analyses are included to indicate
the improvements achieved by the third order analysis. Table 3.1.2 shows the
summary of the results related te 2-3 trees using the overflow technique,

3.2. First Order Analysis

The analysis of the lowest level of the 2-3 tree to estimate 7@(N),
Pr{0 splits}, Pril or more splits], 5(N). and E[s (V)] can be carried out in the
following way. The tree collection shown in Figure 8.2.1 contains two members
and its corresponding transition matrix is

_ 34
H = q_

From Eq, 2.2-3 we have Hp(N) = 0, and therefore p;(=) = 4/ 7, and pz(=) = 3/ 7.
Since the eigenvalues of H are 0 and -7, we observe that p,(N)=4/7 and
©2(N) = 3/ 7 for N=6. To simplify notation p; (N) is written as p; throughout the

remainder of this thesis.

type 1 type 2

Fig. 3.2.1 Tree collection of 2-3 trees of height 1

Lemma 3.2.1. Let ! indicate the number of nodes at levell of a 2-3 tree with N
keys. Then the number of nodes above level I, nal, is bounded by

mz_l < nal <nl—1
" Proof: Consider the level I as being the N+1 leaves of a 2-3 tree with N keys.
(Bach leaf represents a node.) The minimum and the maximum number of nodes
above the ievel I is obtained when each node above level I contains 2 keys and 1
key respectively. {That is Bral = nl—1 and nel = nl—1 respectively.) =

Lemma 3.2.1 and Eq. 2.2-8 lead to the following theorem:

Theorem 3.2.2. The expected number of nodes in a random 2-3 tree with N keys
is bounded by

[
(1+ l) -———+——~ (N+1)— e ma(v) < 2B+ P2 ve1)—1 for N=1
2 Ly I
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First Order Second Order t Third Order t
Analysis (N=6) Analysis (N~) Analysis (N -»e)
f{N) [o.64+0.14/N, | [070+ 020/ N, | [0.73 + 023/ N,
N 0.86—0.14/N] | o079—0.21/N] | orr—o023/N]
Pr{0 splits | 47 4/ 4/7
Prilor more splits| 3/7 3/7 3/7
Pri1 split} - 0.25 0.25
Pr{2or more splits | - 0.18 0.18
Pri2 splits - - 0.10
Pri3or more splits} = - 0.08
[0.64 +0.147 N~ | {0.70 + 0.20/ N~ | [0.73 + 0.23/ N~
5(N) logs(N+1)J/ N, | MNogs(N+1)1/ N, | logs(N+DI/ N,
0.86— 0.14/N— | 079-0.21/N- | 0.77-0.23/N—
lloge(N+1)]/N] | loge{N+1))/ N] | lloga(N+1)]/ N]
E[s(N)] [0.43, [o61, 025+ {o69,046+
0.43]logs(N +1)]] | 0.18|ioge(N+1)]] | 0.08loga{N+1)]]
Upper bound on A{N) loga(N+1)—0.22 loga(N-+1)—0.46 loga(N+1)—0.69
Pridsn at 1* lowest level} 477 477 477
Pridsn at 2™ lowest level | - 0.25 0.25
Pr{dsn at 3¢ lowest level | - - 0.16
Pridsn above 3™ L.level] - - 0.08

t Results ere approximated to O(N~55%)
$ Results are approximated to O(N—4%)

Teble 3.1.1 Summary of the 2-3 tree results

Second Order Analysis (N-+w) {
zlh. [063+0.13/N, 0.71 - 0.20/ N ]
Pri0 splits { 0.61
Pri1 split} 0.23
Pri2 or more splifs} 0.16
s{N) [0.63 +0.13/ N —Noga(W+1)I/ N,
0.71—0.29/ N —lioge(N+ 1)}/ N
E[ s(M)] [ 055, 0.23 + 0.16{1og: (W +1)] ]
Pridsn at 1* lowest level | 0.61
Pridsn at 2 lowest level | 0.23
Pridsn above 2™ lowest level | 0.16

+ Resuilts ate approximated to O(N‘“‘)V

Table 3,1.2 Summary of the 2-3 tree results using an overflow techniqué '
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Cbmltw'y 7 N ﬁﬁj\i— 5 for N=6

'E‘he remalmng resu!ts a.re contamed in the lemmas that follow

Lemma 3.2, S The probability that no spllt oceurs on the (N +1)’* l:andom inser-
tion mto a 2-3 tree with N keys is

Pri0 spz«zts; = 1;- for N=6

Proof: An insertion into a type 1 tree shown in Figure 3.1.1 causes no split, and
the probability that a random insertion into a random 2-3 tree falls into a type 1
treeisp,. = ‘

Lemma 3.2.4. The probability that 1 or more splits occur on the (N+1)% ran-
dom insertion into a 2-3 tree with N keys is

Pr{l or more splits} = 3— for N=6
Proof : Similar to the proof of Lemma 3.2.3. =

Lemma 3.2.5. Let h{N) denote the expected height of a random 2-3 tree with N
keys. Then the expected number of splits is

Proof : From the insertion algorithm presented in Appendix B we can see that
each time a node split cceurs one new node is created, except when the node is
a root, in which case two nodes are created. =

Lemmma 3.2.8. The height of a 2-3 tree with N keys is bounded by
llogg (N +1)] < R(N) < [logg (W +1)]
Proof : The lower bound and the upper bound on the height are obtained when

each nede of the 2-3 tree contains 2 and 1 key respectively. =

Lemmas 3.2.5 and 3.2.6 lead to the following theorem:

Theorem 3.2.7. The expected number of splits in a random 2-3 tree with N keys
is bounded by
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) 1 [logg(N+1Y  _ g 1 llogg{N+1)
Wty T N SSW)S e —————— for N=6

Lemmma 3.2.8. Alower bound on the expected number of splits that will occur on
the (N +1)% insertion into a random 2-3 tree with N keys is

E[s(N)]= Pr{l or more splits}

Proof : Similar to the proof of Lemma 3.2.3. =
Corallary. E[s(N)]= %— for N>8

Lemma 3.2.9. An upper bound on the expected number of splits that will occur
on the (N+1)* insertion into a random 2-3 tree with N keys is

E[s{N}] < Pr{1 or more splits}[logz (N+1)]

Proof : The upper bound on E[s(N)] is equal to the number of splits/insertion in
the fringe plus all splits that might occur in the nodes above the lowest level,
which might be equal to the height of the tree with alt nodes binary but the
nodes on the path of splitting. =

Lemmas 3.2.8 and 3.2.9 lead to the following theorem:

Thearem 3.2.10. The expected number of splits that will occur on the (N+1)#
insertion into a random 2-3 tree with N keys is bounded by

-3——5 E[s{N)] < g—[logg (N+1)] for N=B

It is interesting to conjecture that the expected value for E[s(N)}] con-
verges to the value of §{N). However, we cannot prove this; E[s{N}] may oscil-
late between a lower bound and an upper bound, where the lower bound is the

number of splits per msertlon in the fringe, and the upper bound is the number -
~of sphts per Lnsertlon in'the fringe plus the number of sphts per msert.lon out-

Asule the frmge (The upper bound is a function of loga N.)

'Lem.ma 3.2.11. The expected number of keys in the frmge of a 2-3 tree mth N N o

o keys that corresponds I:o the tree eollectlon shown in Figure 3.2.1 is

f(N) [ +z’°z (N+1)
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) Pr"aoj : The above expression is obtainéd by observing Figure 3.2.1@1’1& by using -
. Eq22-5 " ’ i e - B o
| Corollary.  F(N) = %—{N+1) " for N=6.
- Theorem 3.2.12. The expected height of a 2-3 tree with N keys is bounded above
by ' , ' .
h(N) < logo(N+1)~0.22239

Proof : Let nkal 'L:ndicate the number of keys above the level ¢ ‘of a 2-3 tree.
~ Considering the second lowest level (distance one from the leaves), and using
Lemma 3.2.8 then the height h{n} of a 2-3 tree with N keys is bounded by’

Mogs(nkel +1}]+1 < A{N) < |logy(nkal +1)|+1.

Considering the expected value of the right hand side of the above inequality
then )

R(N) < E[[loga(nkal +1)j+1} < E[logg(nkal +1)+1]
Using Jensen's inequatity (Jensen, 1908, p.1B0) we obtain

R{N) < loggF [nkal +1]+1 - (1)

E[nkal] = N=F (N)
where F(N) = —:—(N+ 1) for N>6 (see Lemma 3.2.11). Then
E[nkal] = 2—(N+1)—1.

Substituting this equation into Eq.{1) we obtain

R(N) <logs(N+1)-0.22239 =




-24-

3.3. Second Order Analysis

'The analysis for the two lowest leveis of 2-3 trees leads to better bounds for
A(N), §(N), E[s{N)], and exact results for Prilsplit], and Pri2or
maore splits]. Yao (1978) showed that there are 12 possible trees in the tree col-
lection of 2-3 trees of height 8, which are grouped into 7 types, as shown in Fig-
ure 3.3.1. The corresponding transition matrix is shown in Table 3.3.1.

Again using Eq. 2.2-3 we obtain

P = 1658/ 7991

P2 = 1880/ 7991

ps = D472/ bb937

pa = 7128/ 55937 (1)

ps = 1875/ 7991

P = 800/ 7991

P = 180/ 7991.

Since the eigenvalues of H are 0, —8.5516.25i, 7, —9.23+1.374, and —13.44,
using Eq. 2.2-3 the asymptotic values of p(N) obtained from Egq. 2.2-4 are
approximated to the O(N859),

, Lemma 3.2.1 and expression Eq. 2.2-b lead to the following theorem:
Theorem 3.3.1. The expected number of nodes in a random 2-3 tree with N keys

is bounded by |
[(3+ : )[ —]+(4+ —) —]](N+1)——-< (N} < [ [E%]w[’f) E—]](NH)—l
Corallary. | |

78501 + 11282 +O(N-855) < T(N) _ 44343 11594

—_— 4 NN : "5.55‘
111874 ' 55037N N = 537 seeaim TOW T

" To five place decimals we have

0.70169+ flzi,—@"—+ O(N-8%) < ﬂNM—s 0.79273_%+ O(N-25),

- Lemma 3 3. 2 The probab]llty that 1 spht. oceurs on the {N +1)“ random mser- ] ﬁ

tion mto ag- 3 t.ree mth N keys is

1 3788
55937

Pr§1 m; = +0(N-”5}
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type 1 type 2 type 3 type 4
- bl £ B D
E‘.ype 5 type 8 type 7

Flgure 3.3.1 Tree collection of 2-3 trees of height 2
(stubs indicate leaves)

-5 Bx3/7 4x6/8 4%x6/9
5 -6 . 5x6/8 5x6/9
6%2/5 -7 6x6/9
6x3/5 =7
7 7 -8 )
8x4/7 -9
L - %2/ 8 -10 ;.

Table 3.3.1 Transition matrix corresponding to the tree collection of 2-3 trees
of height 2 shown in Figure 3.3.1

PRI AW A NN

type 4 type 5 type 8
Encdin s oL Do
type 7 type B type 9

Figure 3.4.1 Tree collection of 2-3 trees of height 2 obtained by grouping type 3
and type 4 shown in Figure 3.3.1 into type 6 above
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FProof : An insertion into the type 2 tree shown in Figure 3.3.1 causes one split
3/5 of the time, and an inserticn into the type 3 shown in Figure 3.3.1 always
causes one split. Since the probability that a random insertion into a random
2-3 tree falls into a type 2 or type 3 tree are pp and ps respectively, then
Prit split] = 3/ 5pgtps. »

Lemma 3.3.3. The probability that 2 or more splits occur on the (¥+1)% ran-
dom insertion into a 2-3 tree with N keys is

1455

Pr{2 ar more splifs} = 7501

+ O(N—ﬂ.55)

Proof : Similar to the proof of Lernma 3.3.2. «

Lemma 3.2.5 leads to the following theorem:
Thearem 3.3.4. The expected numiber of splits in a random 2-3 tree with N keys
is bounded by A

78501 11282 |loga(N+1)]
, 111874 = 55937N N

+O(N8®) < 5(N) <

44343 11594 [ogg (N+1]]
55937 55937N N

+O(N8%)
To five place decimals we have

0.70169+

0.20189  lloga (N +1)]
N

o +O(N35%) < 5(N) =

0.79273 ~

0.20727 _llogsg(N+ 1)1
N

-6.55
N O(N=5%) .

Lemma 3.3.5. Alower bound on the expected number of splits that will occur on

the (N+1)* insertion into a random 2-3 tree with N keys is
E[s(N)] = Pril spltt§+2Pr52 or more splifs}

- Prao f Slmllar to the proof of Lemma 3 2. S .

Iﬂm 3.36. An upper bound on the eI‘lpecte:il number of splits that will occur;'b R
" onthe (N+ 1)" msertlon mto a random 2-3 tree with v keys is )

. E[s (N)] < Pr{i spl'a,t ;+Pr§z or more spms;uogz (N+1)
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Proof : Similar to the proof of Lemma 3.2.8. =

Lernmas 3.3.5 and 3.3.6 lead to the following theorem:

Thearem 3.3.7. The expected number of splits that will cccur on the (N+1)t
insertion into a random 2-3 tree with N keys is bounded by

34158
655937

( -85 13788 , 1455 -
+O(N8%) < F[s(N)] < 55057 ?991 [logg(N+1)J+O(N )

To five place decimals we have

0.61085+0(N"0%) < E[s (N)] =0.24649+0.18208logz (N +1)| +O(N ~85) ,

Lemma 3.3.8. The expected number of keys in the fringe of a 2-3 tree with N
keys that corresponds to the tree collection shown in Figure 3.3.1 is

iy = 8——+4&-+5 +508 g5 4, P8

Pr.
Lo PO T O YO, T T, O, (VD

Proaf : The above expression is obtained by observing Figure 3.3.1 and by using
EqR.8-5. =

Coroliary. F(N) = ggg‘f (N+1)+0(N655)

Theorem 3.3.9. The expected height of a 2-3 tree with ¥ keys is bounded above
by

h(N) < loge(N+1)-0.45736

Proof : Similar to the proof of Theorem 3.2.12. =

3.4. Third Order Analysis

In this section we present the analysis of the three lowest levels of 2-3 trees.
Brown (1979b) performed a three level analysis using a transition matrix of
978 x 978 elements, and obtained asymptotic velues for the number of nodes
with one key and the number of nodes with two keys at each of the three lowest
levels. However an equivilent three level analysis can be performed on a
smaller matrix by grouping trees intc types, in the same way the two level
matrix in the previous section was reduced from 12 x 12 to 7 x 7. I we consider

combinations of the 7 types of the two level tree collection as subtrees of nodes
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with one and two keys then it is possible to obtain a three level tree collection
with 224 types. This may be further reduced to 147 types as we shall see in the
following.

The idea behind our approach is to group all trees with the same number of
leaves irito types. Thus the tree collection shown in Figure 8.3.1 is reduced from
7 types to B types by grouping the types 3 and 4 into one unique type, as shown
in Figure 3.4.1. In this new tree collection the types are numbered sequentially
from 4 to 9, where the type 4 tree has 4 leaves, the type 5 tree has 5 leaves, ...,
andithe type 9 tree has 9 leaves. Of course the probability related to the type 6
shown in Figure 3.4.1 is the sum of the probabilities related to the types 3 and 4
shown in Figure 3.3.1, and the probabilities of the other types remain as before.
- (Types 4, 5, 7, 8, and 9 shown in Figure 3.4.1 have the same probabilities as types
1, 2, 5, 6, and 7 shown in Figure 3.3.1 respectively.)

Lemma'3.4.1. The 8 types of the tree coliection shown in Figure 3.4.1 can be
used as subtrees of nodes with one or two keys in order to obtain a three level
tree collection.

.P}:ogf : From the trees shown in Figure 3.3.1, the ones with the same number of

. leaves appear as subtrees of nodes with one or two keys having the same proba-
bility, simply because they belong to the same type. s

Lemna "3.4.2. The two level tree collection with 8 types shown in Figure 3.4.1 can
be used to form a three level 2-3 tree collection with 147 types.

Progf . Following the notation presented in Figure 3.4.2, the 147 types of the
three level tree collection are represented either as type ij (4<i<9 and i<j<9)
_ for the tree types with binary roots, or as type ik (4<i<9, 4<j<9, and i<k<9)

~ for the tree’ types with ternary roots. The number of tree types with binary
" roots is 21, nd the number of tree types with ternary roots is 126, which gnres a

~total of 147 types .

Notice ‘that the trees mth ternary roots must have 4<j<9 (and not 15359' o

- and;jsks9) Consider for example types 459 and 495. These must be treated as o
o diﬂerent t.ypés because an insertion into the leftmost leaf of the middle subtree .
S ;of type 359, élves types 44 and 68, and an insertion into the leftmost leaf of the -

rmdﬁle subtx%e of type 495 gives t.ypes 45 and 48,

}«. PR

: _;kmmn 3, 4 3. The transmons related to the 8 types of the tree collectlon shown:

Ca e a e b e N ke e ads i B LA s x m

PRSP AP,
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type 44 type; 45 type 99

(a) Types formed by 2 height 2 subtrees under binary roots
{there are 21 types in this case)

@
Cr) ) o)

et S GXCD Gy

type 444

(b) Types formed by 3 height 2 subtrees under ternary roots
(there are 126 types in this case)

Figure 3.4.2 Tree collection of 2-3 trees of height 3 (type 44 is formed by two
subtrees with 4 leaves each, type 45 is formed by two subtrees with
4 and 5 leaves each, etc)

| 619

(a) Transitions related to the tree collection shown in Figure 3.3.1

377

(b} Transitions related to the tree collection shown in Figure 3.4.1

Figure 3.4.3 Diagrams for transitions
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in Figure 3.4.1 are equivalent to the transitions related to the 7 types of the tree
collection shown in Figure 3.3.1 when both are used as subtrees of nodes with

one or two keys in order to cbtain a three level tree collection.

Proof : Figures 3.4.3(a) and 3.4.3(b) show the transitions related to the tree col-
lections shown in Figure 3.3.1 and Figure 3.4.1 respectively. It is irrelevant
whether we use the 6 types of the tree collection shown in Figure 3.4.1 or the 7
types of the tree collection shown in Figure 3.3.1 as subtrees of nodes with one
or two keys. In the case we choose the former types we have to remember that
(i) the typé 6 shown in Figure 3.4.3(b) is composed by types 3 and 4 shown in
Figure 3.4.3(a), and (ii) from Eq. 3.3-1 that types 3 and 4 shown in Figure 3.4.3(a)
oceur with probabilities 5472/55937 and 7126/55937 respectively. =

Using Eq. 2.2-3 for the 147 X 147 transition matrix T we obtain a linear sys-~ '

tem of 147 unknowns, which was solved using an algebraic manipulation
language called MAPLE, developed by Geddes and Gonnet (1981). An advantage -
of using such a system is that we obtain rationals instead of real numbers, avoid-
ing computational errors. The 147 p;'s obtained contain integer numbers in the
numerator and in the denominator, with approximately 90 digits each. Since
the eigenvalues of A are 0, —4.37+B.23%, ..., ~31.49+2.921, and -33.27 the
asymptotic values for p(N) obtained from Eq. 2.2-4 are approximated to the
O(N—87). .

We shall see that the analysis for the three lowest levels of 2-3 trees leads to
better results for ={N), §(N), F[s(N)], and exact results for Pr{2splits{, and
Pr{3 or more splits}, 4

Iemma 3.4.4. Let nn(i) indicate the number of nodes of the type i tree in the
tree collection shown in Figure 3.4.1. Then ’

nn(i) =3 for 4<i<5
. Lo, B4R, 7128
™ (8) = 5% Ta606 4> 12600
- nn(i) =4 ‘ o for{’i?si_S‘Q 7

. —_ Proof . For 154'5‘7‘5'& Af:;'onir Figure 3.4.1 the values for nmn(i) are ﬁxmedﬁaté.n :
- Fori=8, consider the two trees of type 6 shown in Figure 3.4.1. We know from
Eq 3.3-1 that the tree with 3 nodes occur with probability 5472/55937, and the

tree’ with 4 nodes occur with probability 7128/ 55937. Normalising the
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‘Aproba.bilities we obtain
472, 7128

' “"(6) 3% 12606 12600 4% 12600

Let Ly mdlcate the number of leaves of the type 1,] tree {451.59 1,5_759)
shown in Figure 3.4.2. Let Ltjk indicate the number of leaves of the type 'LJIc tree
(4szs9 4=<5<9, i<k=9) shown in Figure 3. 42 The proof of the tollowm,g theorem_

" is similar to the proof of Theorems 3.2.2 and 3.3.1. Note that the double summa- '
" tion contains the number of nedes of type % (4=i<9), plus the number of nodes
of type j {i=j=<9), plus the binary root node (see Figures 3.4_.1 and 8.4.'2),'plus‘ A
1/2 for the lower bound (1 for the upper bound) due to the number of nodes out-
side the fringe. (cf. Theorem 3.2.1.) The triple summation is similar. -

Theorem 3. 4,5 The expected number of nodes in a random 2-3 tree with N keys
is bounded by

2 5 ' ' .
qugi(nn(t)+nn(:}+1+2_)(_[$_) N

it

f =4k =i

29: ZE:(nn(i}+nn(j)+nn(k)+1+é—)(i”%)](N+1)—%— ,
<A(N)= L‘Z f:'(nn(i)+nn(j)+2)(if—’:) +
. =4j=i 4

D3 3 (mn () +nn ) enn ) +2) (P2 v+ 1)-1
Lig

i=4j=ak=i
Corollary.

0.72683+ %ﬁ—@

FON-47) = ﬂNﬂLs 0.76556— 2EBHL , o(y-aam)

Experimental results show that #(N) is approximately 0.75N. The

t All the results of this section are presented as real numbers because the exact rationals are too
long to be printed. As a curiosity, the exact lower bound on f{N) is

‘779850931420091 308052840727 22 155028462 258367325207038181 9379884206537 33745207 13657457734068
1072960485008390778008B668 12525 1403216806988537505438482704770534002636584060387389778202 1220

= 0.72683 00574 80538 - - -
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minimum and the maximum number of internal nodes possible in any 2-3 tree
with & keys are 0.5 N and N respectively.

Lemma 3.4.6. The probability that 2 splits cccur on the (N+1)% random inser-
tion into a 2-3 tree with N keys is

Pri2 splits] = 0.10482+0({N"*57)

Proaf : Similar to the proof of Lernma 3.3.2. »

Lemma 3.4.7. The probability that 3 or more splits cccur on the (N+1)* ran-
dom insertion into a 2-3 tree with N keys is

Pri3 or mare splifs} = 0.07745 + O{N*5%)
FProof : Similar to the proof of Lemma 3.3.2. «

Lemma 3.2.5 leads to the following theorem:
Theorem 3.4.8. The expected number of splits in a random 2-3 tree with N keys

is bounded by
loga (N +
072683+ 0:22083 _ lloga (W+1) FO(N-)
N N
! N+1
sg(]\r)st1,7r5555—°'2?f4‘L —'°ga(N 14 ov-som

Lemma 3.4.9. A lower bound on the expected number of splits that will cccur on

the (N +1)% insertion into a random 2-3 tree with N keys is
E[s{N)] = Pr{l split}+2Pr {2 splits | +3Pr {3 or more splits}

Proof : Similar te the preof of Lemma 3.23.»

Levmn.a. 3.4, 10 An upper bound on the expected nurnber of sphts t.hat wﬂl occur :

: on the (N +1)* insertion mto a random 2-3 tree with N keys is
E[s LN)] <Pri 1splzt§+2Pr 123pl1.ts§+Pr§3 or more sphts Hlogg (N+1)

: S Praof S1rru.lar to the proof of Lem.maBZB .

" Lemmas 3.4'.9 and 3.:4. 10 lead‘to the fol_lowing theorem:
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Them'ém 3.4.11. The expected number of splLts that will occur on the (N+1)“ )
: insertion mto a random 2-3 tree w1th N keys is bomded by

0 68810+ O(N™* 37’) < E[s{N)] < o 45575 +0. 07745E10gg (N+ 1)]+ O(N“ 37)

o Lemmn 8.4.12. The expected nu.mber of keys in the frmge of ¢ a 2—3 tree mth N‘ A -

keys that corresponds to the tree collection shown in Flgure B 4.2is
7Ny = fif)(w -1 (p") P
‘ (B8 + EEZ{wH«—n( )um)

‘Pro_of: The above expression is obtained by observing Figure 3.4.2 and by using
Eq.2.2-5. = : '

Corollary. J(N)= 0.92255(N+1)+5(N43")

Theorem. 3.4.13. The expected height of a 2-3 tree with N keys is bounded above
by

R(N) <logy(N+1)—0.69054

Proaf : Similar to the proof of Theorem 3.2.12. »

It is important to note that the values for @(N), F(N), E[s(N}],
Prij splits}, and Pr{j or more splits} for one and two level analysis can be
obtained using the 147 probabilities we obtained from the three level analysis.
Among other verifications, this is what we did in order to check the results of
this section.

3.56. 23 Trees with Overflow Technique

The overflow technique was first presented by Bayer and McCreight (1972,
p-183). The idea, when applied to 2-3 trees, is the following; Assume that a key
must be inserted in a node already full because it contains 2 keys; instead of
splitting it, we look first at its brother node on the right. If this node has only
one key, a simple rearrangement of keys makes splitting unnecessary. If the
right brother node is also full {or does not exist), we can lock at its left brother

in essentially the same way.

The object of this section is to present a seccnd order analysis of the 2-3
tree insertion algorithm using an overflow technique that is simpler than the one
proposed by Bayer and MeCreight. In order to make the analysis possible we
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restrict the overflow technique to the lowest level, and moreover, we conly sphit a
node when an insertion is performed in a full node and its closest brother is also
full; otherwise a rearrangement of keys is performed and the closest non-full
brother node will accommodate ohe more key. Figure 3.5.1 shows the two level
tree collection, and Table 3.5.1 shows its corresponding transition makrix.

Using Eq. 2.2-3 we obtain

P, = 1584/ 15949

pz = 2970/ 15946

pg = 3600/ 15949

Py = 3150/ 15849

s = 2000/ 15949

pe = BOO/ 15949
P, = 45/ 389

Since the eigenvalues of H are 0, —6.81+5.96i,-8.51+2.971,—9.0, and —14.37, the
asymptotic values of p{N) obtained from Egq 2.2-4 are approximated to the
O(N—B.Bl)'

Lemma 3.2.1 and expression Eq. 2.2-5 lead to the following theorem:

Theorem 3.5.1. The expected number of nodes in a random 2-3 tree with N keys
is bounded by ‘

{(3+ %—) [‘2)1%%% ;—)

Corollary.

20175 2113 +0{N‘681)<“(N) 11386 _ 4564
31898 = 15949N 15949  15940N

+0(NB3Y)
To five place decimals we have
0.63248+ %%i*. O(N-881) < @Nﬂl.s 0_71384_%_’.0(!\]—1’81)‘
which shoulzi be cormp ai'ed to the

- 0.72683+ o. 2?,633 +o(1\rﬂ1 < ﬂNM-s 0.76556— 0. zfv""*‘* +0(N‘”7) ‘

o whlch are the third order approxunatmn of J—)—fm' the non—overﬂow a]go- '

rlthm

2oy ean= g 2befg oot

S m e
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D DB D By,

type 1 ﬁtype 2 type 3 type 4
<D D ) D
type 5 type 8 type 7

Figure 3.5.1 Tree collection of 2-3 trees of height 2 using overflow technique

-5 4%3/8 4x6/9
5 -6 65X3/8 10x3/ 9
L] -7 6x6/9
7 -8
8x5/ 7 -9
Bx2/7 —9
L 9x5/8 9 —10

Table 3.5.1 Transition matrix corresponding to the tree collection of 2-3 trees
of height 2 shown in Figure 3.5.1
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lemma 3.5.2, The probabilities that no split, 1 split, and 2 or more splits occur
on the {N+1)* insertion into a 2-3 tree with N keys using an overflow technique
are, respectively

8754

(a) Pr{0splits] = 15049

+0 (N8B

3800

(b) Prilsplit] = 5515

+O(N-681)

2595
15949

(c) Pri2 or more splits} = +O(N-88Y)

Proaf : The proofs of (a), (b), and (¢} are similar to those of Lemmas 3.2.3, 3.3.2,
and 3.3.3, respectively. =

Lemma 3.2.5 leads to the following theorem:

Theorem 3.5.3. The expected number of splits in a random 2-3 tree with N keys
using an overflow technique is bounded by
20175 , 2113  [loge(N+1)]

31698 ' 159408 N

+O(N ) <s(N) =<

11385 __4564  [logs (N+1)
15949  16949N N

+0(N881)
To five place decimals we have

0.63248+

0.1?\1248 _lloge (N +1)] +O(N-58Y) < 5(N) <

N

0.28616 _ llogg (N +1)]
N

AO.'?iBBti-— N

+O(N88

which should be compared to the bounds

022683 _lloge (W +1)]
N

0.72683+ = 5 +O(N"*) < §(N) <

0.78556—

_0.23444 flogg (N +1)l
N

N (1v—437)

whlch are the third order apprommatmn of §(N) for the non-overﬂow algorlthm

Lem.ma 3.5.4. A lower bound cn t.he expected number of splits that mll nccur on A_ )
the (N+1)* insertion into a random 2-3 tree with N keys using an overfiow



technique is
E[s(M)] = Pri1 spl'z.t}+2Priz or more sputs} 7

,’Pmaf Sumlar to the proot of Lemma 3.2. 3 "

Lemma 3 5.5. An upper bound on the expected number of splits tha.t mll occur ‘
'on the (N+1)s' insertion into a random 2-3 tree w1t.h N keys using an overﬂow
: techmque is

E[s(N)] = Pri1 split}-FPriz or mo'ré spl#s}[logg(N+l)j

Froof : Similar to the proof of Lemma 3.2.8. =

Lemmas 3.5.4 and 3.5.5 lead to the following theorem:

Theorem 3.5.8. The expected number of splits that will occur on the (N+1)*
ingertion into a random 2-3 tree with N keys using an overflow technique is
bounded by ‘

8790 —8.81 36800 , 2595 -8.81
15040 +0(N )sE[S(N)]S 15949 m{logz(l\lﬂ)HO(N )

To five place decimals we have

0.551134+ 0(N881) < E[s(N)] = 0.22572+0. 16270|logy (N +1)|+ O(N 881} |

3.6. Concwrrency of Operations on 2-3 Trees

A 2-3 tree node is insertion safe if it containg only one key. When consider-
ing concurrency of operations on 2-3 trees, one possible technique to permit
simultaneous access to the tree by more than one process is to lock the deepest
safe node on the insertion path. (A safe node is the deepest one in a particular
insertion path if there are no safe nodes below it.) The object of this section is to
give a probability distribution of the depth of the deepest safe node.

3.6.1. Deepest Safe Node in 2-3 Trees with Normal Insertion Algorithm

In the following lemma we use'the p's obtained in Sections 3.2, 3.3, and 3.4.

Lemma 3.6.1.1. The probabilities that the deepest safe node is located at the
1%, the 2"%, and the 3™ lowest level, and above the 3™ lowest level of a 2-3 tree

with N keys are, respectively
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(a) Pridsn al 1% lowest level} = :—

(b) Pridsn at 2™ lowest level} = ég;ga +0(N~655)

{(¢) Pridsn of 3 lowest level} = 0.10462+0(N"+¥)

{d) Pridsn abouez 3% lowest level] = 0.07745+ O(N~*7)

Proaf : It is not difficult to see that the probability that the deepest safe node is
located at 7% (j=1) lowest level is equal to the probability that exactly j—1
splits occur on the (N+1)* random insertion (see Lemmas 3.2.3, 3.3.2, 3.4.6, and
3.4.7 for the proof of items (&}, (b), (¢), and (d) respectively). »

From Lemma 8.6.1.1, item (d), we can see thal in only 8% of the time the
deepest safe node is above the 3 lowest level of & random 2-3 tree. In other
words by locking the deepest safe node on the insertion path we lock at most
height 3 fringe subtrees 927% of the time.

8.8.2. Deepest Safe Node in 2-3 Trees with Overflow Technique
In the following lemma we use the p’s obtained in Sectien 3.5,

Lemma 3.6.2.1. The probabilities that the deepest safe node is located at the 1%
and the 2 Jowest level, and above the 2™ Jowest level of a 2-3 tree with N keys
using an overflow technique are, respectively

st - 9754 -8.81
(2) Pridsn at 1% lowest level] 15949 +0(N881)

na — 3800 -6.81
(b) Pridsn at 2™ lowest level | 1540 +0O(N8EY)

(¢) Pridsn above 2™ lowest level] = 2559159 +0(N‘“‘)

Proo f S:rmlar to the proof of Lernma 3.6.1.1 {see Lemma 3.62in Sectmn 3.5 tor '
the proof of items (a), (b), and (c)) " '
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2.7. ngher (h'derAnalyms '

- Yao (1978 p 165) predlcted that an analysm for the k lowest Eevels would o

-be difficult to carry out for k=3 and wrtually meosmbke to carry cmt tor k24

B '-However. if we apply the same technique used to obtain the three level tree col— o

lection. w1th 147 types then it mlght be possable to think about fourth order

analysis, _ ‘ )
It order to obtain a four level tree bﬁllection we define a 20 typés three“

level tree collection containing trees with 8, 9, 10, ... .‘27 leaves, in gﬁﬁwa,y s'iinﬂar

to the way we obtained the 6 types two level tree collection shown in Figuré

- 8.4.1. This three level tree collection can be used to cbtain a fourlevel tree col-
lection with 4410 types, by considering combinations of the 20 types as subtrees
of nodes with one and two keys. Thus the fourth order analysis will require the
solution of & 4410x4410 linear systern. '

. Again if we apply the same technique it is possible to obtain a five level iree
collection with 148137 types, which is practically impossible to handle nowadays.
Table 3.7.1 shows the sizes of the tree collections used by Yao, Brown, and in this
thesis, for various levels of analysis. A

Analysis Brown Yao Ours
First order 2 2 2
Second order 9 7 6
Third order 978 224 147

Fourth order | 3.3x10° | 5.67x 108 4410
Fifth order - A9.11Xx10% | 148137

Table 3.7.1 Sizes of the tree collections used by Brown (1979a,p.57),
Yac (1978, p.165), and in this thesis

Finally, we want to say something more about the expected height of 2-3
trees.

Lemma 3.7.1. Let l; indicate the number of nedes at the 7% {j=1) lowest level of
arandom 2-3 tree with N keys.Then

(i) I, =N+1
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(i) Iz = [—+—](N+l)

(#i) Ig = [i B ](N+1)

‘£=l

(@) s4=[}’3 R PP

=4j=i i=aj=4

(N+1)

Proof : Case (1) is obvious: the number of external nodes is equal to the number
of keys in the tree plus one, In cases (1) to (4v) we just count the number of
trees in the fringe that correspends to the tree collection of Figure 3.2.1, Figure
3.3.1, and Figure 3.4.2, respectively. »

Corollary.
(i) {,=N+1
(i) 1, = ?~(N+1) tor N=6
_ 14BB -8.5
(4id) Iy = 7901 ———(N+1)+O(N"855)

. (W) I, = 0.07745({N+1)+O(N~437)

Table 3.7.2 shows the ratio of the expected numbers of nodes at two con-
secutive levels for the four lowest levels of a random 2-3 tree with N keys.

Lowest level L{1=i=4) -éi—-(zsj <4)
4tk 0.07745(N +1) 0.42538
ard %—(ﬁn) 0.42485
2né %{N+ 1) 0.42857
19 N+1

Table 3 7. 2 Ratlo of the expected nu.mbers of nodes at two consecutwe'levels

' : Oa'anctm'e 3.7 2. The expected helght of a random 2-3 tree mthN keys is

S Assum.lng that this ratm is aPPFOXHIlately the same for t.he other levels of: o
f._the tree. we derive the tollomng con_]ecture ‘ ‘

R(N)~ log-;,g(NH)



4. AN ANALYSIS OF B-TREES

4.1. Motivation

B-trees were presented by Bayer and McCreight {1972) as a dictionary
structure primarily for secondary storage. In a B-tree of order m each node hasg
between m+1 and 2m+1 subtrees, and all external nodes appear at the same
level. According to this, a 2-3 tree is a B-tree of order m=1, The definition of B-
trees, the insertion algorithm, and the transformations {called splits) necessary
to keep the tree balanced are presented in Appendix C.

The interest in B-trees has grown in the recent years to the extent that
Comer (1979) referred to them as ubiquitous. In spite of this interest, no analyt-
leal results were known about the performance of B-trees prior to the picneering
work of Yao (1978). The main result in Yao's paper is related to the expected
number of internal nodes in B-trees, when the assumptions of the model are
met. For completeness we derive again Yao's results using the technique
presented in Chapter 2.

Many questions of interest about B-trees were left open. Some of these
questions are: .

(1) As in the 2-3 tree case, the operation of splitting an overfull node is the costli-
est one when considering insertions. We present the first partial analysis of this

measure for B-trees;

(ii) The overflow technique, as described for 2-3 trees, is also studied for the
general B-tree. We present an analysis of the expected number of internal nodes
and the expected number of splitting operations for B-trees using a special case
of the overflow technique presented by Bayer and McCreight (1972, p.183);

(iii} Considering the fact that B-trees are primarily designed for secondary
storage, the concurrency of cperations on B-trees is of crucial importance. Our
analysis enables us to provide some results on the expected depth of the
deepest safe node in an insertion path.

The complexity measures used in this chapter are exacily the same com-
plexity measures defined for 2-3 trees in Section 3.1. They are written in this
chapter with a subscript m. The only new complexity measure is:

Let 7, (N)/ [N/ {2m}] be the storage used by a B-tree T of order m, where
N/ {2m) represents the number of nodes when all the nodes of T contain 2m
keys.
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In section 4.2 we shall derive exact values for Pr{0splitsi,,
Pr{l or more splits{,, and bounds on 7, {N) by considering the lowest level of
a random N key B-tree of order m obtained using the insertion algorithm
described above. In section 4.3 we shall derive exact values for Pri0 splits},,,
Pr{lsplit},,, Pr{lor maore splits},, Pr{2 or more splits},, and bounds on
im (N) for an insertion algorithm for B-trees that uses an overflow technique, by
considering the lowest two levels of a random N key B-tree of order m. In Sec-
tien 4.4 we shall derive exact values for Pridsn at 1% lowest level},, and
Pridsn above 1% lowest level},, for the normal insertion algorithm, and
Pridsn at 1% lowest level),,, Pridsn ot 2™ lowest levell,,, and Pridsn cbove
2" lowest level }y, for the insertion algorithm using an overflow technique.

Table 4.1.1 shows the summary of the results related to B-trees using the
normal insertion algerithm, and Table 4.1.2 shows the summary of the results
related to B-trees using an overflow technique,

4.2. First Order Analysis

The tree collection of B-trees of order m and height 1 contains m +1 types.
F‘igure 4.2.1 shows the one level tree collection of B-trees of order m =3,

type 4 type 5 type 7
Figure 4.2.1 Tree collection of B-trees of order m =3 and height 1

The transition matrix A corresponding to the one level tree collection of B-
trees of order m is
~{m+R2) 2(m+1
(m +2° —{m+3) ¢ )
m+3" —(m+4)

L} L]
n
2m+l —(EBm+R2)

L3
Let Hp denote the Harmeonic numbers, H, = ), i—. for n=1, From Eq. 2.2-3
i=

we have {H)p(N) = 0, and therefore

_ 1
"~ (m+2)[Hom i2—Hn )

P



First order analysis (N-+e)

1

L | 1 (.1 1 A
Ton (V) Emom T\Bng 2/ [ngymE TOm )
N
A S
@hn2)m @ 8(nzPm? ‘0(”‘4)]
Pri0splits] 1- ot L__Ly_ L __iom)
m (2In2Ym 8]112 27 (In2)m?
, 1 _1 -3
Pritor mars spitts in Ensrm s~ 2) e o)
Storage used 11:2 +0(m")
o _ 1 1 _
Pridsn ai 1% L. level |, Cnalm 81n2 2 an) 7 +0(m —-3)
E 1 _1 -3
Pridsn above 1% 1 level}, | mbs—+ 81n2 ) — 21m +0(m-3)

Table 4.1.1 Summary of the B-tree results

Second order analysis (N -»ew)
_ 3 __1y.1_ -3
o (V) fing 4’ m® oM™
N 1 3 _1y.1 s
m +(81n2 ~) E Hom™)
, I T N T 1 -8
Pr[0splits |y, S \BiE 1 —5+0(m™%)
) 1 1 1 1
Pr{1split 4 = - o) g +0(m™)
. 1 1 1 1
Pr{lor more splits |, S +( Bnd 2 —+0(m™)
Pri{2or more splits |y, m-&ﬂ(ﬂf )
Storage used 1+( Zin? —é— 1—+O(1rn. )
s _r 1 1 1
Pridsn at 1** lowest level |, S \BoE i —5+0(m™3)
1. (_ 1 1 1
Prfdsn at 2 lowest level |, - -e-( s 1 —5+0(m®)
Pr{dsn above 2™ lowest level |, m+0(m")

Table 4.1.2 Summary of the

B-tree results using an overflow technique




-44 -

4
Pmarz = = (1}
(m+3) {Hem«'—z_HmH]

1
(2m +2)[Homs2~H 1)

Pem+1 =

Lemma 4.2.1. The probability that 1 or more splits cceur on the (N+1)* ran-

dom insertion into a B-tree of order m with N keys is

1

Pr{ior more splits},, =
(Rm +2) [Hzm +2"Hm.+s]

FProof : In the lowest level of a B-tree of order m a split occurs when an insertion

happens in a node with 2m keys, and such nodes correspond to the type 2m+1

of the tree collection of B-trees of order m and height 1. Thus,
Pril or more splifs}, =Papsr *

Iemma 4.2.2. The probability that no split occurs on the {N +1)% random inser-
tion into a B-tree of order m with N keys is

1

PriQ splits}m = 1—
(Rm +2)[H2m+2_ mﬂ]

Proof : PriQ splits |, = 1—Pr{i or more splits},,.»

1t is well known that A, = Inm + y+ 1

1
) 2m  12m?
where ¥ = 0.57721... is Euler's constant (Knuth, 1968, § 1.2.7). Then

+0(m‘4), |

o _Prilmr-mare sjnlifs}m = {21:112) m

FRE R I R
MET 2]{1:12) m? fo(? %

o Lgmma 4 2 3. Let nly, be the number of nodes at Level L of an order m B-tree;' :_, 8

: iThen the number of nodes above the level L, nalm is bounded by

nl, ~1 s’ . nz,,.—r
em ™

m
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Proaf : Consider the level ! as being the N+1 lbévés >ofia B-tree “with N "kéyé- e

. (Each leaf represents a node} The minimum and the mammum :number of )

““hodes above the tevel ! is obtained when each node above the level 1 contams f
"2m and m  keys respectively, (That is 2m X 'nal nlm 1 anﬁ '

m X naly, = nl, -1 respectively.) »
Lemma 4.2.3 and Eq. 2.2-5 lead to the fo'uowmg theorem:

tham 4.2.4. The expected number of nodes in a random B-tree of order m

with N keys is bounded by
e [2'212—‘— (N+1)= 2= i (V) é(i*ﬁlf)[.-i?:l% W+ 1)-1
ot ey O o=
[t o= o™
where Ra{)\z) < 0. ‘
Coratiary. (BInlz)m +[81112 "i_] (1n21)m_2 +o(m™) < i”}sﬂs

1 i 1
(2In2)m  B(In2)2m?

+0(m. %)

Coraollary. Storage used = E1§'+ O(m™)

The values obtained for the storage used (cf. definition of storage used in
Section 4.1) are between 1 and 2. The value 1 corresponds to the B-tree with all
nodes with 2m keys, and the value 2 corresponds to the B-tree with all nodes
with m keys. Yao (1978) used a different measure. He defined
storoge utilisation as [N/ (2m)]/ (N}, where N/(2m) represents the
number of nodes when all the nodes contain 2m keys. However, it is known that,

in general,

1 1
B(x)# IZ59)
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for a random variable X. Furthermore, by using the Kantorovich inequality (see
Clausing, 1982, pp. 314-33C) we have

15E{X)XE(;T)$ g— @)

Then

Corallary. The storage utilisation for a random B-tree of order m with N keys
is bounded by

In2+0({m ™) < storage utilisation < -g—in 2+0{m™)

4.3. Birees with Overflow Technique

In this section we present a second order analysis of the B-tree insertion
algorithm using the following overflow technique. We restrict the overflow tech-
nique to the lowest level, and moreover, we only split a node when an insertion is
performed in a full node and all its brothers are also full; otherwise a rearrange-
ment of keys is performed and the closest non-fuli brother node will accommo-
da!te ohe more key.

Any tree collection of B-trees of order m using the overflow technique
described above contains (m +1){2m +1) types. Figure 4.3.1 shows the transition
diagram corresponding to the twe level tree collection of B-trees of order m=2.
The transition matrix H corresponding to the two level tree collection of B-trees
of’order m using the ovérﬂow technique described above is shown in'Table 4.8.1.

In order to obtain the vectbr p(N) from Eq. 2.2-3, we make Pam+1)zm+n=11
and solve for all the other p's, After this we normalise the p's by dividing each -

one by their sum. Then

P(2m+1)(2m+1) =1

{Bm.+ 1){2m+1)+1 - AmP+4m +2

Piam)+2m(2m+*) {emAD)@Em ) Em+1)(Em +1)

- amPram+2
p(2m~1)+2m(2m+1) = W

_ 1P[am+1)(2m+1) mieans P(a»+1)+(an+1)+ +(an+|)- where (2"“‘1) BPPE&T 2m +1 times. APPAYHIE this

_notation to the Brtree of order m =2 shown in Figure 4.3.1, pgss5 is equivalent to P(smn)(&nﬂ}-

S P sas s eqmvalent to F(m+1)+(m+1]+(m~:)(an+1p ete.

Lol P e e e e



Fig. 4.3.1 Transition diagram representing the two level tree collection for B-
trees of order m=2 using overflow technique (e.g. type 335
corresponds to the height 2 type tree containing a root node with 3
descendants, the first one with 3 leaves, the second one also with 3
leaves, and the third one with 5 leaves)

—[m + 1) (m +1) 2m /(2m +1)X

+(m =1)2m+ 1]~} ETM+:]1;(1':111)>1
L]

—m+D+2m+

(m=1)X2m +1)] -1
Km+)+  ~[m++ 2/2m +1)[(mr+1)
m2m+)]  m@em+D]-1 +m(2m +1)}

-Pm+
m(2m +1)) -1
{(m+1)x —[(m+1)X 2m [(2m +1)X
@m+1] @m+1))-1 [Crr +1X2m +1)]
(m + 1)+ +1)
+m(2m +1)]
2m+ ~[2m+

2m2m+1)]  2ZmQ2m<+1)}-1

@2m+1)2m -H)A ~(2Zm+1)2m+1)
-1 J

Table 4.3.1 Transition matrix corresponding to the tree collection of B-trees of
order m and height 2 using an overflow technique
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_ 4mP+iam 42
Pem(em+) = o Bm+1)+1

4mP+am +2
Plem)+em-1)Em+1) = mEm+l) {1
_ __AmPram+2
Prnanemi) = 0 1Y @m+ )+ 1

‘ = 1 2 - Zm |
Piem)+m@m+1) = ——(m+ NEm+1) 4m~+4m +2 m(m +1)(2m.. +1)
_ _emP+2m+2

T (m+1)(2m+1)

_ emi+2m +2
Pimenem@men) = T oy o (Bm.+ 1)

- 1
Pim+1)+2m)(m-1){2m+1) = {(m+1)+m (2m +1) X

2

o (m+1+m(2m+1))

om2+2m+2—

= (4m3+2miiom )/ (2m +1)
(m+1)+m(2m+1)

(4m3+2mP+2m)/ (2m +1)
(m+ 1)+ (m+3}+(m-1)(Bm +1)

 Pim +1)+(m'+z)+{m—1j'(2m-+1) =

(4m3+2m2+2m)/ (Bm +1)
(m+1)+{m +R)+(m—1)(Rm +1)

P(m+1)+(m4i)+{m—1')(m;1j =

,':«: : L : Let ;Sf‘_:beuthe sum of alt p's above. Then

S ety T
5= (——é;,;:_l—) [Hmew_n“'ffzmzmu] *

. (2m2+2m +2) [‘H2m2+5m+1_H2m?;2m+1] +
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((2m+1) 2m+1)+1)[H4m3+4m+2 Hzthmn]

To obtam the ﬁnal probabﬂltkes all t.he above p's have to be dmdeﬂ"b_y S

7 Let *;'J(Z ) ibe the Psn function 'gb(Z) F((Eg—(Abramomtz and Stegun 19’?2 § A .

‘Lemmn 4.3.1. The probablhty that 1 or more sths oceur on the (N+1)“ ran- .’
dom insertion’ into an N—key random B-tree of order m using an overﬂow tech- )

nique is

 “Pr{l or maore splits],, =

5 (2m+§12)’ga$+1)+1 }1p(2m+2+2 +1)'¢'(m+1+2?1+'1—)]

where S is as Gefined in Eq.(2). _
Praof: Pri{l or more splits|n, ::p(m+!){2m+l)+P{mi-2)(2m+i)+'"-+p(2m+l){2m+l)

- 14[_(2_1n+].)(2m+1)+1 "2” 1 |
S em+1

! , 1
=1
= m+i)+ Rm+1 I

where 'ﬁ‘—l——-a&(zmmq} )~¢;(m+1+ ! 1) .

(m+1.)+ é——'IT

It is well known (Abramowitz and Stegun, 1972, § 6.3.18) that

- 11 o
Y(m)=Inm B Tam? ————+0(m™) -

Corollary. Pr}l or more splifs|, = NS . _1-.+0( -3
™ 2m  {BIn2 4 |m?

Letnma 4.3.2. The probability that 1 split occcurs on the (N+1)* random inser-

tion into an N-key random B-tree of order m using an cverflow technique is

[
Pril split}m = (zm+12)’$L2ﬁ+x) }i;;;(zm+1+ SR A )]

where S is as defined in Eq.(2).
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Froof : The only difference from the procf of lemma 4.3.1 is that

Priisplit}y, = Pimryem+) PP Em syt B (em)+{m)Em +1) *

~L];i—z+0(m—3)

. 1
Corallary. Prilsplit], = EWT+ ~Bnz %

Lemma 4.3.4. The probability that 2 or more splits occur on the (N+1)® ran-
dom insertion inte an N-key random B-tres of order m using an overfiow tech-
nique is

Pri{2 or more splits), = —é—
where S is as defined in Eq.(2).
Froof : Pri2 or more splits}, = Pr{l or more splits {,, —Pr{1 splits i,

1[emenEmen+ |l R
S| emer g, V(e D= 5

Corallary. Pr{2 or more splits},, = +0{m9)

1
(4ln2) m?

Lemma 4.3.5. The probability that no split occurs on the (N+1)* random inser-
tion into an N-key random B-tree of order m using an overflow technique is

Pri0 splits },, =

1 - (Em+1)(Bm+1)+1 ]{W(zm+2+

S Bm +1 )""”("”“ D)

+1

.~ where .S' is as deﬁned in Eq.{2).
A Praaf Prio sphtsgm = 1~Pril or more sphfs im "

B Cbrallm'y Prio spms;m =1~ —1—— '—1—41—]"1—+o(ﬁi5)

iLemma 4. 2 3 and Eq 2. 2 5 lead to the follomng theorem

u??worem 4 3. 6 The expected nu.mber of nodes in a random B tree of orﬂer m .

‘with N keys usmg an overﬁow techmque is bounded by

A wED-E = mm < A‘”)‘N ”)'1 |

PN S Y PR

P il
PRFSR N PR
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" where

RUTOMI 13 Pmensmenymon@n
A(X)‘ _{("’”2* )[(m+1)+(m+1)+(m “)@m¥1)

Plm+1)+(m +2)+(m— 1)[2m+l) - P(m+l);2m+1)
(m+1)+(m+2)+(m—1)(2m+l) (m+1)(2m+1)

(m+3+ 1 )! P(m+1)+(m+u+m(zm+1; + Pt 1) (m +2 i {Em i1)
X/ |im+D)+(m+1)+m(@m +1) (m+1)+(m+2)+m(2m+1)

+oo0d

P{mm)(émn] p(m+l)+(m+i)+{2m 1){2m +1)
m+2)(Em+1y | ' -+ (amaze 3) (m L)+ (m+ 1) +(@m—1)(2m+1)

Pim+1)(m +2)+{2m 1) (B +1)
{m+1)+(m+2)+(2m.— 1(Em +1)

P(amn)(amn}
(Bm +1)(Bm+1)

e

|

end S is as defined in Eq.(2).

Substituting Eq.(1) in the expression of Theorem 4.3.6 gives:

Cof_'aum‘y.
CAN_ L oo PRty o T (YD
B(am)(1 N) o POy < et g
B(m)(l—— ;{—+O(NR“("9)). Re (Ag)<0
where

[ 3 2
_1 1yj|4m3+2mE+em
B =3 {(m+2+x)[[ Zm+1 x

1 1
[(m+1)+(m+1}+(m—1)(2m+1) T mrD+m(Bm+1)

1 ~ 1 ] .
(m+)+m(Rm+1) (m+1)(8m+1)

|+

1 1
m+3+7 2m+2+X

(mtl)+(m+1+m(@m+1)  (2m+1)(Em+1)+1 *

(2m2+2m+2)

1 X 1
(m+1)Rm+1)  (m+1)(Bm+1)+1

(am?+am +2)

(4m2+4.m. +2)[



-

el

¢(2m+1+ ) ';{/(m+2+

2m+1

[W——
[ S ————

or

+

B8mR+10m +6
Y= 2 D TIUMTO
B(X) {X 2m2+3m +2

2
gmsamiz [w(2m+1+2m+l) Wmres +l)”

and S is as defined in Eq.(2).

Corollary,
at Bli 'i_lmi_ [ 3BIne T lﬂ +o(m™) = ﬁm}\fﬂs
Zin_ v ]Hl— [- 32ln2 é_}ml_ +0(m™)
Corallary. Storage used = 1+ 45’12 —é— ;1—+o(m“2} )

Corallary. The storage utilisation for a random B-tree of order m. with N keys

using an overflow technique is bounded by

3 1)z
1[41:12 7 )m Ot

5" [41nz 2

Bm

- Proof: The above bounds are obtained by using Eq.4.2-2 and the result of the " ) »

E previous corollary -

4 Concurrency of Operatlons on Birees

A node of a B-tree of order m is insertion safe if it conta.ms fewer than Zm. “

:lkeys A qa.fe node is the deepest one in'a particular insertion path if there are

.. o safe nodes below it. The. object of this section is to derwe prn:’babihtles o
B “'related te the depth of the deepest safe node

m ") < storage utilisation < L J 9 =—+0(m™®) "

S AV R U SIS Y

. ‘
J PR S P SR 1 ST/ SRR SRRV S P
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’ : 4.41. Deepest Safe Node in B-trees with Normél Insertipn Algmthm

‘ Lemmu. 4 4.1, 1 The probablhues that the deepest safe node is locatea at the 1" -

'7 Iowest. level and above the 1% lowest level of an N-key random B- tree of order m, f .

are, res pectwely

(u.)Pridsn at 1% lowest level}, = 1— —- S -
: ' . . (2m+2)[H2m+a‘gm+1f]

(&) Prids'n above 1% lowast level], = 1 5
| (Bm+2)[Hzm ea=Fm 1)

FProaf : Similar to the preof of Lemma 3.6.1,1. =

Corollary.

(e) Pridsn at 1% lowest level |, =

1 1 1 1 ~
Y Emom "[Blnz '2_} gy HOm ™)

(b) Pridsn above 1% lowest levell,=

1 Y N y
EBED +[Bln2 *é‘} maym? 0m™)

This analysis shows that complicated solutions for the use of concurrency of
cperations on B-trees are rarely of benefit, since the solution analysed in this
thesis will lock height 1 fringe subtrees most of the time.

4.42. Deepest Safe Node in B-irees with Overflow Technique

Lemma 4.4.2.1. The probabilities that the deepest safe node is located at the 1%
and the 2" lowest level, and above the 2% lowest level of an N-key random B-
tree of order m using an overflow technique are, respectively

{a) Pridsn af 1% lowest level}, =

1— é. (2m+‘2)§z+1)+1]{u,(2m+2+2 +1) ¢(m+1+2 1+1)

(b) Pridsn at 2 lowest levell, =
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,19— (2m+§(ﬂfﬂ+l)+l Hw(zm“

c) Pridsn above 2™ lowest level],, = L
S

where S is as defined in Eq.4.3-2.
.Proof : Similar to the proof of Lemma 3.6.1,1. «

Corollary.

1

(a) Pridsn at 1% lowest level }, = 1—_2%71_._

(b) Pridsn at 2™ lowest level],, = -2-%-4.[.. 1

Blnz

¢) Pridsn above 2" lowest level}, = — =+
m

~ (4n2) m?

1 1 )
i) ¥ (mir )

._.1__1__ -3
Blng 4]m2 +0(m ™)

i-] -ni—2+o<m?=}

4

o(m=3)




5. AN ANALYSIS OF AVL TREES

5.1. Motivation

AVL trees were introduced by Adel'son-Vel'skii and Landis (1962). A binary
search tree is AVL if the height of the subtrees at each node differ by at most
one. The description of the insertion algorithm and the transformations (called
rotations) necessary to keep the tree balanced are presented in Appendix A.

Bayer (1972) showed that the class of AVL trees is a proper subolass of sym-
metric binary B-trees, the object of the following chapter, The first analytical
results on the expected behaviour of AVL trees were obtained by Brown (1979a),
and an improvement on Brown's results was obtained by Mehihorn (1978a). The
main complexity measure studied by Brown and the only one studied by
Mehthorn is the expected number of balanced nodes in an AVL tree randomly
generated. o :

The use of larger AVL tree collections represents a complex problem. An
inherent difficulty posed by the transformations necessary to maintain the AVL
trees balanced makes its fringe analysis quite difficult. {cf. Section 5.3.) In Sec~
tion 5.4 we present a technique to cope with this difficuity which permits us to
obtain bounds on the expected number of balanced nodes and the expected
number of rotations per insertion.

We now define certain complexity measures;
(i) Let 5(N) be the expected number of balanced nodes in an AVL tree after the
random insertion of N keys into the initially empty tree;
{ii) Let 7 (N) be the expected number of rotations required during the insertion
of the (N +1)* key into a random AVL tree with ¥ keys; _
{iil) Let Pr{no rotation} be the probability that no rotation occurs during the
{N+1)* random insertion into a random AVL tree with N keys;

(iv) Let m (V) be the maximum number of rotations that may occur outside the
fringe of an AVL tree during the insertion of the (N +1)% key into a random AVL
tree with ¥ keys:

(v) Let Z{N) be the expected number of unbalanced nodes in an AVL tree after
the random insertion of N keys into the initially empty tree;

(vi) Let F(N) be the e;xpected number of nodes in the fringe of an AVL tree after
the random insertion of N keys into the initially empty tree.
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In Sectlion 5.2 we present a new closed AVL tree collection which permits an
improvement in the lower bound on the expected number of balanced nodes. In
Section 5.3 we study weakly-closed AVL tree collections. In Section 5.4 we
present a technique to deal with weakly-closed AVL tree collections. In Section
5.5 we present larger weakly-closed AVL tree collections and discuss the prob-
lems involved in their analyses.

Table 5.1.1 shows the summary of the results related to AVL trees.

Tree Collection
Fon | v B
Size | Characteristic
2 closed 057N | [0.29,0.88] | [0.48+0.48/ N, 0.86-0.14/ N ]
for N=6 for N=6 for N=6
3 closed 0.66N. | [0.29,0.85] | [0.51+0.51/ N, 0.86-0.14/ N |
ambigizous for N=6 for N=8 for N=6
41 | weakly-closed | 0.69N | [0.29,0.81] | [0.51+0.51/ N, 0.81-0.19/ N ]
ambiguous

1 Results are approximated to O{N-5)

Table 5.1.1 Summary of AVL tree results

5.2, Closed AVL Tree Collections

The only previcusly known closed tree collection for AVL trees is the one
composed of trees with three leaves or less. This tree collection is studied in
Section 5.2.1. In Section 5.2.2 we present a new closed tree collection for AVL
trees composed of trees with four leaves or less.

5.2.1. Tree Collection of AVL Trees with Three Leaves or Less

The tree collection of AVL trees with three leaves or less is shown in Figure
5.2.1.1. Brown{1979a) proved that this tree collection is closed, obtained bounds
on the expected number of balanced nodes, and gave a lower bound on the
expected numbér of rotations. For completeness we derive again the results
obtained by Brown and present also an upper bound on the expected number of
rotations.
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For the AVL tree collection shown in Figure 5.2.1.1 H = [ g —g] * From

¥q.2.2-3 we have Hp{N) = 0, and therefore p,(») = 4/7, and pp(=) = 3/7. Since
the eigenvalues of H are 0 and -7, we observe that pi(N)=4/7, and
Pz{N} =377 for N=8. (As before p,(N) and p{N) are written as p, and pp, .
respectively.)

Lemma 5.2.1.1. The expected number of rotations in a random AVL tree with N
keys is bounded above by

(i) 7(N) =1-Prno rotation]}

and

(i) 'r(‘N) = r(N) in the fringe +m(N)
Proof ; For case (i) it is known that the maximum number of rotations per inser-
tion in an AVL tree is 1. For case {ii) r (N) must be less than or equal to the

number of rotations per insertion in the fringe plus all possible rotations per
insertion that may occur outside the fringe. »

Thegrem 5.2.1.2. The expected number of rotations in a randem AVL tree with
N keys is bounded by

(%) g—PzST(N)Sl—é—pg for N=1

and
.y B 2
(i) 3Pz= r(N)=< 3 Petpy for N=1

Proof : The left hand side of (i} and (ii) are obtained by observing Figure 5.2.1.1.
The right hand side of (i} and {ii) are obtained by using Lemma 5.2.1.1.=

. Corollory. ,?—sr(N}s g— for N=6

Lemma 5.2.13. The expected number of single rotations (sr(N)) in a random
AVL tree with N Kkeys is bounded by



f58-

;—pzssr(N) < 1—;—332 for N=1

Froaf . The above expression can be obtained by observing Figure 5.2.1.1 and by
using Lemma 5.2.1.1.»

Corollary. %—s (N)s,—ﬁ?- for N>6

Lemma 5.2.1.4. The expected number of double rotations (dr(N}) in a random
AVL tree with N keys is bounded by

—é—pg <dr(N)< l—é—pg for N=1

Proof : Similar to the proof of Lemma 5.2.1.3. =
1 8
Corollary. 7= dr(N) =< £ for N=8

femma 52.1.5. The expected number of nodes in the fringe of an AVL tree with
N keys that corresponds to the tree collecticn of Figure 5.2.1.1 is

FNy = [p‘ +2—(N+1) for N=1
Proof : From Fq.2.2-5 we have f(N) = A;(N)+R24z(N). =
= _4 4
Corollary. f(N)= ,—?—N+7— for N>6

Lemma 5.2.1.8. The expected number of balanced nedes in a randem AVL tree
*with NV keys is bounded above by

(i) B(N)Y=N-&(N) for N=1

and

() B(N) < b(N) in the fringe + [N—F{N}] for N=1
Proof For case (i} b(N)+u (N)MMJ—V‘ VFor case {u) b(N) must be less tha.n or o
equal to the number of balanced nodes in the fringe plus all nodes outside the
fringe, =

Theorem 5.2.1.7. The expected number of balanced nodes in a random AVL tree
with N keys is bounded by



i

(N+1) <N < N—p—g(NH) for N1

Pl

It
Proof : The left hand side is obtained by observing Figure 5.2.1.1 and by using
Eq.2.2-5. The right hand side is obtained by using Lemma 5.2.1.8, by observmg
Figure 5.2.1.1, and by using Eq.2.2-5. =

8,8 8w _8 1
Corallary. AN TN S v RN for N>6

Brown (1979a, p.40) showed that an improvement on the lower bound of the A
result of Theorem 5.2.5 can be obtained by observing that, when the number of
type 1 trees is greater than the number of type 2 trees, then at least
(B--22)(w+1)/ 3 balanced nodes tie outside the fringe. Thus

1 2

P B1 | Pz 1 |P1 P2
[ PN e Bl s B
b(N}=> » + 2](.!\:‘-0~1)~|-3[ - 2](N-l-l) for N=1

or

e
[=)
-
[=]

b(N)=

g
g
3
&l
&

5.2.2. Tree Collection of AVL Trees with Four Leaves or Less

To improve the results obtained in the previous section we need bigger tree
collections. A tree collection with three types is shown in Figure 5.2.2.1. The
first step necessary to perform the analysis is to show that the AVL tree collec-
tion of Figure 5.2.2.1 is closed. (cf. Definition 2.3.2.)

° % o
type 1 type 2 type 3

Fig. 5.2.2.1 Tree collection of AVL trees with four leaves or fewer

Thearam 5.2.2.1. The AVL tree collection shown in Figure 5.2.2.1 is closed.

FProof : An insertion into the type 1 tree always leads to a type 2 tree, and an
insertion into the type 2 tree always leads to a type 3 tree. An insertion into the
type 3 tree may cause a transformation higher in the tree, since the root of a

type 3 tree is balanced. By inspecting Figure 5.2.2.2 we can see that a
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transformation has no effect on the nodes which are outside the transformed
subtree. Furthermore, if the fringe of the transformed subtree is entirely con-
tained in the subtrees T, Tp, Ty and 7 of Figure 5.2.2.2(b} then the transforma-
tion has no effect on the composition of the fringe. {i.e. Ty, Ty Ts and T, are
moved without change by the transfoermation.)

However, there are six cases in which the fringe of the transformed subtree is
moved with change by the transformation, as shown in Figure 5.2.2.3. In all six
cases the number of type 3 trees decreases by one and the number of type 1
and type 2 trees increases by one. Note thai each one of the three transformed
trees shown in Figure 5.2.2.3(a and b) contains one 3-nodes subtree which is not

considered as a type 3 tree, but as a subtree composed of twe type 1 trees. »

(b) Double rotation

Fig.5.R.2.2 AVL tree transformations (symmetric transformations occur)

Theorem 6.2.2.1 says that the transitions in the tree collection of Figure
5.2.2.1 are well-defined, so the theorems of Chapter 2 can be applied. Thus

-3 0 2
H = 3-4 3
0D 4 -5

From EqR22-3 we have Hp(N)=0, and therefore p,(~)=8/35,
Pol) = 15/ 35, and pg{=) = 12/35. Since the eigenvalues of 4 are 0, —5, and .
=7, we observe that p,(N) = 8/ 35, pa(N) = 15/ 35, and pg(N) = 12/ 35, for N=8.
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Double Doubie
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Double
————
rotation

(c)

Double
rotation

()

Double
rotation

{e)

Double
—_——
rotation

o
(f)

Fig. 5.2.2.3 Cases in which the fringe of the transformed subtree is

moved with change (symmetric transformations occur)
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Thearem 5.2.2.2. The expected number of balanced nedes in a random AVL tree
with N keys is bounded by

B P2  oP3 5 _Pe
[L1 +L2 +3L3 ](N+1)sb(N)sN T (N+1)

Proof : The left hand side is obtained by observing Figure 5.2.2.1 and by using
Eq.2.8-5. The right hand side is obtained by using Lemma 5.2.1.8, by observing
Figure 5.2.2.1, and by using Eq.2.2-5. =

Corollary. %+i< m< 6——1—.forN26

3N~ N T TN

femma 5.2.2.3. The expected number of nodes in the fringe of an AVL tree with
N keys that corresponds to the tree collection of Figure 5.2.2.1 is

FN) = |BLyoP2 (oP3
F(nNy = IL] +2L2 +3Ls (N+1)

Proof : From Eq.2.2-5 we have f{N) = 4,{N)+245(N)+343(N).=

4

Corallary. F(N) = g—g(z\fﬂ}, for N=6

The results on the expected number of rotations derived in the previous
section cannct be improved by the use of this tree collection. This tree collec-
tion corresponds to the tree collection used in the previous section augmented
by the type 3 tree, and the type 3 tree does not contain any information about
rotations. A

5.3. Weakly-closed AVL Tree Collections

If the effect of an insertion on the composition of the fringe is determined
not only by the subtree of the fringe where the insertion is performed, but by
some other transformation that may happen outside the fringe, then the tree
collection is weakly-closed (Definition 2.3.2), We will show that the tree collec-
tion of AVL trees with five or less leaves shown in Figure 5.3.1 is not closed,

Lemma 5.3.1. If the trees shown in Figure 5.3.1 form the fringe of a random AVL
tree with N keys and N-«, then an insertion into a leal of a type 3 tree (i)
decreases by one the number of type 3 trees and increases by one the number
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ol we| o) [Cadp o

[
type 1 type 2 type 3 _type4

~ Fig. 5.3.1 Tree collection of AVL trees with five|leaves or fewer :
of type 4 trees; or (i) decreases by one the number of type 3 trees and

increases by one the number of type 1 and type 2 trees; or (iii) decreases by one
the number of type 1 trees and increases by one the number of type 2 trees.

Froof ; We will denote the probability of the second of these alternatives by sy,
the probability of the third by £y, and the probability of the first by 1-sy—ty.

Cose(i): This case is obvious: the type 3 tree is transformed in a type 4 tree, H
there is no transformation higher in the tree then this is the transition.

Cuses (i )and(iii): If a transformation takes place higher in the tree, which is
possible since the root of a type 3 tree is balanced, side-effects on the composi-
tion of the fringe will occur. By inspecting Figure 5.2.2.2 we can see that a
transformation has no effect on the nodes which are outside of the transformed
subtree. Furthermore, if the fringe of the transformed subtree is entirely con-
tained in the subtrees 7, Tz, T3, and T, of Figure 5.2.2.2 then the transforma-
tion has no effect on the composition of the fringe, because T, Ty, Ts and T,
are moved without change by the transformation,

Figure 5.3.2 shows the five cases in which the fringe of the tree to be
transformed is moved with change by the transformation, and this change pro-
duces side-effects on the composition of the fringe.

In cases (a) and (b) of Figure 5.3.2 the number of type 1 trees decreases by one
and the number of type 2 trees increases by cne. This case occurs with an unk-
nown probability we call £y,

In cases (c), (d), and (e) of Figure 5.3.2 the number of type 3 trees decreases by
one and the number of type 1 and type 2 trees increases by one. This case
occurs with an unknown probability we call sy.

Lemma 5.3.1 tells us that any AVL tree collection that contains the types 8
and 4 shown in Figure 5.3.1 is not closed, (i.e. it is weakly-closed.) In fact it is not
difficult to show that every AVL tree type that contains more than one internal
node and has its root node balanced suffers from the same type of misbehaviour
that occurs with type 3 {i.e. consider the AVL tree with six nodes). Consequently
an AVL tree collection that contains a tree type with the root node balanced and
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O
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Fig. 5.3.2? Cases in which transfermations change the fringe
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has more than three types is weakly-closed.

We know from Lemma 5.3.1 that an insertion into the type 3 tree shown in
Figure 5.3.1, when it belengs to a fringe of an AVL tree with N keys, produces a
transition that is not well defined: the transition depends on two unknown proba-
bilities sy and £y which also depend on N. First of all let us give a more precise
meaning to sy and fy. Let /' be the expected number of leaves in an AVL tree
with N keys such that an insertion in one of the I leaves causes one of the three
transformations shown in Figure 5.3.2{¢, d, and e}. In a similar way let J be the
expected number of leaves such that an insertion in one of the J leaves causes
one of the two transformations shown in Figure 5.3.2(a and b). Thus

. _{
SV = Wi
and
_
ity = Nl
Although the probabilities sy and £y are unknown they cannot assume arbi-
trary values between 0 and 1. .

Lemma 5.3.2. The probability fy is bounded by 0=<ty < é—

Proof :

Case (4): Let g, be the probability that an insertion is made into any of the sub-
trees of Figure 5.3.3. Let 1—gq, be the probability that an insertiorilis made into
any of the subtrees of Figure 5.3.4.

Consider a N-key AVL tree with all subtrees in the fringe being of the type shown
in Figure 5.3.3, the type shown in Figure 5.3.4, or a mixture of the two. Let us
consider cne tree of Figure 5.3.3 and one tree of Figure 5.3.4, as shown in Figure
6.3.5. The arcs show the probabilities of two possible transitions. Then

3{1—q,) -
6N N

=3
org; = B
If Aty is the increment in £y then

3-8g,
5N

AtNT =<



- 66 -

Tig. 5.3.3

Fig. 5.3.7
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80 £y cannot increment beyond ¢, = 3/8 and g, = 3/ B is the maximum value for

29,

g1 By definition £y = 3 which gives

1
O=<ty=< Z

Cose (i): Let g be the probability that an insertion; is made into any of the sub-
trees of Figure 5.3.3. Let 1-q; be the probability that an insertion|is made: into
any of the subtrees of Figure 5.3.6.

Consider a N-key AVL tree with all subtrees in the fringe being of the type shown
in Figure 5.3.3, or the type shown in Figure 5.3.8, or a mixture of bath. Let us
consider one tree of Figure 5.3.8 and one tree of Figure 5.3.8, as shown in Figure
6.3.7. The ares show the probabilities of two possible transitions. Then

1-gg
N

g2 .
N

or gp= %— where gp=1/2 is the maximum value for gz By definition

2
ty = % which gives

OD<ty=<

an»—‘

Lemma 5.3.3. The probability sy is bounded by 0=<sy =< é—

Proaf .

Case(i): Let ry be the probability that an insertion is made into a tree of the
type shown in Figure 5.3.8. Let 1—7; be the probability that an insertion hap-
pens into any tree of the types shown in Figure 5.3.9. Notice that an insertion
into a tree of Figure 5.3.9 gives a tree of Figure 5.3.8 with probability 3/11.
Furthermore, it is not difficult to see that the trees of Figure 5.3.9 represent the
main source of subtrees that under a new insertion are transformed into a tree
of the type shown in Figure 5.3.8, (The trees of Figure 5.3.8 may be obtained
from other sources by performing rotations on bigger subtrees, but the proba-
bilities in these cases are smaller than the probabilities related to the trees
shown in Figure 5.3.9.}

Consider a N-key AVL tree with all subtrees in the fringe being of the type shown
in Figure 5.3.8, type shown in Figure 5.3.9, or a mixture of the two. Let us con-
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Fig. 5.3.8 (Symmetric cases occur)

Fig. 5.3.9 (Symmetric cases occur)

3(1—r,)
11N

|2

1= i

™1

Fig. 5.3.10.

2|

Fig. 5.3.1 1"’(T1 is a tree obtained from an insertion

into a tree of Figure 5.3.8)
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sider one tree of Figure 5.3.8 and one tree of Figure 5.3.9, as shown in Figure
5.3.10. The arcs show the probabilities of two possible transitions. Then

orrTy = 14—

If Asyt is the increment in sy then

3‘14:1".

bsyr= =

S0 sy cannot increment beyond r, =3/ 14 and r, = 3/ 14 is the maximum value
)

for r;. By definition sy = 3

which gives

1
< < — .
O_SN 1

Cose (#): let vz be the probability that an insertion is made into any of the
trees of Figure 5.3.8. let 1-r; be the probability that an insertion is made in
one of the trees one may obtain by inserting into a tree of Figure 5.3.8, .

Consider a N-key AVL tree with all subtrees in the fringe being of the type shown
in Figure 5.3.8, the type one may obtain by inserting into a tree of Figure 5.3.8,
or a mixture of the two. Let us consider the two trees shown in Figure 5.8.11.
The arcs show the probabilities of two possible transitions. Then

Tz 1oTe
N~ N

r
or 7y = é— where 3 = 1/2 is the maximum value for rp. By definition sy = _é",’_

which gives

O<sy <

mlw
-

In the following section we present a technique to deal with weakly-closed
tree collections, in which unknewn probabilities appear in the transition matrix.
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5.4. Coping with Weakly-closed AVL Tree Collections

Consider again the tree collection of AVL trees with five or less leaves shown
in Figure 5.3.1. As shown in Section 5.3 this tree collection is weakly-closed. In
this section we present a technique to deal with weakly-closed AVL tree collec-
tions.

From the results of Lemma 5.3.1 we can examine the insertion process and
obtain

3 0 ZRn—ty)  gs5
8 —4 B{sy+iy) 12/5
Hisnin)=| 0 4 —5+aty  12/5 (1)
0 0 5(1-sy—ty) 6

where sy and {y depend on N. Figure 5.4.1 shows how the values of column
three of H(sy.ty) in Eq.(1} were obtained.

oI O% CP%

p go? /tzi
?E\’z —4{1—SN—tN) 5 1_SN -tN)

Probability sy - dqo +0O + %
-4y sy sy

P ro, ~
bc’lbujty P» o) + Ob
—Riy 3ty

Fig. 5.4.1

The characteristic polynoinial of H(sy.ty) is
det(H(sy.ty)-AT) = A+(18—4ty) N3+(107-52ty) N+(210—16BEx)A,
the eigenvalues are A; =0, Ag = ~B+dty, Az = —6, M= -7,

and the eigenvectors are

4—(1+SN—3tN)
1 3(3+2sy—Rty) .
z)(sn.ty) = Fo—2bty 12 . considering pi+patpatpa=1
10(1~sy—ty



e
—3+2(SN"tN)
1 3(—1+SN+tN)
Zalowtn) = T | 1eaty

B{i—sy—ty
2
Zg = -é—- g
-5
3-4sy—Rty
zy(sy.ty) = %‘ 5—632_&N

10(—1+SN+fN)

where z;(sy.fy). zo(Sy.tn), 3, and z,(sy.ty) correspond to the eigenvalues
A1 Ag(sw.ty), Ag. and A, respectively.

If the matrix H = H(sy.fy) is independent of N, has one eigenvalue egual to
zéro, and the others have negative real part, then p (N}, the solution of Fq.2.2-2
converges to the solution of Hg =0 (cf. Theorem 2.2.3). However the matrix
H(sy.ty) in Eq.(1) contains the unknown probabilities sy and £y that depend, on
N, and consequently H(sy.fy) depends on N. For this reason we have to prove
the following result:

Theorem 5.4.1. Let p(N) be defined by -

H(sw.tw)
N+1

p(N) = [I + p(N~-1), N>4 {2)

and p{4) = (0,0,0,1)7 (an AVL tree with four nodes is the type 4 tree shown In
Figure 5.3.1, with probability 1), where {sy.tx)x>4 iS & given sequence of proba-
bilities. Then there exists a sequence {sy,tylys>s such that p(N) converges to
g (N), the solution of

Hisyty)g(N)y=0" (3)
Proof : We will construct a sequence {sy.ty} and, in each iteration, express p(N)
in the basis of eigenvectors of H(sy.£x). In this basis

2(N) = ay(N)zy(sy.tn)+ae(N)za(sy.ty) +as{ N )zat oy N)zy(sy by)
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where a;{N) = 1. Because p;+ppt+ps+p, = 1 the components of z(sy,fy) add to

1. The initial vector is

=]

()
4| = B tp ()
o

2ap

8
4)

where E7Xs,,t;) is the matrix that produces the spectral decomposition for
H(sy.ty). (E(s.t)is the matrix of eigenvectors of H{s £).)

We want to prove that {o, (W), ax(N), ag(N). a,;(N))T converges to
{1, 0,0, )T, as N»ea,

Assume at step N—1 we have {e,(N—1),02(N—1).05({N—1}.04(N 1)) and we

have already constructed {s4.f4; - ;Sy_1,fy~1}. In the next step we compute

—«—(iji'l”}) to (oy(N—1),0a(N—1),aa(N—1},ae(N —1))”

and at the same time express the new probability vector in a different basis of

the effect of applying ([ +

eigenvectors.

This is equivalent to the effect of one random insertion inte the tree, ie,

H(sw.tn)
W)

Zy{sy-1.ty-1} ZTolSy-1.y-1), Ta, and zu{sy_,,ty-;), and obtain the spectral

’

going from N—1 to N nodes. To compute this we apply (I+

decomposition in each case. Then

o, (V)] o, (V -1}
zgﬁg = C(Sy by Sy bi-1) 3:%%:3
o, (N) sV ~1)

where C{sp.fyisy_y.fy-1) Is the matrix that operates the transformation with
parameters sy and fy due to one insertion on the basis z,{sy_;.txy_,)

Zolsw-1 Ey-1 } T3, To(sy_y.ty-1 ). Then

1 a & 0
t
clz.1] 1- Nél"’ 0 c(2.4]
Clsn.tyisy-1.ty-1) = Py
C[3.1] c[3,2] l—m C{3,4]
i
0 0 C 1 Wil

where
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—4B(ty—ty1) -

clai] = :
[2.1] {4ty —BYN+1)
4(tn—ty)
CRA = =T
o] = B0(4sy_ tn—Bty —4syti_ +5ty_s —Sy+sy_1)
) T(Aby_y +1)(4ty_ —B)N+1)
C[3.:2] = —b(4SN-1fn~Bty —4snty_1 +Bty_1 —sy+sn-1)
) (4fn-1 +1HN+1)
—B(4sy_1tny—DEN —4Snty—1 +Bty 1 ~Sx +Syw
C3.4] = (4sn-1fn—5ty ~4sntn-1 +5tyy —SN +SNe1)

(4ty_ +1)(N+1)

At this point the new probability vector is still expressed in the basis of
elgenvectors of H(sy—;.ty~;). Now we will change to a new basis of eigenvectors,
for suitably chosen sy,ty. Let B(sy.tyisy-1.ty-)) be the matrix that changes
basis. In this case

oy (N) 0‘:(% _P
ZE%% = B(sy.ty Sy BN ) 32%]\]:1; ,
o4(N) (N -1)

Notice again that o;(N) = &;(W¥ —1) = 1. Then the matrix B is

1 o o o
C e . B[2,1] 1 0 B[2.4]
B(sytwisy-1.tw-1) = |g[3,1] B[3.2] 1 B[3.4]

0 ¢ © B[4.4]
where
—48(tn—tn—1)
Bl2,1i]l= ; g
[2.1] P(4ty—5)(4ty_y —5)
_ Rltx—ti)

Bl2.4]= 2t

—10{4sy_1fy—Biy—4syty_y +5ty_, —Sy+sn_1)}
B[3.1]= ; ;

F(4ty+1) {4ty —5)

S5(4sy _1Ey—Sty—4syty_1 +5Ey_1 —Sy+Sy_

B[3.2] = (4sy-1En—Bty—4sytn— N-1—SytSN-1}

(4ty+1)(aty_, +1)
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—5{4sy - ty—5ty—4Syty_y +5ty_, —Sy+Sy_1)

B34l = atp+1

Riy_y +1

Bla.4] = Riy+1

The combined effect of these two transformations is the matrix
A(sptaisntwisnor i) = Blsy tyiSy—1 ty-1 JXC(Sy tniSy-1 ExN—1)
Then

1 0 0 0

5—4ty
(1] 1-—77

[3.1] A[3.2] 1——N%1-A[3.4]

0 0 Y A[4.,4]

0 A[24]
Alsy.tissy twsy- ty—) =

where

—48(ty—tn1) —48(tw—tx)

A= S e -, ) 4ty —0)(N+1)

Fy—ty_
Al2.4] = 2( Ngt;' 1)

4(ty—ty—1) P
N+1 N+1

—10{4sy_ Ey—~Bty—4Syty_y +5ty_ —sy+sy_1)
T(4ty+1)(4ty_; —B)

Al3,1]=

—48(tn—ti—1) [B(4snrtn—5ty—4snty o +5ty s —Si+sn-y) )
4ty —B)(N+1) | (atp+1)(4Ey_y +1) J

B80{4sy -1t ~Sty—4sy iy +5ty - ~Sy+Sy_1)
P4ty +1) {4ty 5N +1)

—5(4SJ'V—1tN —5tN'—4sNt1'\T—l +5t}’§f—l '-SN+S_{'V_.| )
(4ty- +1)(N+1)

A[32] =

5(4sy_1tn—5ty—4syty -1 +5ty ) ~Sy+sp_,)
{4+ 1)(afy_ +1)

5-4ty
*[1— N+l

—5(4sy_ Ly —5ty—4syty -, +5ty_, —sy+sy_; )
(4ty-1 +1)(N+1)

Al3,4] =



Aen—ty-1) [5{4sy 1ty —Bty—4syty—_, +5ty_y —Sy+sy_y)
N+l {4ty +1) {4ty +1) _
tlio 7 || =Blash_ 1ty -ty —tsity s +Btys —Sn+SN1)
N+1 Afy+1
T 2tN+ 1
Al4,4] = [1—~ ] ;
N+1 2ty

Let us show what Vhappens when we go step by step. Recall that sy, ty
represent the current values of the auxiliary sequence, and sy, ty represent the
current values of the unknown probabilities in the transition matrix. Then

1N al(ﬁ )
z:ENi = 2:§N§ = A(sn tniSN EN SN BN )X - 0 X
og{NY oV

AlsataiSetess ts)xA(ss by isstesa ta)E (5e.02)p(4) .

To prove that (ay(N)cz(N).os(V).0a(N))7 converges to (1.0,0,0)7 it is
enough to prove that ’

308
¥ ﬁH(S‘é't';;S*-tkisl;-l-té—z) =Boool- (4)
= oeCo
This would mean that
L] 338 g,
2 _ e B
ca(N)| T o000 E Yseta)p(4) =g » ‘
cLa{ V) Q0C0 0

or that the probabilities converge to an eigenvector associated to A= 0 of
H(sy.ty). Notice that this is independent of p(4) and of the choice of 54,2,.

The entries A[2,1] and A[3,1] are the critical ones for the convergence of
the [ [A(sy.Exisw.ExiSy—1.Ex—1) to the matrix (4). Let us solve A[2,1] = 0 for ty.
L :

Then

. (N+Vty_ +0{ty—ty_1 )
N N+1+4{ty—ty_1)

(6
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Now we substitute fy in A[3,1] = 0 and solve for sy. Then

gl = S{tx—ty_1)+6{Sn S )+ (N +1)sy
N N+1+4(ty—ty_1)

(6)

Before we go ahead to compute the T[A(sy.tw:sy.tnisy—.fy—1) with
N

A[R2,1] = 0 and A[3,1] = 0 we have to show that fy in Eq.(5) and sy in Eq.(8) are

beunded.

Proposition 5.4.2. For0<ty_, .ty <

CrJ|»-

Proof -

Cose (i); ty = 0 is equivalent to
(N+1}u- +5{ty~ty 1) =0 ,
which is true.

Case (ii): ty < é—is equivalent to

‘ . 1 .
(N+) g +5(En—ty-1) = E—[N-l- 1+4{ty—ty_1 )]
or

1
3 ty < 3—(N+1)

[N+1—5+%—]t;v_l+ 5

The left hand side of the above expression is maximum when ty =ty _, =

Then

%—{N-&-l) < ;—{N+1) "

Proposition 54,3, For 0<sy < », ~2-< sy, < ——, and 0% fy_y .ty < &

g’ i4
the value of sy in Eq.(6) is bounded by

11’

5] . 4
—‘]I'SSNS —_—

the value of ty in Eq.(5) is bounded by

1

3

3_-



Sl
Proaf:

Cose{i): sy = ~-1§4—is equivalent to

Bty —ty—1 )+ B{sy—Si1 ) H(N+1)syog = — D [N+ 1+ 4(ty—ty—1)]

14E

or

80 . . 5
E(tN_tN~1)+(N"5)SN—1 +Bsy = —1-4—(1\“'1) .

The left hand side of the above expression is minimum when fy = 0, ty_;, = é—

sy=0,and sy, = —%—. Then

5 5
14 (N+1) = E(NH)

Case (i) sy < %15 equivalent to

S(tn i )+B(sy—sy-1 )H(N +1)si -y < T[N +1+4(ty—ti )]

or
O (bt )+ (N=B)siv +65y = 2 (N +1) -
The left hand side of the above expression is maximum when fy = -é- ty_y =0,

Sy-1 = % andsN = ‘é— Then

4 4
11 (N+1) =< 11 (N+1)
Now we compute [ [A(swtyisy Enisn_1 Liv—1) :
N

AlsytpisntyiSn- oy )XE—[IA (Skite S beiSpor be— ) =
=5

1 0 0 0 1 0 C 0 10 0 0
0 uy O Uy [o] ay—y 0 by, 0 ay 0 by
Tl wn znoyw| |0 cno1 dwoy ew—y| T |0 ex dy ex
00 O0zy [0 0 0 fya 00 0 fu
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where
Uy = Oy 1My
by = by_qun+fryun
Ly = Oy Tytay_Wy
ty = dy1 TN
ey = by ywytey 1y +fv1Yn

Fn = Frazy

and

wy =157
N+1

vy = A[R.4]

wy = A[3,2]

R

yn = A[3.4]

zy = A[4.4]

Notice that:
{i) dy = 0 for N=5
{ii) fN = 0 for N26

5-4t,
(wiyown = 1111 Tq%] ﬁL_kH

(iv) by = by.quy since fy=0 for N>8. Then by is like ay, or
by = O(NTIVE),

o(N—lllﬁ)

The recurrences for ¢y and ey are the remaining ones. Considering that
Jn = 0 for N=6, and that oy and by have the same type of recurrence we con-
clude that cy and ey are similar.

Let us look at cy. The sclution for cy can be found in Sedgewick (1975, pp.
297-208). Then ]



e

N &
oy = | [ {c3+ ﬁ | ‘—]i
: i=t k=7 zj

751
LN N
= ﬁzj cs+2wk(:b_.1 H .'L',-
=t k= =k
Considering that
[z = o(n-9),
J=7
Cg = 0(1) i
oy = o(N—ll/S) s
wy = 0(1),
11 =z = o,
FSk+1
then
ey = O(N_B/S} .

We conclude that if the value of ty is selected according to Eq.(5) and the
value of sy is selected according to Eq.(6) then [[A{sy.taisy.tniSy—1.ty-1) con-
) N

verges to

[=le}el

cooo

[olelele]

oo
=

The theorem we just proved tell us that the solution of Eq.{2) converges to
the solution of H{sy.ty)p{N) = 0, where H(sy.ty) is as in Eq.(1). Then

_ 4(1+SN—3tN)
P1= T35 28ty

_ 3(B+2sy~-2ty)
P2~ T35 zaty

_ 12
Ps = 35 28ty

_ 10(1-sy—ty)
Pe= T35 2Bty

for some value of sy,ty, according to Proposition 5.4.2 and Proposition 5.4.3.

Theorem 5.4.4. The expected number of rotations in a random AVL tree with N
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keys is bounded by

+3B4,

iy pB2  oPe ~(B2
(i) ng +2L4 =r(N)<1 (La T

and

(i) 2})2 +2?Z1 <1'(N}<2§2 +28?-+p2+p3

Proaf : The left hand side of cases (i) and (ii) can be obtained by cbserving Fig-
ure 5.3.1. The right hand side of cases (i) and (if) can be obtained by using
Lemma 5.2.1.1 and by observing Figure 5.3.1. =

In the following corollary the bounds for v{N) are obtained to hold for any
values of sy and {y in the range given by Proposition 5.4.2 and Propdsition 5.4.3:

Corollary. ——i-O(N 5)S'r'(!‘")< 12 —+0(N%)

1
Lemma 5.4.5. The expected number of nodes in the fringe of an AVL tree with N
keys corresponding to the tree collection of Figure 53.1is

Fvy = L—+z’i+3p—3+4 (N+1)
L
Froof : The above expression can be cbtained by observing Figure 6.3.1 and by
using Eq.2.2-5, =

In the following corellary the value for f(N) is obtained to hold for any
values of sy and £y in the range given by Proposition 5.4.2 and Proposition 5.4.3;
267

Corollary. f(N)= 365 = (N+1)+0(N5)
Lemma 5.4.6. The expected number of unbalanced nodes outside the fringe of a
randem AVL tree with N keys is at least %—(N+ 1)
! 1
Proof : The above expression is obtained as follows: a type 1 tree shown in Figure

5.3.1 must always have a type 3 tree as brother, otherwise it constitutes a type 3
or & type 4 tree. Thus the father node of & type 1 tree is always unbalanced, and

the number of trees in this situation is %—- [
1

Theorem 5.4.7. The expected number of balanced nodes in a randoem AVL tree



with ¥ keys is bounded by

P1 Pz ,Ps LRz
I, L—+sz—s—s-2 2 (N+1)sB(NY<N -f— I, LA ](N+1)

Proaf : The left hand side of the above expression is obtained by observing Fig-
ure 5.3.1 and by using Eq.2.2-5. The right hand side is obtained by using Lemma
5.2.1.6, Lemmma 5.4.5, and Lemma 5.4.6.= .

In the following corollary the bounds for 5{N) are obtained to held for any
values of sy and fy in the range given by Proposition 5.4.2 and Proposition 5.4.8:

18 , 18 oy BIN) 82 _ 15 -5
Corollary. T +O(N %) = NS v RN +0(N~5)

Experiment;al results show that r{N)~0,47 (Ziviani and Tompa, 1960), and
b(N)~0.68N (Knuth, 1973).

5.5. Larggr}'eakly—cled AVL Tree Collections

In Section 5.3 we showed that any AVL tree collection that contains a tree
type with its root node balanced and has more than three types is weakly-closed.
This happens because every AVL tree type that contains more than one internat
node and has its root node balanced suffers from the same type of misbehaviour
that occurs with type 3 of Figure 5.3.2, as described in Lemma 5.3.1.

It is easy to prove a lemma similar to Lemma 5.3.1 for the tree collection
shown in Figure 5.5.1. The only difference in the proof of such lemma is that the
trees shown in Figure 5.3.2(a and b) do not occur, and consequently the unk-
nown probability £y does not exist. The transition matrix corresponding to the
tree collection shown in Figure 5.5.1 invalves one unknown probability sy, as fol-
lows

-4 35  12/5 3
4 =6=4sy 0 4

H(sm)=| g 5(1-s4) -8 0 {1
0 Bsy 18/5 -7

The transition matrix in Eq.(1} contains only one unknown probability, and
the corresponding tree collection shown in Figure 5.5.1 contains more informa-
tien than the tree collection used in the previcus section. Now comes the ques-
tion: Is it possible to apply Theorem 5.4.1 to this tree callection? Unfortunately

we were not able to show convergence in this case. We feel that a similar proof
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oF Fo Fodfp Lo IR, A0

Fig. 5.5.1 Tree collection of AVL trees with more than 2 and less
than 7 leaves (leaves not shown)

type 3

may exist for the tree collection shown in Figure 5.5.1. In fact the ideal situa-
tion is to prove a general theorem about matrix recurrence relations invelving
unknown probabilities, but it seems too difficult to obtain.

What can we say about s as a function of N ?

Unfortunately we cannot say much about sy. For trees of size N = 10 and
N =11 we are able to obtain sy exactly (5/154 and 3/77, respectively). Table
6.3.1 shows simulation results for bigger trees, obtained with a 95% confidence
interval. From Table 5.3.1 the value of sy seems to converge to B/900 when N is
la.i'ge, but we are not able to prove it. Moreover sy may oscillate smoothly, in

such a way that simulations cannot detect. (e.g. consider sy = cos{ln N}/ 100.)

Number sy {percent)
Tree Size of
Trees Fig.5.3.4(a) Fig.5.3.4(b-c) Total
49 10000 0.4204 + 0.0250 | 0.5088 + 0.0388 | 0.9292 + 0.0454
99 5000 0.4368 + 0.0257 | 0.4960 + 0.0383 | 0.9328 + 0.0459
499 5000 0.4201 £ 0.0113 | 0.4936 + 0.0173 | 0.9138 = 0.0204
999 2000 0.4212 + 0.0125 | 0.4944 + 0.0193 | 0.9156 + 0.0230
2999 1500 0.4154 + 0.0083 | 0.4740 + 0.0127 | 0.8893 + 0.0152
4999 1000 0.4101 + 0.0076 | 0.4810 + 0.0119 | 0.8910 = 0.0141
9999 1000 0.4132 + 0.0055 | 0.4806 + 0.0086 | 0.8938 + 0.0101
14999 200 0.4092 + 0.01068 | 0.4773 + 0.0153 | 0.8865 + 0.0183
19999 300 0.4086 + 0.0070 | 0.4836 + 0.0109 | 0.8922 + 0.01268

;[‘able 5.3.1 Results for sy

1t is also possible to prove a lemma similar to Lemma 5.8.1 for the tree col-
lection containing 10 types shown in Figure 5.5.2. The corresponding transition
matrix, which, involves eight unknown probabilities s, s;, sg, §3, 54, 55 £ and w, is
shown in Figure 5.5.3.
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Fig. 5.5.2 Tree collection of AVL trees with 10 types {leaves not shown)

. 5
6(1—u) -6 %(s—sslﬁ-l,-f—t -16-5- 2 %
6u -155-’- -7 —%ss#,a?—t 2 -}%
15& -7 —%sss-i-g-t 2 % i—?
T 7 7 ~B—dss +3t B £
-?71(1—s +ss=t)  ~9
:??isss 2— —10
:??is.?g -2-8?- —-10
%4—385 -?% —12‘

Fig. 5.5.3 Transition matrix corresponding to the tree collection
of AVL trees shown in Figure 5.5.2
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When the number of unknown probabilities involved in the transition matrix
is greater than cne the preblem of dealing with these unknown prebabilities
becomes a mathematical pregramming problem. This fact is important because
the bounds for any complexity measure are cbtained from the minimum over all

possible values of the unknown probabilities in the transition matrix.

Assuming that a convergence theorem exists for {i) the AVL tree collection
containing 4 types shown in Figure 5.5.1, (ii} the AVL tree collection containing
10 types shown in Figure 5.5.2, and (iii} the AVL tree collection containing 15
types shown in Figure 5.5.4, then the sclution of_

p(N) = P+%‘%p(w—1>

converges to the solution of
H(N)p(N) =0 ()

Solving Eq.(2) for the three AVL tree collections just mentioned, and taking
the minimum over all possible values of the unknown probabilities for each com-
pléxity measure considered, we obtain the results shown in Table 5.5.1.

Tree Collection

| B0

Size | Characteristic

4 | weally-closed | 0.75N | [0.38, 0.74] | [0.53 + 0.53/ N, 0.78 — 0.22/ N |
10 | weakly-closed | 0.83N7 | [0.40,0.72] | [0.58 + 0.58/ N, 0.76 — 0.24/ N
15 | weakly-closed | 0.86N | [0.43, — ] | [0.60 + 0.60/ N, 0.74 — 0.26/ N ]

Table 5.5.1

R i RS e e e

Eﬁ Apphcatlon m Other Bma.ry Search Trees

_ Welght~ba1anced trees {WB[a]} were mtroduced by Nle\rergelt and Relqgom‘

;( 1973) A bmary search tree is WB[a] if the number of leaves‘in theleft subtree

" of the root. node over the total number of leaves in the tree is m ‘the interval
[at, 1=a]. The root balance « of a cempleie bmary search tree is 172, lee AVL
trees, WB[a] trees are balanced by single and double rotations.
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Fig. 5.5.4 Tree collection of AVL trees with 15 types (leaves not shown)

Another class of weight-balanced trees were introduced by Baer (1975) and
also Gonnet {1982). They derived an algerithm that can be described as a coun-
terpart of the AVL trees: perform single or double rotations whenever these
rotations can reduce the total internal path of the subtree.

The closed AVL tree coliections of Figure 5.2.1.1 and Figure 5.2.2.1 are also
closed weight-balanced tree collections. Consequently, the AVL results shown in
Table 5.1.1 for these tree collections are exactly the same results one would
cbtain in the analysis of weight-balanced trees using these same tree collec-
tions.
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6. AN ANALYSIS OF SYMMETRIC BINARY B-TREES

6.1. Motivation

Bayer {1971) proposed a binary representation for 2-3 trees, as shown in
Figure 6.1.1. Note that the binary representation for 2-3 trees has an asym-
metry: the left edges always point to a node at the next level, while the right
edges either point te a node at the same level or point to a node at the next
level. Removing the asymmetry of the binary B-trees leads to the symmetric
binary B-trees, abbreviated as SBB trees (Bayer, 1872).

@
(2)=(5) 19
OGCOOEIW OECPEREOO
Fig. 8.1.1 A 2-3 tree and the corresponding binary B-tree

{(leaves not shown)

Figure 6.1.2 shows a graphic representation of an SBB tree. For SBB trees
two kinds of heights need to be distinguished: the vertical height A (called h-
height), required for the uniform height constraint and calculated by counting
only vertical edges in any path from root to leaf, and the ordinary height %
{called k-height}, required to determine the maximurn number of key comparis-
ons and calculated by counting all edges in a maximal path from root to leaf.
The formal definition of SBB trees, the description of the insertion algorithm and
" the transformations {called splits) necessary to keep the tree balanced are
presented in Appendix D, :

Fig. 6.1.2 SBB tree of h-height 2 and k-height 4

An SBB tree can also be seen as & binary representation for a 2-3-4 tree as
defined by Guibas and Sedgewick (1978}, in which "supernodes” may contain up
to three keys and four sons. Such a "supernode” (with keys 3, 5, and 9 and sons
containing keys 2, 4, and 7, 10) can be seen in the SBB tree of Figure 6.1.2.

In 1972 Bayer (1972} introduced the trees and the maintenance algorithms,
and showed that the class of AVL trees is a proper subset. Later Wirth (1976)



presented an implementation of the insertion algorithm using Pascal. Huddles-

ton and Mehlhorn (1981) showed that the number of nodes revisited to restore

the tree property, counted from father of the node inserted into the tree to the A
node at which the retreat terminated, is constant. In another paper by Huddles-

ton and Mehlhorn (1980), SBB trees are used as a basic data structure for

representing linear lists. The University of Washington's ESP text editor

developed by Fisher, Ladner, Robertson and Sandberg {Ladner, 1980) uses SBB

trees as a basic data structure.

Olivié (19B0a, 1980b) presented a relationship between SBB trees and son-
trees (Ottmann and Six, 1976) and a new insertion algorithm which needs less
restructuring per insertion and produces SBB trees with smaller height than
the original algorithms proposed by Bayer (1972). Ziviani and Tompa (1980)
showed experimentally that, on the average, SBB trees perform approximately
as well as AVL trees. Using the set of transformations suggested by Olivi¢
(1980b) to preserve the balance of the tree, the experimental results show that
SBB trees require less work than AVL trees to maintain balance, and the search
time is only slightly longer. One main observation in Ziviani and Tompa's paper

is that SBB trees are a practical structure for representing dictionaries.

I3

We now define certain complexity measures:
(i) Let 6(N) be the expected number of completely k-balanced 1 nodes in an
' SBB tree after the random insertion of N keys into the initially empty tree;

(ii) Let s{N) be the expected number of splits  required during the insertion of
the (N+1)* key into a random SBB tree with N keys; )

(iif) Let Prie hi(N)} be the probability that zero height-increase transforma-
tions } occur during the insertion of the (N+1)* key into a random SBB tree
with N keys; '

(iv) Let Pr{l or more hi(N)} be the probability that one or more height-
increase transformations oceur during the insertion of the (N+1)® key into a

randem SBB tree with N keys;

(v) Let m(N) be the maximum number of splits that may occur outside the
fringe in an SBB tree during the insertion of the (N+1)® key into a random SBB

1 A node in an SBB tree is k-balanced when the k-height of the left subtree is equal to the k-
height of the right subtree.

$ See Appendix D for the definition of the transformations in SBB trees.
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tree with N keys;
(vi) Let (V) be the expected number of nodes in the fringe of an SBB tree after

the random insertion of N keys into the initially empty tree.
In Section 6.2 a small tree collection of SBB trees of k-height 1 is studied.
In Section 6.3 a bigger tree collection of SBB trees of A-height 2 is proved to be

a closed collection, and results on the complexity measures are obtained.
Table 6.1.1 shows a summary of the results obtained for SBB trees.

First Order Analysis t Second Order Analysis $
Tree Cellection Size 3 30
ﬂlg)— [o.51+ 931 ogs - 214] | [057+ 057 g7z 028 ]
s{N) [0.29,0.63] f0.36,0.56]
Pri0 hi{N} 0.66 (.66
Pr{1or more hi{N)} 0.34 0.34
Fin) 0.66 N +0.66 0.B5N+0.85

. t For Nx8

% Results are approximated to o(¥-5)

Table 6.1.1 Summary of the SBB tree results

8.2. First Order Analysis

The analysis of the lowest level of the SBB tree can be carried out by consid-
ering the tree collection of SBB trees with four or less leaves and h-height 1, as
shown in Figure 6.2.1. The first step necessary to perform the first order
analysis is to show that the SBB tree collection of Figure 6.2.1 is closed
(Deﬁmtlon 2 3. 2)

T

Ammm

type 1
Fig. 6.2.1 Tree collection of SBB t.rees mth faur or less leaves and R-height 1

type 2 'g type 3

Theaerem 6.2.1. The SBB tree collection shown in Figure 6.2.1 is closed.

Proof : An insertion into type 1 always leads to a type 2 tree. An insertion intc a
type B tree always leads to a type 3 tree, and in this case a split transformation
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occurs with probability 2/3. The only case where a height-increase transforma-
tion occurs is after an insertion into type 3, and in this case a split transforma-
tion may take place higher in the tree. But even if this split transformation
takes place higher it causes no problem because the smallest subtrees that mayA
be moved around are exactly type 1 and type 2 subtrees, which are the types
one would obtain anyway if an insertion is performed into a type 3 tree, =

Theorem 6.2.1 says that all the transitions in the tree collection of Figure
6.2.1 are well-defined, so that the theorems presented in Chapter 2 can be
applied. Thus

-3 0 2
H=]3-4 3
0 4 -5

From Eq.22-3 we have Hp(N)=0 and therefore p,{=)=8/35,
Pa{=) = 15/ 35, and ps(=) = 12/ 35. Since the eigenvalues of H are 0, -5, ,~7, we
cbserve that p,(N) = B/ 35, po(N) = 15/ 35, and ps(N) = 12/ 35, for N=8.

Theorem 8.2.2. The expected number of completely k-balanced nodes in a ran-
dom SBB tree with N keys is bounded by

BL B 4_}@11»1) <5(N) < N—[’;—z] (N+1)

Proaf : The lower bound is obtained by using Eq.2.2-5 and observing Figure 6.2.1.

The upper bound comes from the fact that b {N) plus the expected number of
k-unbalanced nodes is equal to N, and the expected number of k-unbalanced

nodes in this case is I;—S(N-o-l). n

18,18 BN _86_ 1
Corollary. 35+35NS N 57 N for N=6

Thaorem 6.2.3. The expected number of splits in a random SBB tree with N
keys is bounded by

Epe<s(N) < 1-(pr+ Lpo)

FProof : The lower bound is obtained by observing that a split transformation

happens when an insertion is performed into the type 2 shown in Figure 8.2.1,
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with probability 2/3. The upper bound is obtained by observing that the max-
imum number of splits per insertionis 1.=

Corollary. s—ss(N)s g% for N=6

Lemma 6.2.4. The probability that no height-increase and one or more height-
increases oceur on the (N +1)* random insertion into a random SBB tree with N
keys are, respectively

Pri0 hi(N}} = p,+pe
Pril or more hi(N)} = pa

Proof : By observing Figure 6.2.1. =

Corollary. Pri{0Ri(N)] = % for N=6
Pril or more Ri(N)} = é—g— for N=6

Lemma 6.2.5. The probability of a split occurring outside the fringe during the
insertion of the (N+1)* key into a random SBB tree with N keys is m(N) = pg.
Furthermore, no more than one split may occur.

Fraof . An insertion into type 8 shown in Figure 6.2.1 causes a height-increase
transformation, which may cause a split higher in the tree. =

Corollary. m(N) = é—z for N>8

Lemma 6.2.6. The expected number of nodes in the fringe of an SBB tree with N
keys that corresponds to the tree collection of Figure 6.2.1 is

F ~ |1 Pz Ps
,1'(1\.’)--[—2 R3S ](N+1)
Praof : By observing Figure 6.2.1. =

Corallary. F(N) = %m% for N=8



6.3. Second Order Analysis

We can improve the bounds obtained in the previous section by considering .
& larger tree collection. Figure 6.3.1 shows a tree collection of SBB tree with 30
types and A-height 2. ‘

Thearem 8.3.1. The SBB tree collection of Figure 6.3.1 is closed.

Proof : When an insertion into an SBB tree causes no split transformation then
there is no problem. When an insertion does cause a split transformation some-
where in the tree then we consider two possible cases:

(i) The split transformation occurs at a node that belongs to one of the trees of
the tree collection shown in Figure 6.3.1. 'This case obviously causes no problem.

(ii) The split transformation occurs at a node outside the fringe. By examining
Figure 6.3.1 we can see that there is no type that contains two opposite horizon-
tal pointers at the second level. This fact implies that in order to have a split
transformation out of the fringe we must (a) have at least any two subtrees from
the tree collection of Figure 8.3.1 sharing the same root; and (b) an insertion
into one of these two subtrees must cause a height-increase transformation
which will cause the split transformation higher in the tree. However this split
transformation has no effect on the composition of the fringe because the fringe
of the transformed subtree is entirely contained in the subtrees that are moved
around during the transformation.

Figure 8.3.2 illustrates this fact: Assume that Ty, T, T3 and T, each centain a
subtree that belongs to the tree collection of Figure 6.3.1, Suppose that an
insertion inte Tp (or T3) causes a height-increase transformation (resulting in
subtree Tg), which will cause a left-right split transformation at the next level.
Clearly the subtrees Ty, T3, 75, and T, are moved around without any
modification in their structures. s

Initial Situation Intermediate Situation Transformed Subtree

£\ LN /N /N [N £ /A /A

Fig. 6.3.2 Left-right split transformation {an insertion into 7’
transforms it into Ty)
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Fig. 6.3.1 Tree collection of SBB trees with 30 types (leaves not shown)
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The matrix H can be easily obtained by observing Figure 6.3.1. From
Eq.2.2-3 we have Hp(N)} = 0, and therefore

P1 = 874463196 /49525503055
Pg = 1620896463/9905100611
Pa = 1102942170/9905100611
Pa = 783174402/9905100611

Ps = 176215347/1415014373

Ps = 516201576 /9905100611

Pr = 183623695/5680057492

Ps = 183823695 /5660057492

Py = 384971148/9905100611

P10 = 394971148/9905100611
P11 = 7311869433/198102012220
D1z = 7311869433/198102012220
P13 = 122549130/9905100611
D14 = 122648130/9905100611
P15 = 163396840/9905100611
P15 = 1608763167/99051006110
D17 = 1072508778 /49525503055
P1s = 1608763167 /99051006110
P15 = 330862651/39620402444
Peo = 330882651/39620402444
Pas = 4946862/230351177 -
Pep = 7420293 /480702354

Pas = 7420293 /460702354

Pae = 114212043/8905100611
Des = 114212043/9905100611
Pes = 50133735/9905100611

Par = 340437933/26300287460
Pee = 340437933/28300287460
P = 360039042 /49525503055
Pss = 78121098/9905100611

Since the eigenvalues of H are 0, -5, -5.96+7.034, ..., —13.73, —14.B0+4.221i,
the asymptotic values of p(N) obtained from Eq.2.2-4 are approximated to
O(N55%,

Theorern 6.3.2. The expected number of completely k£-balanced nodes in a ran-
dom SBB tree with N keys is bounded by

0.5709%+ 0'5%?- +O(N-5%) < "—%{‘-’l-s 0.71632— g-2~’%-+0(N'5-"‘5}

Proof : Similar to the proof of Theorem 6.2.2. «
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Theorem 63.3. The expected number of splits in a random SBB tree with N
keys is bounded by

0.35921+ O(N 5% < s (N} < 0.55672+ O{N %)

Proof : Similar to the proof of Theorem 6.2.3. =

Experimental results show that s(N) ~ 0.39 (Ziviani and Tompa, 1380).

Lemma 6.3.4. The probability of a split cccurring outside the fringe during the

insertion of the {N+1)® key into a random SBB tree with N keys is
m{N) = 0.19751+ O(N59), '

Proof : Similar to the proof of Thecrem 6.2.5. =

Lemma 6.3.5. The expected number of nodes in the fringe of an SBB tree with N
keys that corresponds to the tree collection of Figure 8.3.1is

f(N) = 0.BB4B85N + 0.85465 + O(N*“‘*)

Froo, f Similar to the proof of Thecrem 6 2.6.»

We end this chapter with the following remarks:

(i} The results on height-increase transformations obtained in the first order
_analysis cannot be improved in the second order analysis, because there is no
possibility of a height-increase transformation at the second level of any type in
the tree collection shown in Figure 6.3.1. {This fact is tl;e key point that permlts
the proof of Theorem 6.3.1.)

. (ii) A third order analysis seems difficult to cbtain because of the large number

" of types involved in a tree collection of SBB trees with h-height 3. A tree collec- o

tion of SBB trees of h-height 3 which have as subtrees the 30 types of the h-

. height 2 tree coklection of F__‘igure '-6.3.1 cqntains n[ﬂﬂé—ﬂ)—

» =30,

= 13950 types, since
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7. EXPECTED HEIGHT OF BINARY SEARCH TREES

7.1. Motivation

 In this chapter we study random binary search trees { constructed with no
" balance constraints. Knuth (1973, § 6.2.2, p.427) showed that the tree search
requires about 2In N comparisons if the keys are inserted into the tree in ran-
dom order. Robson (1979) showed that the expected depth of the deepest node
(i.e. the height) is approximately twice the expected depth of a random node in
the tree. In fact Robson presented a proof of the existence of a logarithm upper
bound of approximately 4.31 InN. He also presented a sequence of lower bounds
by analysing heuristies for finding nodes of near maximum depth, which the best
lower bound computed is about 3.63InN. Gonnet {1981, p.47) conjectured that
an improved upper bound of

4.31,..InN-2.81...InlnN +0{1}
is tight.
The expected height of randem binary search trees ts the maximum size of
a stack which may be required by a recursive algorithm operating on the tree.
The worst case is O(N). but it happens very rarely. Sedgewick (1975, pp.38-41)
also peinted out that this height is the stack size necessary to sort N keys using

the straightforward version of quicksort, in which the recursion is applied to
both subfiles after the partitioning of the file.

The object of this chapter is to show how to apply the fringe analysis tech-
nigue presented in Chapter 2 to obtain a lower bound on the expected height of
binary search trees. This application differs considerably from the previous
applications of fringe analysis shown in this thesis. The lower bound obtained is
not as good as the one obtained by Robson (1979), but the method used to
obtain the result is interesting in its own right.

The complexity measures used in this chapter are as follows:

(i) Let Z(N) be the expected height of a random binary search tree with ¥ keys;

(ii} Let £(N) be the expected number of external nodes at the lowest level of a
random binary search tree with N keys.

t See Section 1.4 for the definition of & random binary search tree
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7.2. Fringe versus Height

Figure 7.2.1 shows an open tree collection of binary search trees. {cf.
Definition 2.3.4.) Notice that an insertion into a type B tree shown in Figure 7.2.1
gives one type 1 tree and one cther node which we ignore.

% o o
type 1 type 2
Fig. 7.2.1 (Leaves not shown)

Unlike the fringe of a balanced search tree, the fringe of a binary search
tree with N keys consists of one subtree that is isomorphic to one type in a tree
collection C. Figure 7.2.2 shows some instances of the fringe of a binary search
tree corresponding to the tree collection of Figure 7.2.1 when random insertions
are performed into the tree. Note that our fringe “traces” one subtree of the
total tree. An insertion into the type 1 tree causes a height increase by ! with
probability 2/3, and an insertion into the type 2 tree always cause a height
inerease by 1. Of course the actual height of the tree may be given by some
other subtree, but the one under analysis will give a lower bound on the height.

oo -}
Fig. 7.2.2 Instances of the fringe of a binary search tree when random

insertions are performed (fringe is encircled)

The {ollowing theorem relates information about the fringe (as defined
above) with the expected height of random binary search trees.

Thearem 7.2.1. If co<I(N)<c, then
2olnN+0(1) < A{N) =< c,InN+0(1)

Proaf: The expected increase in height after an insertion is %ill)_ By summa-

tion we obtain

- £(d
coHy+ < h(N) = ,ﬁni_s-_:?—s ¢y Ay
! =l
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N
where Hy = 2%&-; for N=1, and Hy =InN+0.577..+0(NY) (Knuth, 1968, §
€=1

1.2.7).
Thus colnN+0{1) < A(N)< o In N+O(1)=

In the next paragraphs we show how to obtain several values of cg.

The definition of the fringe presented above differs considerably from the
definition of the fringe used in other parts of this thesis. The fringe now is com-
posed of one subtree. Consequently, p;(N) is defined as the probability that the
tree we are tracing is of type 1.

Let us consider one tree of type 1 and the type 2 tree of Figure 7.2.1 as
shown in Figure 7.2.3. The arcs show the probabilities of different transitions.
The transitions marked with a * produce a height increase of 1.

Then

N-1 4
PNy N N | [e{N-1)
PN}~ ;{_ P

_-14
where H = 1—g|’

Let p(N) be an m-component column vector containing p; (N). Then

pN)= p(N-1) (1

H
I+N

where 7 is an m Xm identity matrix.

Eq.(1) is of the form of Eq.2.1-2, which means that the theorems of Section
2.2 apply. Thus the solution of Eq.{1) converges to the solution of Hp(N). Since
the eigenvalues of H are ¢ and —5 then p,(N) = 4/5 and pp{N) = 1/ 5, for N=5.

Lemma 7.2.2. Let AL(N) be the expected increase in height due to one inser-
tion into an N-key binary search tree. Then
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AR(N) = [ —] [g;(ﬁg] =—— for N=6

Proof : An insertion into 2 of the 3 external nodes of the type 1, and an insertion
into any of the 4 external ncdes of type 2 shown in Figure 7.2.1 increases the
height by 1, =

Lemma 7.2.2 leads to the following thecrem:

Theorem. 7.2.3. The expected height of a random binary search tree with N keys
that corresponds to the tree collection shown in Figure 7.2.1 is

h(N)> 12 nNvo)

Proof : Similar to the proof of Theorem 7.2.1. =

7.3. Iargeri Tree Collections
In order to improve the lower bound on the expected height of binary

search trees obtained in the previous section we have to consider larger tree

collections. The foliowing notation is useful in this case. We represent a type as

[a, b,c,d,..]

where @, b, ¢, d,... represent the number of external nodes at the lowest level,
at the second lowest level, at the third lowest level, at the fourth lowest level,... .
Several trees may be grouped with this notation. There is no need to
differentiate trees other than by the number of external nodes at different lev-
els. For example

are grouped as type {4,2].

This notaticn applied to the tree collection shown in Figure 7.2.1 appears as
[2.1] for type 1 and [4,0] for type 2. An insertion into the first element of type
[2.1] gives [2,1], an insertion into the second element of type [2,1] gives [4,0], an
insertion into the first element of type [4,0] gives [2,3], which is reduced to [2,1]
by ignoring one node at the second lowest level, and an insertion into the second
element of type [4,0] is not possible because it contains zero external nodes.



Thus the tree collection constituted by types [2,1] and [4,0] gives
plea]=
pla0] = =
where type [2,3], obtained when an insertion is performe.d int.t; type [4.0], is
reduced to type [2,1]. Every time a reduction is performed information about

nodes at higher levels is lost. However, the reductions are necessary to have a
finite system. -

Now comes the question: Which is the best way to obtain bigger tree collec-
tiens and improve the lower bound on the height ? It is not difficult to see that
tree collections containing types with height 4 or more may contain a large
nurnber of types. We arrived at the conclusion that one good strategy is to
minimise the losses in the reductions. (i.e. try to avoid reductions at the lowest
levels as much as possible.)

Two examples of tree collections containing four types are:

type [2,1,1] type [2.1.1] A
type [2.3,0] and type [2.3,0]
type [4,0,1} type [2,1,3]
tyfae [4,2,0F type [4.0,0]

Among tree collections with four types the best that we found is the follow-
ing:
type [2,1,1,1]
type [2.1,3,0] (1
type [2.3.0,0]
type [4.0,0,0]

with the following reductions:

[2.3,0,1] is reduced to [2,3,0,0]
{2,3,2,0] is reduced to [2,3,0,0]
[4,0,1,1] is reduced to [4,0,0,0]
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[4,0,3,0] is reduced to [4.0,0,0]
[4.2,6,0] is reduced to [4,0,0,0]

Using Eq.7.2-1 in the tree collection shown in (1) we get the matrix:

3 2 0 0
1-6 2 0
H=]1 35 4
1 1 83-2

which has the solution:

pl(2.1,1,1]=8/81

2{2.1,3,0] = 18/81
pl2,3,0,0] =32/81
p[4.0,0,0] =29/81

Considering the fact that

then

R(N) = %219-1:1N +0(1) = 2.7161nN + 0{1).

Table 7.3.1 shows the best values obtained for cg for different tree collec-
tions. Each tree collection is composed of types with four levels. The results for
cp may not be optimal, but they are the best we obtained after trying many
different {ree collections for each size.

From Table 7.3.1 we can see that the values obtained for ¢y improve at first,
but not too much when the size of the tree collection gets bigger. The best

result was obtained for a tree Qoﬂe ction with 33 types, where

R{N)=3.179InN + 0(1).

We suspect that ene needs a very large tree collection (probably on the order of
thousands of types) in order to improve the above result significantly. Neverthe-
less, it is a surprising application of fringe analysis to deduce bounds on the
height, which is a global mensure.
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“Tree Collection Size | Constant ¢q
4 2.718
5 2.748
(] 2.813
7 2.861
% . 8 2.909
9 2.949
10 2.965
11 2.984
12 2.996
13 3.013
18 3.081
22 3.125
32 3.160
33 3.179

Table 7.3.1 Constant term in the lower bound for the height
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8. CONCLUSIONS

In Chapter 2 we show that the matrix recurrence relation related to fringe
analysis problems converges to the sclution of a linear system invelving the
transition matrix, even when the transition matrix has eigenvalues with multipli-
¢ity greater than one (i.e., the eigenvalues of the transition matrix do not need
to be pairwise distinet). This fact makes the fringe analysis theory presented
there flexible and general enough tc permit its application in the analysis of
many different search trees.

In Chapter 3 an analysis for the three lowest levels of 2-3 trees is accom-
plished. It is indicated that if one applies the same technique used to obtain the
three level tree cellection for 2-3 trees, then it might be possible to carry out an
analysis for the four lowest levels, which would imply the solution of a
4410 x 4410 linear system.

In Chapter 4 an analysis of B-trees is performed. Information about the
operation of splitting an overfull node and the ccncurrency of operations are
some of the results presented there.

. In Chapter 5 we present a closed AVL tree collection containing three types.
We also show that an AVL tree coliection containing four types is not closed. An
inherent difficult posed by the rotations necessary to keep the AVL tree bal-
enced forces the introduction of two unknown probabilities sy and iy into the
transition matrix. In the main theorem of Chapter 5 we prove convergence of
the matrix recurrence relation involving the unknown probabilities sy and £y.

Like AVL trees, weight-balanced trees are balanced by single and double
rotations {(Knuth, 1973, § 8.2.3). For this reason only small tree collections of
welght-balanced trees are closed. For large tree collections we find the same
type of difficulties showed in Chapter & for AVL trees. Consequently, the tech-
nique presented there is also suitable for the analysis of weight-balanced trees.

The main merit of Chapter 6 is to present a higher order analysis of a bal-
anced binary search tree, the symmetric binary B-tree. A closed tree collection
containing 30 types is obtained and some results are derived from it.

In Chapter 7 a theorem relating the fringe of a binary search tree with its
height is presented. This result permits us to obtain a lower bound on the
expected height of unbalanced binary search trees.
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APPENDIX A. AVI. Trees

Adel'son-Vel'skil and Landis (1962) presented the AVL trees. A binary
search tree is AVL if, for every node, the difference between the height of the
left subtree and the height of the right subtree is at most one. A balance field in
each node can indicate this with two bits: +1, higher right subtree; 0, equal
heights; — 1, higher left subtree,

The process of insertion of a new key consists of three parts:

{i) Follow the search path until it is verified that the key is not in the tree (i.e.,
find the place of insertion).

(ii) Insert the new node and set the balance field to C.
(iii) Retreat along the search path and check the balance field at each node. At

this point a transformation may be necessary, as described below.

Phases 1 and 2 are similar to the search and insertion in a binary search
tree, as described in Section 1.4, except by the balance field consideration. In
phase 3 balancing occurs if the balance field indicates that the node becomes
more unbalanced with the insertion {occurs when the direction of the search
path and the present balance coincide). In this case a single or double rotation
oceurs, depending on the balance field of the node and on the balance field of its
son, which is along the search path. Figure 5.3.3, in Chapter 5, illustrates the
AVL tree transformations. As the height of the rotated subtree is the same as
the height of the subtree before the insertion, at most one rotation per insertion
is necessary. Of course if the balance field indicates that the subtree becomes
less unbalanced, a modification of the balance field is sufficient.

APPENDIX B. 2-3 Trees

In a 2-3 tree every internal node contains either 1 or 2 keys, and all exter-
nal nodes appear at the same level. The class of 2-3 trees is a special class of B-

trees, and they are more appropriate for primary store.
The process of insertion of a new key consists of:

(1) Follow the search path until it is verified that the key is not in the tree (i.e.,
find the place of insertion).

(ii) Insert the new key into the node. To insert into a node that contains only
one key, we insert it as the second key. If the node already contains two keys,
we split it into two one-key nodes, and insert the middle key into the parent
node. This process may propagate up if the parent node already contains two



107~

keys. When there is no node above we create a new root node to insert the mid-
die key.

Following the notation presented Aby Chvatal et al. (1572, Problem 37),
_‘ where the dots indicate keys, the first three steps in the growth of a 2-3 tree are

RN

© and the fourth step is either o

[T

APPENDIX C. B-Trees

According to Bayer and McCreight (1972) a B~tree of order m is a bal-
anced multiway tree with the following properties: (a) The leaves are null nodes
which all appear at the same depth. (b) Every node has at most 2m +1 sons. {¢)
Every node except the root and the leaves has at least m +1 sons; the root is
either a leaf or has at least two sons 1. Consequently, a 2-3 tree is a B-tree of
orderm = 1,

The process of insertion of a new key starts with the search for the place of
insertion, followed by the insertion of the key into a node. To insert a new key
into a node that contains less than 2m keys we just insert it into the other keys.
H the node already contains 2m keys, we split it into two m-keys nodes, and
insert the middle key into the parent node, repeating the process again with the
parent node, When there is no node above we create a new root node to insert
the middle key.

t Knuth (1973, p. 473) presented a slightly different definition of B-trees, In Xnuth's definition
every node in & B-tree of order m has at most m~1 keys and at least [m/2-1] keys. Knuth's
definition considers B-trees of order 2i, 123 (B-trees conteining at least i keys and at most, 2é —1
keys), while the above definition does not consider such trees. However, these trees present a
disadventage: the split operation divides the node into two nodes with a different number of keys
in each one, which implies that a decision about which node will contain more keys has to be tak-
en.
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APPENDIXD. Symmetric Binary B-trees

Symmetric binary B-trees, abbreviated as SBB trees, are binary trees with
two kinds of edges, namely vertical edges and horizontal edges, such that {cf.
Bayer, 1972):
(i) All paths from the root te every leaf node have the same number of vertical
edges, and

(ii) There are no successive horizontal edges.

Figure 8.1.2 {Chapter 8) shows a graphic representation of an SBB tree. As
mentioned in Chapter 8, SBB have two kinds of heights: the vertical height A,
calculated by counting only vertical edges in any path from root to leaf, and the
ordinary height k&, calculated by counting all edges in a maximal path from root
to leaf.

The algorithm to construct and maintain SBB trees uses lecal transforma-
tions on the path of insertion to preserve the balance of the trees. The key to be
inserted is always inserted after the lowest vertical pointer in the tree. Depend-
ing on the tree's status prior to insertion two successive horizontal pointers may
result, and a transformation may become necessary. If a transformation is per-
formed, the number of vertical pointers from the root to the new leaf Vmay be
altered, thus requiring further transformations to obtain a uniform height. Fig-
ure Di shows the tramsformations proposed by Bayer (1972). Symmetric
transformations (i.e. right-right and right-left) also may occur.

Initial Situation Resulting Tree
Rk adman ek
oo | A
(a) Left-left sphit .
T 0 | I @/%
{b) Left-right split

Fig. D1 The two transformations as proposed by Bayer (1972)

A revised set of transformations has been propesed by Olivié (1980b). The
insertion algorithm using the new transformations produces SBB trees with
smaller height than does the original algorithm, and it needs less transforma-
tiens to build the tree. Guibas and Sedgewick (1978) have alsc defined similar
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transformations. Figure D2 shows the new transformations. The left-left split
and the left-right split require the modification of 3 and 5 pointers respectively,
and the height-increase transtormation requires only the modification of two
bits. Symmetric transformations may also occur.

Initial Situation Resulting Tree

oo

(a) Left-left split

:

SOl

(b} Left-right split
. ©
&-0—0—0 |

(e) Height-increase

o
)
®

Q
® @
@

Fig. D2 The new transformations as proposed by Olivi¢ (1980b)

When a height-increase transfoermation occurs, the height of the
transformed subtree is one more than the height of the original subtree, and
thus the node rearrangement may cause other transformations along the search
path up to the root. Usually the retreat along the search path terminates when
either a vertical pointer is found or a split transformation is performed. As the
height of the split subtree is the same as the height of the criginal subtree, at
most one split transformation per insertion may be performed.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

