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ABSTRACT

The representation of integers in arbitrary number
systems is considered. The main emphasis is on prob-
lems concerning ambiguity, completeness and
equivalence. We develop a rather peneral automata-
theoretic method for solving such, in essence, purely
number-theoretic problems. The method seems to be
applicable in a variety of different situations,

1. INTRODUCTION

Recent work in the theory of codes (see, for instance Maurer
et al. (19B2)), as well as in cryptography, has led to problems deal-
ing with the representation of positive integers in arbitrary
number systems. Here "arbitrary” means that the digits may be

larger than the base and that some integers may have several

* This work was supported by Natural Sciences and Engineering Research Council of
Canada, Grant Nos. A7403 and A1617,
1 On & leave of absence from the University of Turku, Turku, Finland,
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representations or none at all. Typical questions arising are: Do
the sets of numbers represented by two given number systems
coincide? Is the representation of numbers according to a given

number system ambiguous or unambiguous?

Very little is known about the solution of such problems in
spite of their fundamental number-theoretic nature and also in
spite of the fact that the representation of integers is fundamental
also in the theory of computing. Moreover, such problems seem to
be closely connected with the theory of arithmetical codes, in
particular with the work of P. Elias (see Jelinek (1968), also
Jirgensen and Kunze (1980).) Unfortunately there fails to be a
general framework or theory for dealing with such problems
although there are some scatlered results such as the one by

Honkala (1982).

The purpose of the present paper is to lay the foundations for
such a theory by discussing the basic notions in a systematic way
and introducing a technique for solving decision problems. It is
interesting to note that this technique is based on results in
automata theory, and we do not know any other way of solving the
purely number-theoretic problems we are dealing with! Of course,
the constructions can be 'translated" into a language which does
not use autemata theory but they may then become very

complicated.

A brief outline of the contents of the paper follows. Section 2
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introduces the basic notions and gives also some examples used in
the later theoretical discussions. After some preliminary lemmas
given in Section 3, we establish our basic too! (the '"translation
lemma") in Section 4. The translation lemma has several direct
corollaries and some of its modifications yield the main
decidability results obteined in Sections 5 and 6. Section 5 gives a
solution for the equivalence problem and also discusses some
problems dealing with the characterization of representable sets.
Section 6 deals with ambiguity and inherent ambiguity. For
instance another proof for the result due to Honkala (1982) is
obtained by our translation lemma. Finally, Section 7 makes an
excursion into L systems, pointing out how our results can be

interpreted in terms of L systems.

The paper is self-contained: only the basics about regular
languages and gsm mappings, Salomaa {1973), are required on the
part of the reader. Maurer et al, (1882) have more motivation for
the study of number systems, and Rozenberg and Salomaa (1980)

information about the notions and results referred to in Section 7.

2. DEFINITIONS AND EXAMPLES
We begin by defining the fundarmental notions of this paper.

Anumber system isa (v+1)-tuple

N = (n,my,...m,)
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of positive integers such that wv21,n 22 and
1£m;<mz< -+ <my, . The number n is referred to as the

base and the numbers m; as digifs,

A nonempty word

My My, 184 S
over the alphabet {m,,...m, | is said to represent the integer
[my, - my )l = my+my o nbmgonf e b my omk
The set of all represented integers is denoted by S(N). A set of
positive integers is said to be representable by o number system,

shortly ENS, if it equals the set S(N), for some number system
N

Two number systems N, and N are called equivalent if
S(N;) = S(Np). Anumber system N is called complete if S(N)
equals the set of all positive integers. It is called almost complete
if there are only finitely many positive integers not belonging to
S(N}.

A number system N is termed embiguous if there are two
distinet words w;, and. w; over the alphabet {m,,..m,}
representing the same integer: [w;]=[wg]. Otherwise, N is

termed unambiguous.

An RNS set is termed unambiguous if it equals S(N), for
some unambiguous number system N . Otherwise, it is termed

inherently ambiguous. (Thus, an RNS set S being inherently



NUMBER SYSTEMS 5

ambiguous means that whenever S =S(N) then N is

ammbiguous.}

Example 2.1 For each n 2 2, the number system

N = (n12 ..,n)
is complete and unambiguous. Consequently, for different values
of n we get equivalent systems, Representation according to N

is customarily referred to as the n-adic representation of integers.

Remark Many of our restlts remain valid also in the case where
zero and even negalive numbers are allowed to be among the
digits. The presence of 0, however, immediately induces ambiguity
and, furthermore, the applications seem to motivate the definition
given above, The reader is referred to Salomaa (1673) for a
discussion about the differences between n-adic and n-ary (i.e.,

including 0 among the digits) representations.

Example 2.2. Consider the number systern N = (2,2,3,4). We
claim that S(N) consists of all positive integers that are not of
the form 2*-3, for some & =234, - -+ . Thus, 1, 5, 13, 29, 61 are
the first few numbers missed.

In fact, no number of the form 2*—3 can be in S$(N)
because if » = 2¥-3 is the smallest such number in S(N), we
consider the representation [a; - a,] ==z . Here obviously

m 22 and @, =3 (because otherwise the represented number
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is even). But now [a; ‘- @m_]=2¥"'~3, contradicting the
choice of x .

On the other hand, for any k 21, an arbitrary integer =z
satisfying R¥*1-2 £z £2¥**—4 is represented by some word of
length k over the digit alphabet. This can be easily established by
induction on k . Observe that

[R¥] = 2¥*1-2 ana [4¥] = 2**%—4,
Hence, our claim concerning S(N) follows. Note also that N is
ambiguous, 8 being the smallest number with two representations.
We'll see in Section 6 that S(N) is, in fact, inherently ambiguous.
In the "dyadic” number system N,=(21.2)., S(N) is
represented by all words over {1,2} that are not of the form 2!1,
for some i 20, Thus, a regular expression can be given for the
set of words representing S(N) in dyadic notation. An analogous

result for an arbitrary base will be shown in Section 4.

Example 2.3: The number system N = (2,1,4) is unambiguous.
This is easy to verify directly.

We claim that S(N) equals the set of numbers incongruent to
2 modulo 8. We show first that all numbers in S(N) are of this
type. This is clearly true of numbers represented by words of
length 1 over the digit alphabet. On the other hand, whenever z
is congruent to 0 (resp. 1) modulo 3, then both 2z+1 and 2z+4

are congruent to 1 {resp. 0) modulo 3. Hence, induction on the
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length of the representing words shows that every number in

S(N} is incongruent to 2 medulo 3.

Conversely, to show that all such numbers are in S{N), we
assurne the contrary. Let = be the smallest number incongruent
to 2 (mod 3) which is not in S(N). Hence, £ =3k or z =3k+1,
for some k . Assume first that 2 =3k . Then if k¥ is odd (resp.
even), the last digit in the representation of z must be 1 (resp. 4)
and the number (3k—1)/2=3(k-1)/2+ 1 (resp. (3k-4)/2) is
congruent to 1 modulo 3 and not in S(N) (because, otherwise, z
would be in S(N)). This contradicts the choice of z . Assume,
secondly, that = =3k+1. A similar contradiction now arises by
considering the number (z-1)/2 or (z-4)/2, depending
whether % is even or odd. ‘

Observe, finally, that in unary notation the set S(N) of
Example 2.2 is non-regular, whereas the set S(#) of Example 2.3

is regular.

Example 2.4: This example is a more general one. Consider, for
k 23, the number system N(k)=(22k). When is N(k)
unambiguous? Clearly, N(k} is unambigucus if k is odd. Thus,
assume that & =2m . It is easy to see that if m is even, then
N{k} is unambiguous. The first odd velues of m yielding an
unambigious N(k) are: 11, 19, 23, 27, 35, 37, 39, 43, 45, 47, 51, 53,
55, 59, 67, 69, 71, 75, 77, 79, B3, B?, 89, 91, 93, 95, 99. The reader is

referred to Maurer et al. (1982) for more information as regards
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this example.

3. PRELIMINARY LEMMAS

This section contains lemmas dealing with the transition from
one base to another, ambiguity, and the construction of some
classes of RNS sets. Note that all our constructions are effective,

although this is not explicitly stated.

Lemma 3.1;  For every number system N =(n,m,, .., m,) and
every integer k22, ‘there is a number system
Ny=(n* a, .., o) equivalent to N . Moreover, if N s

unambiguous then sois N .

Proof. We choofe the digits « to consist of all integers of the

form
.

mil+m12n+'--+'m¢kn"'1, 184, v . (1)
Then clearly S(N;) = S(N). The second sentence follows because
an ambiguity according to N; can be converted into an ambiguity
according to N : if theré are two words representing the same
number according te N;, there are also two words representing

the same number according to N .

Applying Lernma 3.1 to Example 2.2, we see that the same set

S(N) is represented also by the number system {4, 2, 3, 4, 6, 7. B,
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9, 10, 11, 1R). A more detailed analysis shows that actually the
system (4, 2, 8, 4, B, 7, B, 9) is sufficient for this purpose, This is
basically due to the ambiguity of the system N . Observe,
however, that in the general case all of the digits given by (1) are

needed.

The following lernma is from Maurer et al. (1982) but it is also

easy enough to establish directly.

Lemma 3.2: A number system N =(n,m,,...,m,) is ambiguous
it ¥>n. N is unambiguous if the digits m; lie in different

residue classes modulo n .

Lemma 3.3°  No finite set is ENS , whereas every cofinite set is

RENS .

Proof: Our definition of a number system guarantees that there
is always a base n 22 and at least one digit. Hence, the first part
of the assertion is obvious. To establish the second part, consider
an arbitrary cofinite set 5. Without loss of generality, we assume
that the complement of S is nonempty. Let k& be the greatest

number in the complement.

We now define a number system N as follows. The base n
equals k+1. The digits consist of all numbers <n that are in

S, as well as of all numbers 7 such that

nSiSnfin-1 . ®)
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(Obviously all numbers given by (2) are in S .) Then clearly

S(N) € S . To establish the reverse inclusion, it suffices to show

that every number 2n isin S(N). But this follows by an easy
induction, using the digits (2).

.

The range of i in (2) is the best possible in the general case.

For instance, consider the set § missing only the number 1. Then

the base of N will be 2, and Example 2.2 shows that we need all of

the digits given by (2): The digits 2, 3, 4 are insufficient,

Lemma 3.4 Let n 22 be arbitrary. Then every (nonempty)
union of some residue classes modulo n is ENS . Consequently,

both odd and even numbers form an ENS set,

Proof: Given n and some (at least one!) residue classes modulo
n , we define a number system N as follows, The base equais n .
The set of digits consists of all integers that are in one of the given

residue classes and are also S n?-1.

Clearly, every number in S(N) is in one of the given residue
classes. We still have to prove that every number in the given
residue classes is in S(N). Assume the contrary, and let
g = kn+i be the smallest number that is in one of the given
residue classes but not in S(N). Then our choice of the digits
guarantees that & 2n . Hence, there exists a number 1i;, with

the properties
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0£i,£n-1, k—i;,>0, k—i, =4 (modn) .
We now write g inthe form
g =(k-i)n + (Ln +4) ,
where in +1 £n”-1 and, thus, iyn +1 is among our digits. Now
k—i, cannot belong to S(N) because, otherwise, g would be in
S(N). Since k—i, =i(n) and, hence, k~i, isin one of the given

residue classes, this contradicts the choice of g .

The proof of Lemma 3.4 shows that the set S{N) of Example
2.3 is represented alsoc by the number system (3, 1, 3, 4, 6, 7). In
some sense, this number system is more “'natural’” for the set
consisting of all integers incongruent to 2 modulo 3. However, it is

ambiguous, whereas the set of Example 2.3 is unambiguous!

It is easy to see that the bound n®-1 given in the proof of

Lemma 3.4 is the best possible in the general case,

4. TRANSLATION LEM}A AND COROLLARIES

We shall now introduce the method which will be basic for our
decidability results. It consists of representing the sets S(N) as
regular languages. The following result is referred to as the

"translation lemma'",

lemma 4.1:  For every number system N = (n,m,,...,my,), one

can construct a regular expression p(N) over the alphabet
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f1....m] such that the set of words in the language denoted by
p(N). when these words are viewed as m-adic numbers, equals

the set S(N).

Proof: We construct a generalized sequential machine M
translating words over the alphabet {m,...m,} into equivalent
(i.e., representing the same number "over'’ the base n ) words
over the alphabet {1,...m}. The construction is based on the fact
that the "‘carry” will always be bounded in such computations. The

input and output format of M will be explained below.

The state set of M consists of the states g¢.9,,..,.95 , where
t =max(n,m,), and of a special final state g . The input
alphabet is {m,,...my #} . and the output alphabet {1,....n}. gq
is the initial state and ¢ the only final state. The behavior of M
is specified as follows. Intuitively, being in the state g; means

that there is a carry 1 in the computation so far.

Thus, when reading the letter j in the state ¢; , ¥ produces
the output letter j' and goes to the state g; , where i' and §'
are unique integers satisfying

itj=j+in , 187 £%n
It is easy to verify inductively that, in this procedure, i never
becomes greater than 2¢, so M has the required state gy .
Finally, when reading the letter # in the state ¢; . M produces

the output i in reverse m-adic notation (i.e., the rightmost digit
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represents the highest power) and goes to the state g . Thus,
proper translations are obtained only for words from
fmy,...my, i % . Moreover, M translates such words, viewed as
numbers represented according to N in reverse notation and
provided with the boundary marker # ., into words over {i,..n},
representing the same number in reverse n-adic notation.
Consequently, the mirror image of the language M({m,,....m,}"#)
represents the set S(N) in n-adic notation, and clearly a regular

expression p(N) can be constructed as reguired.

As an example, consider the number system N = (2.a.b)
where o =13 and b =22 The computation of ¥ for the input

abaf is given below:

STATE: go ¢gs g3 iz
INPUT: o

b
OUTPUT: 1 2 2 212
NEW STATE: gg g3 g2

Clearly, the dyadic word 212221 represents the same number (109)
as the word ¢ba (which happens to be its own mirror image)
according to N . Of course, the reason for the reverse m-adic
notation and mirror images in the proof of Lermma 4.1 is merely
the fact that we have followed the customary operational mode of
gsm’s : inputs are read from left to right. On the other hand, in
number system notation, the digits representing the highest

numbers are customarily on the left,



14 CULIK AND SALOMAA

Observe also that the sequential machine M in the proof of
Lemma 4.1 is deterministic. It is also almost a Mealy machine: the
only time it may produce more than one output letter (or none at

all) is the end of the computation when it scans # .

The following two results are now immediate corollaries of

Lermma 4.1.

Theorem 4.2: It is decidable whether or not a given number

system is almost complete.

Proof. Given N , we have to find out whether S(N} is cofinite.
By Lemma 4.1, this amounts to deciding the cofiniteness of a
regular language.

Deciding the completeness of a giving number system is
trivial: a number system is complete if and only if every number

less than or equal to the base is among the digits.

Theorem 4.3: The equivalence problem is decidable for number

systems with the same base.

Proof: By Lemma 4.1, since the m-adic representation is
unambiguous, we only have to decide the equivalence of two

regular expressions.
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By Lemma 3.1, Theorem 4.3 can be extended to concern the
case where the bases of the number systems considered are
powers of the same number. However, in the next section we shall

establish decidability in general.

We mention, finally, that the translation lemma can be
extended to the case where the digits are arbitrary integers: a gsm
mapping frem the number system notation to the m-adic notation
can be constructed also in this case. Hence, Theorems 4.2 and 4.8

remain valid in this more general set-up.

5. EQUIVALENCE AND CHARACTERIZATION

We shall establish in this section the decidability of the
equivalence of two number systems in the general case. We shall
also consider some problems dealing with the characterization of
KNS sets. We begin with a lemma useful in many considerations
invelving number systems. The lemumna resembles some fixed-point

results in language theory.

lemma 5.1: Let =22 and 18m;< - <m, (v21)be
given integers. Consider the number system N = (n,my,..,my).
Then the set X = S(N) satisfies the equation

X =fnzamy|lzeX 155 00 imy,...my (3)

and, moreover, S(N) is the only set of positive integers satisfying

(3.
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Proof: Clearly S(N) is a solution of (3): the first term on the
right side represents the operation of adding one digit to the right.
To show that the solution of (3} is unique, we let X be an arbitrary
solution. Then clearly m; isin X, for 1£j £ . Thus, all one-
digit numbers (we are considering the representation according to
N)arein X . We make the following inductive hypothesis: all k-
digit numbers are in X . But now the first term of the union shows
that all (k+1)-digit numbers are in X . Consequently, S(N) is

included in X .

To establish the reverse inclusion X ¢ S(N), we assume the
contrary, and let z be the smallest number in X —S(N) . Since
2z isin X, it must belong to one of the terms of the union on the
right side of (3). Because z is not in S(N), it cannot be in
fm,.....m,} . Consequently, there are numbers z;€ X and j
such that =z =nx,+m;. Here =z, cannot belong to S{N)
because, otherwise, z isin S(N), a contradiction. Consequently,
z; isin X—S(N). Because clearly z, <z , this contradicts the

choice of z . This implies that X = S{N).

We introduce the following notation in order to avoid confusion
and cumbersome terminology. Consider a word w over the
alphabet {1,...m}. We denote by v(w) the integer denoted by w

in m-adic notation. Thus, if » =2 then v(212221) = 109.
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Lemma 5.20 Let A be a regular language over the aiphabel
{1,..nl, n 22 endlet @ and b be positive integers. Then the
language

L{A,ab) = iw efl,..n}* | v(w)=a -v(z)+b forsome z ind ;

is also regular.

Proof: The proof is analogous to that of Lemma 4.1. We
construct a gsm M that receives as its inputs words x over the
alphabet {1,...n}, multiplies the word (viewed in the reverse n-
adic notation) by o and adds b to the result. The output is
produced, letter by letter, also in reverse mn-adic notation. The
carry will be bounded and can, thus, be included in the states of
M . Our lemma now follows because gsm mappings preserve

regularity.

Theorem5.3: The equation S(N) = {y(w) | w € 4} is decidable
for a given regular language A over the alphabet {1,..m],

m 2 2, and for a given number system N = (n.m,....my,) .

Proof: By Lemma 5.1, S(N) = {v{w) | w € 4] holds if and only
if

A= U L{An,my) v v~ my).... v (my)3 (4)

1515y

(Clearly, if A and B are regular languages over the alphabet

{1,...m1, then A=E helds if and only if
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fvlw) | w €A} = (Ww) | we B} holds. This follows by the

unambiguity of the m-adic representation.)

By Lernma 5.2, the equation {4) is decidable.

Theorem 5.4: It is decidable whether or not two given number

systems are equivalent.

Proof:  The theorem is a direct consequence of Lemma 4.1 and

Theorem 5.3.

Lemma 4.1 associates a regular expression to each ENS set.
Conversely, not every regular expression gives rise (in this sense)
to an KNS set (see, for instance, Lemma 3.3). The following
tharacterization problem is open: characterize the regular
expressions giving rise to KNS sets. Indeed, we do not even know
the solution for the following decision problem: decide of a regular

expression whether or not it gives rise to an RNS set.

On the other hand, the following result is immediate by Rice's
theorem (see Rogers (1967)), since the property of being an RNS

get, or an BNS set to a given base, is a nontrivial one.

Theorem 5.5 It is undecidable whether or not a given
recursively enumerable set is KNS . It is also undecidable, given

a recursively enumerable set S and an integer m 2 2, whether
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or not there is a number system N ={n,m,,...m,) such that
5= S(N).

We mention, finally, that the decidability of the following
problem is open: given a number system N and an integer
m 2 2, is there a number system N, with base m such that
S(N) =S(N,;)? A solution for the case where N; is assumed to

be unambiguous is given in the next section.

6. AMBIGUITY AND INHERENT AMBIGUITY

We begin this section by giving & different proof to the result
established by Honkala (1982) - the proof given by Honkala does

not use autcmata theory.

Theorem 6.1: It is decidable whether or not a given number

system N = (n,m,,....m,) is ambiguous.

Proof: Consider the generalized sequential machine M
constructed in the proof of Lemma 4.1. Clearly, N is unambiguous
if and only if M gives rise to an injective gsm mapping.

Whether or not M gives rise to an injective gsm mapping can
be tested by the following procedure. lLet u be the square of the
number of states in # . We claim that if the gsm mapping is not
injective then # maps two such words w,# and w.ff into the

same word such that at least one of w; and w, iz of length
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£ w . Clearly, this condition is testable.

To establish our claim, we let w,# and wzf be shortest (in
the sense that the sum of their lengths is smallest) words mapped
into the same word by M . Let p,pp - - (resp. q,.9z - ) be
the sequence of states entered by M when reading letter by letter
the word w, (resp. wg). (Recall that M is a Mealy machine
when reading w,; and wy.) If both w, and w, are of length
>u , then there are © and j . i <j, such that (p;,q:) = (pj.q5) -
But this means that we can remove from w; and wp every letter
between and including the (i+1)st and jth letter, and the
resulting words w';# and w'p# are still mapped into the same
word by M . This, however, contradicts the choice of the pair

(wy,wz) . Hence, our claim follows.

The following theoremn gives still another proof for the
decidability of the ambiguity of a given number system. We use

somewhat stronger tools than in the proof of Theorem 6.1.

Theorem 6.2: Let N =(n,m,..m,) be a number system and
A the corresponding regular language according to Lemma 4.1.
let L(A,m2,b) be the regular language considered in Lemma 5.2.

Then N is unambiguous if and only if for all distinct 4 and 7,

LiaAnm)nL{An,m;) = ¢ .
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Proof:  The intersection being nonempty means that there two
words, one ending with m; and the other with my , over the digit
alphabel representing the same number according to N . Hence,
the intersecticn being empty is a necessary and sufficient

condition for the unarnbiguity.

An analogeous argument can be used also to sclve a problem

related to the one mentioned at the end of Section 5.

Theorem 6.3: It is decidable of a given number system N and
an integer m 2 2 whether or not there exists an unambiguous

number system N, with base m satisfying S(N) = S(N,).

Proof: Let n be the base of N and let A4 be the regular
language representing S(N) in m-adic notation according to
Lemma 4.1. Clearly, we can effectively list A in an order which is
strictly increasing with respect to the mapping v . Let z;.2p,
be this listing.

We now test whether such a system N, as required exists.
This is done by a method of successive approximations. Obviously
v(z;) must be one of the digits. Consider the number system
K; =(m,v(z,)). We may test by Theorem 5.4 whether or not
S(N) = S(K,). If the answer is 'yes", we have found N; as
required. Otherwise, we find the first element =z; in the =z;-

sequence which is not "“covered” by K; in the sense that v(z;) is
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not in S(K;). (This is clearly effective. If there are no such
elements, which can also be found out effectively, we terminate
with a negative answer.) If a system N, as required exists, v(z;)

must be among the digits.

We denote Kp=(m.{z,).v(z;)) and repeat the above
considerations for Kp. If this does not lead to termination, we
consider the resulting system Ky, and so forth. If we have not
terminated after considering K, , we may terminate with a
negative answer, by Lemma 3.2. Observe that, because of the
unambiguity of N;, numbers “covered'’ by previous systems are

not candidates for digits.

The technique of the previous proof, i.e. testing the listing of

A step by step, seems to be applicable in a number of situations.

The decidability of the inherent ambiguity of a given ENS set
is open. By Theorem 6.3, it suffices to find an effective bound for

the base.

One can also introdgce for number systems in a natural
fashion (as for context-free grammars, see Salomaa (1973)), the
notions of the degree of ambiguity and the degree of inherent
ambiguity. The resulting existence and decision problems are all
open.

In the remainder of this sectien, we consider some special

cases of ambiguity and inherent ambiguity.
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Theorem 6.4:  The set of even numbers is unambiguous. The set

of odd numbers is inherently ambiguous.

Proof: Consider the number system N = (22,4). Clearly, for
any m 2 1, there is a one-to-one correspondence between dyadic
representations of m and representations of 2m according to
N . (The former are obtained from the latter through division by
2 .) Since the dyadic representation is unambiguous and complete,
the first sentence follows. (In fact, one can prove in the same way
that, for every k 2 1, the set
fik [421]

is unambiguous.)

To prove the second sentence, consider any number system
N representing the set of odd numbers. Clearly, all the digits
must be odd nurnbers and, hence, the base n must be even. This
implies that all odd numbers 4 such that 1£4 £n-1 must be
among the digits. On the othér hand if, for some odd i with the
property 1£i £n-1 ,neither n+i nor 2n+i are among the
digits, then 2n+i is not in S(N). (This follows because the
numbers n? and jn with j 23 are too large to take part in a
representation of 2n+i.) But if m+i is among the digits, then
n+i itself has two representations. Consequently, we may
assume that, for every odd i with the property 12iSn-1,

2n+i is among the digits. But now, for n 2 4, the equation
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3'n+l=n+(2n+1)
shows that 3n+1 has two repreentations.
Consider, finally, the case n = 2. We have shown that 1 and 6
must be among the digits. But now the number 7 has two
representations: 2+8 = 2242+1. Hence, Theorem 6.4 follows by

lemma 3.4.

We now return to Example 2.2 and show that the set S(N) is
inherently ambiguous. Consider any number systemm N, with base
n , representing S(N). Since the number 1 is not of the, proper
form, it cannot appear as a digit. Consequently, all numbers of the
proper form among the numbers 1,..2r+1 must appear as
digits. (Observe that 2n+2 is the smallest number we can get
using the first power of n .) We now choose i in such a way that
2£i£3 and m+i is of the proper form. (This is possible
because no two consecutive numbers are of the improper form.)
Since 2 and 3 are among the digits, the equation

Bn+(n+i) = 3n+i
shows that N; is amb(iguous. Hence, S(N) is inherently
ambigucus. An alternative argument can be based on Lemma 3.2.
One can also show that, in any number system N, representing

the set S(N), the base must be a power of 2.

As indicated already in Example 2.2, a regular expression can

be given for the set S(N). This regular expression corresponds to
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the n-adic notation, for a suitably chosen n . However, in unary
notation, S(N) is nonregular. In fact, it is an open problem to
decide of a given N whether S(N) is regular or nonregular in

unary notation.

The last result in this section shows that in some cases

ambiguily depends essentially on the base,

Theorem 6.5 There is an RNS set § possessing
representations with different bases m and n such that it has an
unambiguous representation with the base m , whereas every

representation of § with base n is ambiguous.

Proof: The set § = S(N) in Example 2.3 satisfies the required
conditions. Lemma 3.2 shows that the number system (2, 1, 4) is
unambiguous. Hence, we may choose m = 2. Lemma 3.4 shows
that S = S(N;) where N, =(3,1,3,4,6,7). To complete the proof,
we show that every representation of S with the base 3 is
ambiguous. Indeed, 1 and 3 must be digits because, otherwise,
they are not represented. Alse 4 must be among the digits
because, otherwise, 7 is not represented. But 4 being a digit

implies that it has two representations, which shows ambiguity.
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7. APPLICATIONS TO L SYSTEMS

For a reader interested in L systems, we now show how our
results can be "translated” into results concerning [ systems.
The interconnection with L codes was investigated by Maurer et
al. (1982). However, there are alsc some more direct
interconnections. The reader is referred to Rozenberg and

Salomaa (1980) for all unexplained notions.

lemma 7.1:  For every number system N ={n.m,,...m,), there

isa OL system & with the alphabet {S,e{ such that
L(G) = {5juisal {i e N(S)] . (8)
Proof: The axiomof G is S, and the productions are:

a->a®, S-S5 fori=1...v .

lemma 7.2 For every number system N, there is a DTOL

system (¢ such that {5) holds.

Proof: The system G of Lemma 7] can immediately be
transformed into a DTOL system by pairing each of the S-

productions with the a-production.

A 2x2 matrix representation, analogous to growth function

representations, is also possible.
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By Lemma 7.1 and 7.2, our decidability and ambiguity results
can be expressed in terms of the corresponding L systems. For
instance, the equivalence problem is decidable for OL systems of
the form of Lemma 7.1. It is well-known that the equivalence
problem is undecidable for OL systems in general, whereas it is
decidable for unary OL systems. The systems of L.emma 7.1 are

slightly different from the unary systems.

We want Lo emphasize that the decidability results obtained
from the results of this paper by Lemmas 7.1 and 7.2 are new in
the theory of L systems. Indeed, in spite of the direct
interconnection, we could not use the theory of L systems to

settle the decision problems considered in this paper.

8. CONCLUSION

We have studied in a systematic way representability,
ambiguity and decision problems dealing with number systems.
Some important questions still remain open, as pointed cut above.
Another open problem area is to develop some usefu! "normal
forms” for number systems. Also open is to what extent our
results carry over to number systems having arbitrary integers as
digits. A r‘a_ther surprising fact is that our main results are based
entirely on automata theory, This can be viewed as another
indication of the diverse applicability of automata theory! It

remains to be seen whether these results can be obtained also by
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purely number-theoretic argurnents.
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