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1. Imtroduction.

This paper is about a state transition model for communication

protocols.

The prolocols geverning data commumnication in computer sys-
tems are becoming ever more complex, and therefore moere difficult
io design, understand and analyze. This leads a number of
researchers to advocate the use of formal methods for description

and analysis of protocols [Bol, Bo2].

State transition models are often used to describe formally
(certain aspects of) communication protocols. This paper is con-
cerned with a state transition model in which stations (medelled by
finite state machines) communicate by exchanging messages, which
are subjected to unpredicioble end unbounded deloys. (Thus tran-
sitions in the finite state machines are loosely coupled, in contrast
to the directly coupled transitions of Bochmann [Bo2].) The com-

munication chemnels function as potenticlly wnboundzd FIFO queues.

An attractive feature of state transition models is that various
general properties (called "syntactic properties” in [Zaf]) can be
automatically verified if the queues (charmels) are bounded. On
the other hand, Brand and Zafiropulo [Bra] show that the
verification of the same properties connot be automated for general
collections of commumnicating finite state machines connected by

unbounded queues.



This paper investigates the question of decidability (algorithm
existence) in some detail, and concentrates on a class of communi-
cating finite state machines in which certain general properties are
algorithmically decidable, although the queues are not mnecessarily
bounded. (Thus our goal is similar to that of [Bral, but our
tnethods and results are different.) The technique proposed in this
paper is the third stage in the following hierarchy of formalisms
for protocol description. (All three stages will be exemplified in

the next section.)
~- The list of all interactlions.
— Communicating finite state machines (CFSM).
~- CFSM augmented with channel expressions.

The paper is organized as follows: Section 2, which is a con-
tinuation of this introduction, contains several examples. In section
3, where the formalism begins, communicating finite state fnachmes
(CFSM) are defined. Section 4 lists various properties that can be
formulated in the CFSM model Section 5 introduces two basic
techniques for analyzing CFSM protocols, the exhaustive reachability
analysis and abstract flow control. Section 6 shows that certain
properties of SR-machines are decidable, although they are seem-
ingly similar to the properties proved undecidable in section 7. In
section 7 we shall see that most of the interesting properties in
the CFSM model are undecidable (ci. [Bra]}. For example, there is

no algorithm to decide whether a protocol is deadlock-free.



It is then natural to ask: When can we prove that a protocol is
deadlock-free? A simple proof formalism is offered and investigated
in sections 8, 9 and 10. Its virtue is its simplicity, which allows
straightforward automatic proof checking. Not every deadlock-free
protocol can be proved to be deadlock-iree in the formalism (nor
in any other formalism, in view of the undecidability result), but
the method applies tc the protocols that "use their channels in a
simple manner'. Section 8 presents a simple version of the for-
malism, applicable to the protocols consisting of finite state
machines arranged in a circle. A more general theory is presented
in section 9. Section 10 generalizes the results of section § about
abstract flow control, and concludes with several decidability

results,

2. Introductory ezamples.

This section presents three examples to illustrate the three
methods of protocol description ]iste.d in the introduction.

2.1. Descriplion by listing all interactions. A simple access
authorization prolocol (adapted from [Zaf], p. 652), allowing only
two interactions (communication histeries), is depicted in Fig. 2.i(a)
and Fig. 2.1{b).

This description method is straightforward and easy to under-
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stand, and a simple matching algorithm will discover deadlocks,
unspecified receptions ete. However, the prolocols that allow
infinitely many {(or a very large number of) communication histories

canncl be completely described.

2.2. Description by communicating finite state machines. Sta-
{ions {processes) are represented by finite state machines whose
transitions correspond to transmissions and receptions of messages.
E.g. the protocol of Fig. 2.1 can be described as shown in Fig. 2.2
(cf. Fig. 1 in [Zaf]).

Since the finite state machines can contain cycles, some proto-
cols thal allow infinitely many message sequences can be described
this way. Deadlock-freedom and other general properties are algo-
rithinically verifiable, provided there is an upper bound on the
number of messages that can be simultaneously in transit. This
finiteness condition, which is far wesker than the one in 2.1, is
further substantially relaxed in 2.3 below, at the cost of making

the description more elaborate.

2.3. Communicating finite stale machines augmented by chan-
nel expressions. This is an extension of the model in 22. The
protocol designer is required to provide not only the finite state
machines representing the processes, but alsc a complete descrip-
tion of chammel content for each combination of states. In this
paper we consider such a model, in which the channel content is

described by rational expressions.
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Example. A simple alternating-bit protocol for transmission
over unreliable channels can be described as in Fig. 2.3. There

are six message lypes used in the protocol:

EV even data packet
oD odd data packet
ED end of data
Eva acknowledgement of FV
oDA acknowledgement of 0D
EDA acknowledgement of ED
Receptions are denoted by + and transmissions by -. Following the

suggestion in [Zal], we describe the unreliable channels by two
additional finite state machines, depicted in Fig. 2.4. We think of
all errors on the channel as being concentrated in one place,
under the control of a demon. The rest of the channel then func-

tions as a perfect FIFO queue.

Tig. 2.4 makes precise whal we mean by an unreliable channel:
The demon retransmits some of the messages it receives, and

ignores {deleles) others.

The complete model now consists of four finite state machines

connected by four chanmels, as in Fig. 2.5.

Since Process 0 can repeatedly send the message EV, 0D or
ED, there is no upper bound on the number of messages that can
be simultaneously in transit. Thus the description developed so

far, although completely specifying all interactions, does mnot easily
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Fig. 2.3. A simple alternating-bit protocol.
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- 12 -

Demon 2

Process 0

Demon 3

el

Fig. 2.5. The communication graph.

Process 1




- 13 -

submit to analysis. We will aid the analysis by describing all the
channel contents that can occur for each combination of states.
Since the model has four state machines with four states each, the
additional infermation will be in the form of a table with 4x4x4x4
= 256 entries (one for every state combination), each entry being
the set of all the channel contents that can coexist with the slate
combination. As the model has four channels, a set of channel
contents is a 4-ary relofion. All 256 relations in this example are
rational, i.e. they can be described by rational expressions. Fig.
2.6 lists four of the 256 relations in question, namely those for the
state combinations 00/10/20/30, 01/10/20/30, 0R/10/20/306 and
03/10/20/30. In fact, it is sufficient to specily these four entries;
the remaining 2562 can be autornatically computed.

In Fig. 2.6, ED, is the symbol ED in the chennel a, EDg the
symbol #2 in the channel B, etc. By using the subscripts we
make the channel alphabets disjoint, and avoid ambiguity in the

chanme! expressions.
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Composite state
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Fig. 2.8. Rational expressions for channe! contents.
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3. Communicating finite state machines.

The present paper treals communicaling finite state machines
as mathematical cbjects. They are lormally defined in this section.

The formalism is fairly close to that in [Bral.

A directed graph is a pair G = (N,E), where N and £ are two
sets (the set of modes and the set of edges), logether with two
maps, dencted &»—§ and &e+£, from E intc N. We say that —£ is
the tail and +£ the head of the edge & when i = —¢§ and j = +§

we sometimes write 4 —i j. We say that & is finite if both ¥ and
E are finite.

A protocel (or, more explicitly, a CFSH p'rotoc_cul) P consists of
a finite directed graph & = (N,E) (the communication groph of
P), a collection of pairwise disjoint finite sets M, indexed by £k,
and a collection of finite stale machines F; indexed by jeN. Each
F; operates over the alphabet

Ty =t +b | beMy j=+E ] U § —b | beMy j=—£ 1.

Specifically, F; = (Kj, L;, 7, h;) where K; is the finite sel of
stotes, h;€K; is the initiol (or home) state, and 7; ¢ K;xI;xK; is

the set of tronsitions.

e [
We write p » g in F; (or simply p - g, i no misunderstand-
ing is possible) when (p,e,g)el;. (Here e=—& or e=+b, for some

£ and beM) The transition dicgram of F; is the labelled directed

e
graph with nodes K; and labelled edges p - g for (p.e.q)eT;.
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w
Write p - g, for welfF, if there is a directed path from p to
g, in the transition diagram of F;, such that the labels on the
edges of the path form the string w (in the order from p to g).

€ e
Sometimes we write p - instead of '"p -» g for some g, and simi-
" .
larly p - for wel}X.

The meodel corresponds to reality in this way: The graph &G
describes the protocol configuration (the edges are unidirectional
communication channels); we say that the machines F; in P com-
municate eccording fo G. The set M, is the set of messages thal
can be sent along the channel ¢ (in practice these sets need not
be disjoint, but the assumption that they are causes no loss of
generality and is technmically useful). The machine F; represents a
process located at je€N and capable of sending messages to the
channels £ such that j=-—¢& and of receiving messages Irom the

channels & such that j=+& Message transmissions and receptions

: +b
match transitions in the state machines: p » g in F; means beM,

-5
received, and p - ¢ in F; means be¥M, sent {at jEN along ¢<E).

in the sequel we shall have an opportunity to deal with CFSM

protocols of a special form, the SR-machines of Gouda [Goul:

+b
A state p<k; is a send stale if p > for no &; similarly, p is

~b
a receive state if p - for no b. Say that #; is an SR-machine if
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(a) K; has only send and receive states,

(b) the transition diagram of F; is strongly conmected,

e €
and {¢) if p » ¢; and p > g In F; then g,=g;

A pair of communicating SRK-machines is a protocol with two SR-
machines 7y and F, communicating according to the graph 0

(ie. N={0,13, E={o,f}, —a=+8=0 and +a=—F=1).

Other wvariations of communicating finite state machines have
been employed to describe and analyze communication protocols,
but the differences between them are not essential in the present
context. The popularity of the model stems from the fact that,
while being simple and abstract, it is rich encugh to embrace
some gemneral communication prope_rties (sometimes called syntactic
properties). Several such properties are enumeraled in the next
section. They are all defined in terms of the global state space,

which we now proceed to describe.

In our basic model, we assume that the chammels function as
perfect FIFO queues. That is, they are error-free (imperiect chan-
nels are modelled indirectly, by demons), and in each channel mes-
sages are received in the same order as sent. We place no a
priori bound on the queue lengths; the intentiom is to model

unpredictable and unbounded communication delays.



- 18 -

Let P be a CFSM protocol, with the notation as above. A com-
posite state of P is a vector S = (p;:jeN) of states p;eK;. A
channel confent {or ‘“composite channel state’) is a vecior
C = (zggekE) of sirings zM{ (each z¢ is a string over the alpha-
bet Mg). A global stete is a pair (5,0} where S is a composite
stale and € is a channel content. The initial globol siofe is
(5°%C% where SU = (h;:jcN) and C° = (zgfcE) with each z; being
the empty string A

Our aim is te define a labelled directed graph whose nodes will
be global states of P and which will have two kinds of labelled
edges (write S = (p;:jeN) , S = (g;:5€N) , C = (zgéek) ,

C' = (ygtek)): i

(1) {Receive Irom channel §)

b
(5,0) |-— (5,07
if there are 1 and f with 4=+§, such that p;=g; for j#i, ;; - g
in Fy, z¢=ye for &8, and zg=byg.
(2) (Send to channel f)
-5
(5.0) == (5.0
~b
if there are i and f with i=—§, such that p;=q; for j#i, p; - @

in F;, zg=y, for £&#8, and yg=xgh .

) -5
Write (8,C) |— (8.CY) if (S,0) |—— (5,¢) or (S.0) |-

(S',C"Y for some b. Iet |——* be the reflexive and transitive clo-
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sure of |——. Say that a global state {S5',C") is reachable from a
global state (5,C) if (S,0) [——* (S'.C").

Say that a global stale is reachable if it is reachsable from
(59,C%. The global stofe spoce of the protocol P is the labelled

directed graph whose nodes are all the reachable global states of

+b -b
P, with labelled edges |—— and |—— defined above.

4. Reachability properties.

The general reachability problem, in its simplest form, is "Given
a (possibly infinite) directed graph and two of its nodes, can one
node be reached I[rom Lhe other along a path in the graph?” One
may wish to comstruct an algorithm to answer the question; this
leads to a decidability problem: Is there an algorithm to decide,
for any given graph and two nodes, whether one can be reached
from the other? In other words, is the reachability problem (algo-

rithmically) decidable?

Algorithms to solve two problems of this kind have been found
recently, after a prolonged research effort: Kannan and Lipton
[Kan] constructed an algorithm to solve Harrisonm's orbit problem,
and Mayr [May] constructed an algorithm for the Peiri net reacha-
bility problem. The CFSM model brings up another reachability

problem, which is, wunlike the previous two, undecidable (see
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section 7). However, it is worthwhile to investigate restrictions on
the problem that make it decidable; thiz is the chief subject of

the present paper.

In fact, there is not one but a number of reachability prob-
lems of interest in the CFSM model. The (possibly infinite)
directed graph where they all reside is the global state space

defined in the previous section.

A simple Teachability problemn (or a reachability problem of the
first order) has the form "Is a given global state reachable (from
{S°,C")?" For example, the problem of finding stable composite
states can be treated as a simple reachability problem: A compo-
site state S is called stebie if (5,07 is reachable; c¢f. [Zaf], [Bra].
Since there are only finitely many composite states, the problem of
listing all stable ones is solved by answering finitely many simple

reachability problems.

A global state (S,C) is said to be deadlocked if every state in
S is a receive state and €=C° The protocol P is deedlock-free if
no deadlocked global state is reachable. The guestion whether P is
deadlock-free iz a special case of the stable composite state prob-

lemn in the previous paragraph.

However, there are other pertinent reachability problems that
are not simple in this sense (or at least it is not immediately
obvious if they are). Say that b&Mg can aerrive af the siafe pek;
it i=+8 and there is a reachable global state ((p;:j€N),(zgE€E))
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such that p=p; and =zg=byg for some yﬁGME‘. The problem of
finding all pairs (p,b) such that & can arrive at p ("executable
receptions” in the terminology of [Bral) is of the form "Is at least
one element of a given sef of global states reachable?” Let us call
this a second order reachabilily problem. Of course, the sel of
global states in question can be described in various ways; that
can make the problem more or less difficult {or even decidable or

undecidable).

Say that a global state (5,0} is globally blocked if
(5,0} |—— {5'.C") for no global state (5',C"). (Every deadlocked
global state is globally blocked but not vice versa.)

A global state (5,0) = (S, (zg€€k)) is blocked on chennel BeFE
it x5 = byg , bcMy , yeMF, and there are no global states (S',.C")
end (S5",C'") salisfying

(5,0) |—=* (51,0 [2= (5707 .
The property that no reachable global state is blocked on any
channel (that is, every transmitted message can be evenfuclly
received) should be compared with the following stronger property,

defined in [Bra]. The protocol is well-formed if for any pekK; and

+b
6cMg we have: b can arrive at p if and only if p - in F} . This

means that the protocol is able tc receive every message immedi-
ately upon arrival and, moreover, the transition diagram of F; has

no useless edges.
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Another example of a second order reachability property: A

o
protocol with the communication graph 0 i 1 is said to have the

8
holf-duplex property if every reachable global state ((po.p1):(Za %))

satisfies =, = A or T = A .

Finally, certain useiful reachability properties are mneither first
nor second order. The protocol P has the bounded chennel pro-
perty if there is an upper bound on the total length of all strings
in €, over all reachable global states {S,{). Obvicusly P has this

property if and only if Lhe global state space is finite.

We can see that, although the CFSM model is very simple and
general, it allows us to formulate a number of meaningful protocol
properties. Moreover, the properties are all described In a uniform
meanner, as reachability properties in a certain (potentially infinite)
graph. The next question is whether the properties can be algo-
rithmically decided. In this paper we concenirate on the deadlock
problem ("Is the protocol deadlock-free?"), and the stable composite
state problem ("Is a given composite state stable?”), two represen-
tatives of simple (first order) reachability problems. Occasionally

we also note how Lhe results apply to other reachability problems.
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5. Reachability analysis and absiract flow control.

When the global state space is finite, all reachability problems
cann be, at least in principle, algorithmically solved. Indeed, one
can explicitly construct the global state space (as a finite directed
graph) and search it tc decide any reachability problem. We refer
to this method as the ewhaustive reachability onoelysis.

The method presents a number of implementation and complex-
ity problems, because the global state space tends to be very large
and exhaustive search is expensive. Nevertheless, the question of
algorithm exisience is, in the case when the global state space is
finite, uninteresting: All problems are decidable for trivial reasoms.
The chief aim of this paper is to investigate what can be done

when the global state space is not (or is not known to be) finite.

The global state space has a highly redundant structure. Con-
current execulion is modelled by a set of shuffles of sequential
executions in the participating nodes. Thus if one global state is
reachable [rom another then there are usually many paths between
themn. We can reduce the redundamcy by restricting the order in
which concurrent transmissions and receptions occur. This is the
idea of the abstract flow conirol. Its special case was studied
(under a different name) by Rubin and West [Rub].

Every path in the global slate space defines "local paths” in
the tranmsiticn disgrams of the individual finite state machines.

These will be called the “mages of the global path. In the notation
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of section 3, the 1image can be defined formally. Let

r = (SO,CO)Is—l— coe [?—(Sk,Ck) be a path in the global state
space, and let ieN. If k=0 (ie. the length of I' is 0} and
Sp = (p;:j€N) then Imy(T), the image of I' in F;, is the path of
length 0 from p; to p;. ¥ k>0, Sp; = (pjijeN) and

Sp = (g;:7€N) then  Tmy(T) is defined in  terms of

€ €p—1
I = (So,Ca)E—— oo |——(.S}c_1,Ck_1} as follows: If Qkﬁzi then

Tm(T) = Imy(T'7); ¥ ereZ; then Imy(l) is the concatenation of

e
Im; (I') with the path g;—»p; {(of length 1).
Say that two paths T and T'' in the global state space are
locally egual if Im;(I) = Imy(I'") for each ieN. The following self-

evident lemma is a basis of most that follows.

5.1. Lemma. [f ftwo paths in the globael state space are locally
equal and start in the same global state, then they alse ter-

minate @ the same glodal staie.

The aim of the abstract flow control, in the sense used in this
paper, is lo reduce the number of the locally equal paths that the
reachability analysis must examine. Rubin and West [Rub] have
shown how to select exactly one path in every set of locally equal
paths, in the special case of two-party protocols and paths between
global states of the form (S,C%. The problem can be viewed as a

scheduling problem: For a given path T in the global state space,
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the local images of I' are concurrent sequential processes which
must share a single processor. In this terminclogy, the Rubin and
West method wuses the round-robin scheduling. The methods
explored in this paper are based on priority scheduling. They yield
particularly simple results when the finite state machines are
arranged in a circle; to have a short name for such CFSM proto-
cols, we say that a protocol is cyclic if ils communication graph is

a directed cycle.

5.2. Theorem. ILet P be a cyclic CFSM protocol. Let T be a
path in the global siate spoce from o global state (5,09 to a
global state (S'.CY%. If £ is eny edge in E then there exzisis
o path T' such that

(a) T and T are locally egqual, and

{b) every global state (S,(zg€€E)) on the pafh T satisfies
2ol = L

<F
“B

A more general result will be proved in section 10.
Proof. label the edges of the communication graph & as
E=logay, . . . 0,1 and assume that —ag=+ey,, —oq=+ag,

—og=+0ay, ..., and f=cg: o
9
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Rearrange the execution described by T' as {follows: Assign the
highest priority to the process running at the node +oag,, the next
highest tc the process at +a,,—;, etc., with the lowest priority at
+0p Thus a process can execute only if all processes with higher
priorities are blocked (which means that their local images of T
call for receptions and their input channels are empty). Let I be
the path correspondiﬁg to the priority execution. It follows that at
most one among the channels oy,03, . . . , o, is nonempty at any

point along I, and that none can grow longer than one symbol.
t

Theorem 5.2 {as well as the more general results to come)
simplifies the reachability algorithm. When looking for a deadlock,

the algorithm can ignore the global slates in which 3] [z¢| > 1.
£

The following immediate ccrollary of Theorem 5.2 generalizes a

result of Brand and Zafiropulc [Bra].

5.3. Corollary. The stoable composiie state problem is decidable
in the class of all cyclic CFSM profecols with this property:
There 1is an edge § ond o consitent c such thaf every reach-

able global state (S,(zg¢ck)) satisfies |zgi=<c.

It follows that deadlock-freedom is also decidable in this class.
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6. Affine SR-machines.

In this section we are going to see that certain properties of a
pair of communicating SR-machines are algorithmically decidable,
althcugh they are superficially similar to the undecidable properties

that we shall encounter later om.

let P be a CFSM protocol consisting of two SR-machines
Fo = (KoXo,Toho) and Fy = (K1,E;,Th;) communicating according

o
to the graph 071 . Recall that
B
Lop=1 b | BeM, 3} U | +b | bedg}

and
L, ={ b | beMg iU { +b | beMy

I w is a string in ZF or ITf , denote by mu{w} the string of all
M, symbols in w, In the same order; thus m, erases all the sym-
bols in w that belong to Mg and also all + and - (m, is the "pro-
jection” from ZF U I onto MF). The projection mg onto MF is
defined similarly. For example, if d;,dyeM, and b,bzcMg then
To(+d1+da—b +d;—bo—by) = didad; and mp(+di+da—b +d;—bz—bp)
= bbby .

The machine Fy defines a subsel Zy of MF x M :

{ (ma(w)mg(w)) | ho > Ao in Fo 3 -

%

Similarly,

2y = { (malw)mgw)) | hy > Ry in By
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Say that Fy and 7, are affine (or that the protocol P is affine) if
=7 .

Thus two SR-machines are affine if and only if for every
sequence of sends and receives {beginning and ending in the "home
state') in one machine there is a matching sequence in the other.
However, the matching is a weak one bécause, intuitively, it allows

a symbol to be received before it has been sent.

There are interesting connections between affinity and certain
desirable protocol properties. At the same time, unlike the other
properties, affinity is decidable; a minor modification of Bird's algo-

rithm [Bir] establishes the following result.

6.1. Theorem. There is on calgorithm fo decide whelther an

proifrary potr of SKR-machines is affine.

Now we consider the bounded channel property for affine SR-
machines. No protocel in which at least one machine can go
through a cycle consisting of send transitions has the bounded
channel property; the machine can repeat the sending cyele any
number of times before the other machine begins receiving. The
forthcoming theorem shows that for affine SR-machines the channel
content can grow large only if there is such a cycle.

Say that a state machine F; has a send cycle if the iransition
diagram of F; contains a directed cycle whose all labels are nega-
tive (Le. of the form —b,bel, , j=—¢ ); a receive cycle is defined

analogously.
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6.2. Lemma. [Lel Fy ond F, be two offine SK-mochines. For
7=0.1, tet k; be the number of stetes in F; (=the cordinality
of K;). If there is a reachable globol stote ((pop1), (ZTah)
such that |zg|=kqlk;—1)+1 then F| has o receive cycle and Fy

hos o send cycle.

This yields a new automatically verifiable suffictent condition
for bounded channels, namely afTinity and absence of send cycles;
ef. [Bra] and [Gou] for other conditions of this kind. The condi-

tion is &lso mecessary if the protocol is affine and deadlock-free:

6.3. Theorem. et Fy and F, be two offine SK-machines. If
the protocol is dewadlock-free then it has lhe bounded chennel

property if ond only if neither Fy nor F; has o send cycle.

B8.4. Theorem. There is on algorithm {o decide, for on arbi-
trory given poir of offine SK-machines, whether the profocol is

deadlock-free ond has the bounded chonnel property.

Ancther corollary of 6.2, to be proved later in this section, is

the following:
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8.5. Theorem. There is an calgorithm fo decide, for an orbi-
trory given pair of SH-machines wifth no send cycles, whether

the protccol is affine and deadiock-free.

Now we prove the results in this section. Recall that we deal

X

with a protocel P with the communication graph 0 Z i and two

£
SR-machines F; = (K;,%; Tj.h;), 7=0,1 . The channel alphabets are

Ma and Mﬁ.
Proof of 6.2. Recording how the global state ((po.pi).(TeA))

has been reached, we find lwo strings woeXd and w,€Xf such that

wo wy
ho > Po. hq > pu Malwg) = Ma(wi)z, and me(we) = mg(wy). Since

the transition graph of Fy is strongly connected and has kg nodes,

ug
Po = hg for some ugeLd such that |ug! = kg—1 .

Uy
By  aflinity, p; » h; for some w,cZ¥ such  that

Tré(wouo) = Tg(wiuy)  and  wgl{woug) = ma{wing). This  yields
(1)) = Zamg(wg) and mg(w,) = mg(ug). Therefore w, contains at
most |ug| = kg—1 symbols of the form —b,beMg At the same
time, the length of m,(w,) is
[maluy)| = [za] = kolky—1)+1,

and hence w; contains a {contiguous) subsequence wv; of length
{vil = k; thal has no symbols —&,b&Mg Since F; has k; stétes,
the path corresponding to v; contains a cycle. Hence F; has a

receive cycle.
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The second assertion in 6.2 now follows from the following

lemma.

6.6. Lemma. et Fy and F; be fwo gffine SRE-machines, If

Fy has a receive cycle then Fy hoas o send cycle.

Proof of 6.6. Again let &; be the cardinality of X;, for j=0,1.

Since the transition diagram of F, is strongly connected and has a

wy
receive cyele, hy - hy; for some w;eZf such  that

[mg(wi)| = 2lk1—1) and |[ma(wi)| > (2k;-1)(ko—1)+1. By affinity,

Wo
hg » hg for some wgeXl§ such that m(wg = me(w,) and

ng{wg) = mg{wq). 1t follows thai wy contains a substring wvo of
length |uvg| = kg that has no symbol +b. Since Fy has ko states,
the path corresponding to wg contains a cycle; hence Fy has a
send cycle.

{]

The proof of 6.3 uses the Iollowing two lemrnas.

6.7. Lemma. If there 1is o reachable global stafe
(pop) (Taxp)) Wwith |z4| = &k then there is o reachable global

state ((Po.91).(YaA)) with |ya|=k.
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6.8. Lemma. If the pair of offine mochines is decdlock-free

wo
then for ony wg such thot hy - py there exists o poth in the
global state space, sterfing in (S°C0), whose image in Fy s
tabelled wyq,

Wy wy
Proof of 6.7. There are Ay » pg and h; > p; such that

Ta{we) = m(w)z, and mg(wolzg = mg(w;). Find a prefix vy of w,

Vs
such that mg(w;} = mg(vi)xg. We have h; > g; for some g€k,

Since m,(v,) is a prefix of m,(w,), we can write m(w,) = M (v, )y,

for some wy,'eMg. Sel Yo = y4'%, then mg(wg) = me(v;) and
Ma(wq) = Ta(vi)ye Thereiore .({po,ql),(ya,?\)) is reachable.
]

Proof of 6.8. First observe thal we can assume, without loss

of generality, thal py=hy (because the path can be extended to

w

hg). Now, by affinity, there is w; such that &k, o hq,
ma{wy) = ma{we) and mglw,) = mg(wg). Tn the global state space,
find the longest path that starts in (S%¢Y% and whose image in F;
is labelled by &a prefix wv; of wy, for j=0,1; denote by
(5,€) = ((90.91).(za%p)) the end node of the path. We want Lo

show that wg = wyg .

Assume wg # vo, le. wy = woeuy for some e€L;, and weLf.

Distinguish several cases:
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-5
I gp is a send state; then e = —b for some beM,, and gg > g¢

—b
in Fg  Thus (S,C) |-— {(g¢,91).(zsb,xg)), which contradicts the
maximality of the path.

II. go is a receive state and zg#A. Then e = +b, be€My and & is

+b
the first symbol in zg. Thus go = g¢ in Fy , and again the path

in the global state space is not maximal

II. g; is a receive state and z,#A. This leads to a contradiction

as in case II

V. Both g and g¢; are receive states and z, = A = =g this comnr

tradicts the assumption that the protocol is deadlock-free.

V. go is a receive state, zg=A and ¢; is a send state. Then

—b
e = +b, beMy and by aflinity g; -+ g, . Again, the path is not

maximal.

Thus in each case the assumption wg # 1o leads to a contra-

diction. We conclude thal wg = vg .

(]
Proof of 8.3. By 6.2 and 6.7, il the protocol has no send
cycles then it has the bounded channel property.

Conversely, assume that, for example, Fy has a send cycle.

Yo
Thus there are pocKy and wugerlf such that pg » pg . ue#A and

mg(g) = A Denote yq = mMa(ug). By Lemma 8.8, there are py, z,

end zg such that the global state ((po.p1).(Tamg)) is reachable. It
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follows  that, for every integer 1=0, the global slate
((pe.p J),(a:ayfl,xﬁ)) is reachable, and therefore the protocol has not

the bounded channel property.

Preof of 6.4. This algorithm solves the problem:
1. Check whether there are any send cycles.
2. If there are no send cycles, then (by 6.8) the protocol has the
bounded channel property. Apply the exhaustive reachability
analysis to decide the deadlock-freedcm.
3. II there is a send cycle then, by Theorem 6.3, the protocol is
not deadlock-free or has not the bounded channel property.

[

Proof of 6.5. Use the exhaustive reachability analysis. II any
global state (S,(xgA)) with |zo| = kglk—1)+1 is reachable then, by
6.2, the protocol is mot affine and deadlock-free (ie. it is nol affine

or it is not deadlock-free).

If no such global state is reachable, then the protocol has the
bounded channel property, and deadlock-freedom can be decided.
Then affinity can be decided by Bird's algorithm; or alternatively it
can be decided by a modified reachability analysis, since the two

state machines differ by a "finite balance".
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7. Undecidable problems.

We have seen in the previous section thal the foliowing prob-

lemns are algorithmically decidable:
- Given any pair of SE-machines, is it affine?

- Given any pair of affine SR-machines, is it deadlock-free and

has it the bounded channel property?

- Given any pair of SR-machines with no send cycles, is it

affine and deadlock-free?

In this section we shall see that, in contrasi tc the previous
results, some very similar problems are undecidable. Brand and
Zafiropulo [Bra] prove the undecidability of several problems of this
kind by reduction to the haiting preblem for Turing machines. The
proofs in this section are somewhat similar to those in [Bra], but
it will be more convenient for us to use Post’s tag syslems instead
of Turing machines. Every tag system can be encoded as a pair
of SR-machines; the known undecidability results aboul tag systems

yield the following theorem.

7.1. Theorem. For pairs of commumicaiing SK-machines, these
problems are undecidoble:
(e) Given any protocol with no send ocycles, s i deadlock-

Jree?
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(6) Giwen ony deadlock-free protocol with mo send cycles, has
it the bounded channel properiy?

(c) Given any affine profocol, is il deadlock-free?
(d) Given ony offine protocol, has it the bounded chenmel pro-
perty?

Theorem 7.1 and the results in the previous section pinpoint
the frontier between the decidable and the undecidable for pairs of
communicating SR-machines. Next we turn to more general proto-
cols, and explore connections between the decidability properties

and the topology of the underlying commumnication graph.

For a directed graph &, denote by VG the corresponding
undirected graph. Consider first any CFSM protocol (with communi-
cation graph G) for which V& has no cycles. (Of course, such pro-
tocols are hardly ol any use. They allow no feedback) As in
Theorem 5.2, one can show that every path in the global state
space starting and ending in global states with empty channels is
locally equal to a path that uses only global states of the form
(S.(zptek)), ZEH:L‘ElSl. 1t follows that the stable composite state

problem {and, in particular, the deadlock problem) is decidable for
these protocols.

On the other hand, all “practical” communication graphs lead
to undecidable problems. The claim is made precise, for the

stable composite state problem, in the following thecrem.
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7.2. Theorem. If G 1is o directed graph such thot VG has o
cycle them the stable composite stafe problem is undecidable

for the CFSM protocols with the communicalion graph G.

The forthcoming proofs of 7.1 and 7.2 are based on known
results about Post's tag systems; the results are collected in the
appendix.

The principal steps in the proof of 7.1 are stated and proved

separately in 7.3, 7.4 and 7.5

7.3. Lemma. For every tag system T=(Z,g,wg there is a pro-
focol of two communicating SK-machines Fy and F; wilh no
send cycles such thot

(o) the protocol is deadlock-free if ond only if s,(T)#A for
oll n;

(b) the protocol hos the bounded chennel property if ond only

if there is o constant ¢ such that isﬂ(T)\éc Jor all n.

Proof of 7.3. For each b€X create two new symbols b, and
bg define M, = | b, | beX | U [f} and Mg =t bg | bEL §,
where f is a new symbol. The machine Fy has a single receive

state hgy, which is alsc its initial state, and one send state p, for

+b -b
8 «
every bel, with lransitions hy -» p, and p, - hg Thus Fp is a

repeater (or a perfect transmission demomn): it sends b, whenever

it receives bg.
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The machine F; simulates the tag system. It first transmits
the string wg (subscripted by B), and then it alternately reccives
any d, receives any &, and tiransmits g(@) subseripted by g

The transition diagram of F; is schematically depicted in Fig. 7.1,

where 9{8) =0acfa1 © ° ° Ydmd) for every det, and
+d,
wo=dgd; - - - dy. There is a tramsition g - gg for every dely
+f

Note also the “dummy” transition ¢ - hi; it will never be used,
bul it makes the transition diagram strongly connected. Neither
Fg nor F; has a send cycle and if lg|™>0 then they have no
receive cycles.

The pair (FoF;) simulates the tag system T in the following
sense: For w#A we have w=s,(T) for some n if and only if the
global state {(hp.q).(w,A)) is reachable; and A=s,(T) for some n if
and only if either ((hg.g),(AK) or ((hggy),(AA)) for some def is

reachable.

This proves {a) and, in view of Lemma B.7, also (b).

t]

7.4. Lemma. For every pair of communicafing SK-machines
g and F'| we can consiruct an offine pair Fo, F, such that

either both pairs are deadlock-free or none is.

Proof of 7.4. Let the channel alphabets be M'q and M'g Let

#o, and #g be two new symbols (not in M\ JM'g) and define
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Fig. 7.1. The transition
diagram of FI‘
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Mg = M'aUi#ad and Mg = M'gyi#g. We construct Fp and Fy,
with the corresponding relations Z; and %; (defined in section 86)
both equal to

£ (ua#wup#ﬁ} | wacH'y | uﬁEMf; j*.
First we modify F'y and F'; so that no transitions lead to the imi-

tial states h'g and A';. This is arranged as follows in F'p (and
E
gimilarly in F”;): Add a new state pg. Add the transition p - pgp

whenever p 5 h'y in F'p and add pg 5 ©» whenever h'p 3 p in
F',  Then delete all transitions leading to A'g. The resuliing
diagram is not sirongly connected, but otherwise it satisfies all the
properties of an SR-machine. The deadlock-freedom is not changed

by the medificalicn.

The mnext step in the construction of Fjy is illustrated in Fig.
7.2 (it is again the same for J;). Add iwo new send states s and

s' and a new receive state r. For each send state p (including

—Ha
h'y if it is a send state) add the tramsilion p - 7, and add

-b ~b .
p - s' whenever p - mnot in F'g. For each receive state p

g
(including h'g if it is a receive state) add the transition p - s,

+b + ’ ~#a
and add p - s' whenever p - not in #'; Also, add s' -» 7,

+#ﬁ “#a -b -b
r -+ h', s > k' s' » s' and s -» s for every beM'y; and

+b
r » r for every beM'p Call the resuiting SR-machine Fp and

call F; that constructed in the same way from F'|.



Fig. 7.2. The construction of F0 in the proof of 7.4.
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w U
I h'g » Ay in Fp, w#A, and if h'y » hA'g for no proper
nonempty prefix u of w, then my(w) = Ug#s for some uEHM'Y and

mg(w) = ughg for some ugeM'y . Conversely, for any u eM'¥® and

w
ugcM'§ there exists w such that h'p = h'o Ta(w) = us#, and
mg(w) = ughg Therefore
ZO = % (uu#muﬁ#ﬁ) | uaEM': ) uﬁEM'E% ; .
For the same reason, Z; is equal to the same relation. Hence Fy

and F; are affine.

Every reachable deadlocked global state for the pair (F'o,F'y) is
reachable for (Fg,F;). At the same time, nc additional deadlocked
global states are reachable in (Fgf;); if, for example, Fo is in its
state 7 and the channels are empty then #; must be in its state

s, which is not a receive state.

(]

7.5. Lemma. For every poir of commnuniceling Sl-machines
F'o and F'y we con consiruct an gffine pair Fy, I such that
either both poirs hove the bounded channel properiy or none

has.

(Note that, in view of 6.4, the constructions in 7.4 and 7.5 cam-
not be combined. More precisely, it is not true that for every F'g
and F'; we can construct an affine pair Fg, F; such that both the

deadlock-freedom and the bounded-channel property are shared by

the two pairs.)
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Proof of 7.5. As in the ©proof of 7.4, we define
M, = M'gUl#d and Mg = M'gl#g). We construct Fg and /7y
such that the corresponding relations Zg and Z; are both equal to

f (uaattauphphp) | waSM's , ugeM'g 3 % .

Again we first ai‘rénge thal no transitions lead to the initial
states A’y and A';. The next siep is shown, for F'y, in Fig. 7.3.
Add four new rececive states 7, v, 7" and 7' and two mew send

states s and s'. For each send state p (including h'p if it is a

~#a ~b
send state p) add the transition p - =", and add p » r when-
-b
ever p - not in F'y. For each receive state p (including h'e if it

+Hg +b
is a receive state p) add the transition p -+ 7', and add p » 7
+b ) +#E 4 —#a
whenever p - not in F'y. Also, add » » ', ' - s, 5 > s
48 H##8 . ke +b +b
¥' s ', or" 5 s, 8 » A r o r and 7" - 7" for every

~b
bcM's, and s —» s for every beM',. Call Fy the resulting SR-

machine, and call #; that constructed in the same way from /.
As in the proof of 7.4 it now follows that
Zo = Z = | (uohafatughehs) | UEM'E , ugeM'F 3 % .
The construction creates new reachable . deadlocked global
states. TIn faci, the protccol will never get over the states r' and
7', hence no global state conteining s or s' is reachable. It fol-

lows that the loop at s will never be entered and, therefore, the
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Fig. 7.3. The construction of FO in the proof of 7.5.
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pair (Fg,7q) has the bounded channel property i and and omnly if
(#0.F",) has.
[1

Proof of 7.1. (a) follows directly from Theorem A.: (in the
appendix) and 7.3(a).

Similarly, (b) follows from A.3, 7.3(a) and 7.3(b). (Observe that
the construction 7.3 is such that if the tag system T=(Z.9,wo)
satisfles jg| >0 then the protocol has no receive cycles. Hence
the problems (a) and (b) are undecidable even for the protocols

with no send and no receive cycles.)

To prove the undecidability of (c), we combine the already

proved case (a) with 7.4. Similarly, (d) follows from {b) and 7.5.
{1

The forthcoming Temma 7.6 will simplify thé proof of 7.2. BSay
that two finite directed graphs are homecmorphic if one can be
transformed to the other by a finite sequence of elementary
replacements, each of which either replaces an edge 0-»>1 by iwo
edges 021 (where 2 is a new vertex) or vice versa. For exam-

ple, the two graphs in Fig. 7.4 are homeomorphic.

7.6. Lemma. let G ond &' be fwo homeomorphic graphs. The
problem "Is o given composile state stable?” is decidable for
every CFSM protocol with the communicatlion graph G if end
only if it 1is decidable for every CFSM protocol with the com-

munication graph '
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Fig. 7.4. Twoe homesmorphic graphs.
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It will be obvious from the proof of 7.6 that the same result
holds for the deadlock problem, the bounded-charmel problem, ete.

Proof of 7.6. It is enough to prove the result under the
assumption that ' is produced Ifrom G by a single elementary
replacemeni, which replaces 0-»1 by 0+2->1. Assume this is the

case.

Let the problem be decidable for every CFSM protocol with the
communication graph &, and let P’ be a protocol with the com-
munication graph G'. Using the abstract flow control argument of
sections 5 and 10 (with the highest priority at the node 2), we can
confine ourselves to the global states in which the channel from 0
to 2 contains at most one symbol, and we do not lose any reach-
able global states of the form (S,C%. Now we combine the state
of the machine at 0, t.;he state of the machine at 2, and the con-
tent of the channel 0-2 into Va single state; this transforms P’
into a protocol with the commumication graph . [t follows that

the problem is decidable for &'

Conversely, assume that the problem is decidable for &.
Every CFSM protocol with the communication graph & can be
transformed into one with the communication graph &' by including

a repeater (perfect transmission demon} at the node 2. It follows

o

that the problem is decidable for G.
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Proof of 7.2. Clearly il suffices to prove the undecidability for
every graph G for which V&G is a circlee When VG is a circle,
there are two possibilities: Either & itself is a (directed) cycle or

(7 is acyclic as a directed graph. Since every directed cycle is
homeomorphic to the graph 0.1, the case of G being a cycle is
taken care of by 7.i(&) {or 7.1(c)) and 7.8.

It remains to be proved that the stable composite state prob-
lemn is undecidable for every acyclic graph & for which V&G is &
circle. The proof is based on the undecidability of modified Post’s
correspondence problem (MPCP). Recall [Hop| that an instence of

MPCP consists of two lists z=(Tg%y -  Tg) and
y=({oYy - - - Yn) of strings over an alphabet X. The instance
has o solufion if there is a sequence of integers jija ' * .J&
such that

ToTy, - Fy, = YoMy, o Yy o
the sequence ji,jz - - - .Jx is called a sofufion for the instance of

MPCP. It is known that the problem "Given an instance of MPCP,

has it a solution?” is undecidable ([Hop], 8.5).

Every acyclic graph & for which V& is a circle is
homeomorphic to the graph in Fig. 7.5, for some m=0. Hence the

undecidability result follows from 7.6 and from this lemma:
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Fig. 7.5,
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7.7. Lemma. For the graph G in Fig. 7.5 aend for every
instance of MPCP there exist a CFSM protocol with the com-
munication graph G ond o composite stofe S such thal S is

stable if and only if the instance of the MPCP has o solulion.

Proof of 7.7. lLet ¥ be the alphabet of the instance of MPCP.
For every edge & in G the chamnel alphabet M, is defined to be
{ bfl beX }, where the symbols &, are chosen so that the sets M,
are pairwise disjoint.

All the finite slale machines except the one at 0 are simple
comparators: Those at the even numbered nodes {except 0} send
the same sequences of messages te both channels, those al the
odd numbered nodes receive the same sequences from both chan-

nels. For example, the machine at 1 has the initial state h; and

+b
%
a separate state p, for each beX, with transitions h; - p and
+ba,
o hy

The machine at U iz capable of sending, for every infinite

sequence of indices j;,js - - - , the sequence of messages

(xo)aamu(mii)uamu T

on the channel og,,,;, and the sequence

(yO)uu(yjl)au T
on the channel op A schematic iransition diagram is in Fig. 7.6.

The composite state S = (gphyhz - - - Agpmsey) Is stable if and
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only if there is a sclution for the instance of the MPCP.

This completes the proofs of 7.7 and 7.2.

(i

8. Rational channels for eyclic protocols.

The resulits in the previous section show that general CFSM
protocols can, with the help of their infinite channels, simulate
arbitrary computation processes. It is for this reason that the
reachability problems are undecidable. However, we are primarily
interested im the protocols that use their channels more simply.
Can we disqualily the CFSM protocols that, by using the channels
as an infinite memory, simulale general computations? Can the
"simple channel property” {or, more precisely, the property of "the
channels being used in a simple manner”) be formalized? One
sufficient condition for this kind of channel simplicity is the
bounded channel property. Two 1nore general conditions are

offered in this section.

The popular classification of verification techniques for commun-
ication protocols distinguishes between the reachability analysis and
program proofs [Bol]. Traditionally, program proofs have been
used to verify the prolocol properties that are not amenable to

reachability analysis. QOur present aim is different: The primitive
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assertion proving technique proposed below is more powerful than
the exhaustive reachability analysis, but it stays within the realm

of reachability properties.

Rather than treating the reachability analysis and program
proofs as two opposites, we shall regard the former as a simple
special case of the latter. (Bochmann alludes to this perspective
in [BoR], p.649.) In this view, illustrated by the following example,
the reachability analysis of a bounded-chanmel CFSM protocol is a
melhed for constructing and proving a set of simple assertions

atiached to composite states.

8.1. Example. The purpose of the protocol is to limit the total
number of messages simultaneously in transit (ie. the total number
of buffers needed). In the example, the limit is two. (Any other
limit can be used. The larger the limit, the more states the finite
state machines have.) The protocol assumes error-free channels.
Data messages are iransmitted in both directions. There are three

message types:

DATA data message,

ACK acknowledgement of DATA,

RELE releasing buffer.
Initially, each channel is allocated one buffer. Either transmitter
can release a buffer, which is then used for transmissions in the
copposite direction. The t{wo finite state machines are identical.

Fig. B.1 shows their lransmission diagrams and the communication

graph,
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Fig. 8.2 is the compleie global stale space of the protocol
(We write D=DATA, R=RELE and A=ACK) The global state space is
finite; from it one can read various reachability properties: The
total number of messages in transit is at most .two, the protocol is
deadlock-free, ete. Fig. 8.3 shows a different data structure, which
contains the same information as Fig. 8.2 (when Fig. 8.1 is known).
The table in Fig. 8.3 lists, for each composite state, the set of all
possible channel contents. We can regard each entry in the table
as an esserfion. TFor example, the entry §(DATAA), (RELE),
(ACKA), (WDATA), (\REELE), (MACK)} at (03,10) asserts: If the state
of Process 0 is 03 and the state of Process 1 is 10, then the
channel content is (DATAA) or (RELEA) or [ACKA) or (hDATA) or
(MRELE) or (MACK).

The asserticns in Fig. 8.3 can be written more compacily. E.g.
the entry al (03,13) is the relation {(z,y)| {z|+|y|=2}, the entry
at {00,13) is the relation {(z,y)||z|+]y|=1}, etc. Quite simply,
the protocol implements a distributed counter. However, an
automatic assertion verifier would have to be considerably more

intelligent to understand such descriptions.

From the table in Fig. 8.3 we can read, for example, that the
composite state (01,13) is stable, and that no message can arrive

at 02.

(End of Example 8.1.)
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Process O Process 1

-DATA
-RELE

start start

-DATA
~RELE

The communication graph

a
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° \‘\“umh_ //’”// ]

3

Fig. 8.1. A simple flow control protocol.
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Notation for
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Fig. 8.2. The global state space.
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In this view, the exhaustive reachabilily analysis is a method
for constructing and verifying the correciness of tables whose
entries are finite sets of channel contents. One can argue that
the table, or a portion of il, should be a part of the protocol
description, because it offers an addilional insight into the struc-
ture of the protoecol. This is especially true if the protocol has
not the bounded channel property. In that case the entries in the
table are infinite sets, and the complete table cannot be con-
structed by the exhaustive reachability analysis. If the lable is
supplied together with the CFSM description then the analysis algo-
rithmm need not cobstruct the table, it merely has to verify ils

correctness {consistency).

The distinctive fealure of the exhaustive reachability analysis is
that the domain of asseriions {the language that they are formu-
lated in) is extremely simple, and therefore amnalysis can be
efficiently automaled. On the other hand, the method has several
limitations. Here we address its inability to analyze protocols with

unbounded channels.

Generally speaking, the way to overcome the limitations of any
assertion proving system is to extend the domain of assertions; in
doing so we trade simplicity for power. A natural extension of the
exhaustive reachability analysis i3 to use more pgeneral relations,

instead of finite ones, in the assertions. Two important families of
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relations have been extensively studied in the last tem years, the
recognizeble and the raefional relations; their basic properiies can
be found in [Ber] and [Eil]. Every finite relation is recognizable

and every recognizable relation is rational.

We are going to extend the assertion domain by using recogniz-
able and rational relations in place of finite ones. We gain power
(ability Lo analyze some protocols with unbounded channels), while
not losing all the simplicity: The assertion verifier will have ito be

smarier but still fairly simple.

8.2. Definition. Let P be a CFSM protocol. Say that P has
the rationol channel properfy if the relation

LS) = €| (5509 [——*(5.0) } < g_jEMg*
is rational for each composite state Se_XNK}‘ Say that P has the
je

recognizable channel properfy il 1(S) is recognizable for each S.

Thus the bounded channel property implies the recognizable
channel property, which in turn implies the rational channel pro-
perty.

In this section we concentrate on cyclic protocols. We return
to general CFSM protocols in the next section. As we have seen in
Theorem 5.2, cyclic prolocols have the property that unbounded

channel growth can be confined to a single channel
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8.3. Theorem. JFor any cyclic CFSM profocol P the following
four condifions are equivalent:
(o) P has the recognizable channel property;

(6) P hus the rational channel property;

(c} for every BeF and for every composite state S, the sef
Qp(S) = { zgcllf | (zgéek)el(S) and z=A for £#8

is regular; '

(d) there exists Pek such that the sef Qp(S) is regular for

every S.

Thus the recognizable and the rational channel property coin-
cide for cyclic protocols. We shall see later that this is not the
case in general.

The sets Qﬁ(S) of Theorem B.3 are consistent, in this sense: If
(S, (zeteE)) | ——* (S (z'pécE)), =zg=a'=A for ¢#B, and 7€ Qp(S)
then z'g€@p(S7). At the same time, there is an eflicient algorithm

to decide whether a given family of regular sets §(S), indexed by

Se,>€<NI:;-, is consistent {with respect to § and P ).
pl

Moreover, a consistent family @(5) such that Ae@(S% and
MEQ(S) constitutes a proof lhal {(5,C% is not reachable from
(5°¢% (ie. that S is not a stable state). Consequently, if a
cyclic protocol has the rational channel property then for each
non-stable S there is an aufometically wverificble proot tﬁat S is

not stable.
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The foregoing discussion is summed up in Definition 8.4 and

Theorems 8.5 and 8.6.
B.4. Definition. Let P be a CFSM protocol, BeZ, and let
Q(SICHF for every SE}e(NKj. Say that the sets @Q(S) are com-
i

sistent (with respect to P ond §) il (S, (zgfch)) |——*(5'(z'gEcE)),
ze=x'=A for ££8, and zz€Q(S) imply z'geQ(S").

8.5. Theorem. There is an clgorithm to decide whelher any
given family of regulor sets Q(S) is consisient (with respect

to a given cyclic P and o given ).

8.6. Theorem. let P be o cyclic CFSH profocol with the
rational chonnel property, ond lef BcE. A composite slate S’

is nol stable if and only if there is a consistent fomily of

regulor sets Q(S), SEji(NK-, such thot Ae@{S5%) and AZQ(S’).

The following corollary to 85 and 8.6 shows that the rational
channel property indeed prevents, in an essential way, the cyclic

protocol from using the channels as a general infinite memory.

B.7. Coroliary. The deadiock problem 1is algorilhmically decid-

able for cyclic CFSM prolocels with the raiional chonnel pro-

periy.
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The algorithm in the proof of 87 (at the end of this section)
is awfully inefficient; it exhaustively searches for a proof of
. deadlock-freedom. However, once the proof is known, it can be
efficiently verified. Therefore it makes sense to require Llhat the
protocol designer supply the proof (in the form of chammel expres-
sions) as a part of the protocol deseription. The description of a
protocol by means of CFSM augmented with channel expressions will
be exhibited in Example 89. The description is substantially
abridged with the help of the simple result in the forthcoming
Theorem 8.8. It says that one need not supply the sets §(S) for
all S; it is sufficient to describe @(S) for sufficiently many S, and
all the other sets @(5) can be automatically computed.

8.8. Theorem. [Jet P be o cyclic CFSM protocol and BEE.
For each jeN, let V;CK; be a set of stales such that hjel;

—b .
and if p; »q;, p;.9;€K;, then g;eV;. Then there is en olgo-

rithm to decide whether any given family of regular seils
indexed by SEjZ(NV:,- can be extended fc o consistent fomily of
sets Q(S) indered by SEjZ(NK}. Moreover, if the family can
be extended then the smallesl such sels Q(S) ore regular ond

car be cutomafically consirucied.

The proofs of the results in this section come after the follow-

ing example, which illustrates the proposed proof method.
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B8.9. Example. This is a varialion of the alternating bit proto-
col described in section 2. In the present version both stations
take turns in transmitting and receiving data packets. The com-
munication graph is again as in Fig. 8.4.

Demon 2 and Demon 3 are identical. Demon 2 is defined in
Fig. 8.5; Demon 3 differs cnly in state numbers (30, 31,... instead
of 20, 21,..). Processes 0 and 1 are defined in Fig. 86. They

differ only in the starting state.
Theorem 8.8 applies for these sets V;:

Vo = {00, 01, 02, 04},

Ve = {10, 11, 18, 144,
Vg = {20;,
Vs = {301

This reduces the nu;nber of the sets @(5) that have to be
specified from BxBx7X7=1764 to 4x4x1x1=168. The sets @4(S) for
3

SEJ'>_—.<0V-" are listed in Fig. 8.7. (Recall that, in agreement with the
notation in Theorem B.3, §(S) is the set of all possible contents
of the channel from Process 0 to Demon 2 when the other chan-
nels are empty.) Bach K;, §=0,1,2,8, contains one receive state: the
protocol is deadiock-free i and only if the global state
((04,14,20,30),C% is unreachable. Since the (04,14,20,30) entry in
Fig. 8.7 is the empty set, the protocol is deadlock-free.

(End of Example 8.9.)
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Fig. 8.4. The communication graph.
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Demon 2.
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qQ

10 11 2 14
p
00 ¢ ¢ EVA*EV* U OD*EV*

ODA* EV* '
01 b ¢ ¢ EV*0D*
02 ED* ¢ ¢ EV*ED* u
OD*ED*
04 EDXEVA* U EVA*0DA* EVA*UODA* ¢
ODA*EVA*

Fig. B.7. @,{{p.q.20,30)) for p€{00,01,02,04] and q €§10,11,12,14}.
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The prools of the results in this section follow. Severél proois
use the "priority argument” informally; it could be formalized as in
the proof of 10.1.

First we establish two lemmas that will be needed in the proof

of B.3.

8.10. Lemma. let M, ond M, be lwo alphobets. If RCHM{ s
e regular set and LCMFxMF is o rationol relofion then the
relation

INE = § (xy)eM¥xM¥ | Fz : zzcR and (z,y)<L }

is recognizable.

Proof. Tet F=(K M, T h,A) be a deterministic finite automaton
accepting R; we use the notation of [Hop]. For each p€kK, denote
Ry, the language accepted by (K,M;,7.h.fp}), end Ry, the language
accepted by (K,M,,T,p’4). Define

L(Ry,) = t yeMF | Feeky, : (xy)ek i .
Now
INR = | RouXL(Ryp)

- peK
and each L{Fy,) is regular. It follows that LN is recognizable.

L]
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B.11. Lemma. [lLef P be o cyclic CFSM protocol with the com-
munication graph G=(N,E) where E=logay ' ' ,0m},

—o=t+0my, —0;=+o0g S, O E 0y, g
/ e \

If (S.C") is o reochable global state such that C'=(zgéck),
Zo=A for k+1<i=m, then there are o reachoble globol stole
(5,C) ond a p(.zth T from (S,C) to (S',C") such that

(@) C = (ygk€k), yo,=A for k<ism;

(b) Imy(T) is e trwvial peth (of lengih 0) for each i#+oy.

Proof. We use the same priority argument as in the proof of
5.2. There is a path from (S°C% to {S',("); rearrange it by giving
the lowest priority to the node +oag=—oge;. Let T' be the longest
suffix of the rearranged path for which (b} holds. Iet (S,C) be
the starting global state of I. Then C=(yg¢cE) must satisfy (a): If
Yoy 7 A then T could be made one step longer; if y,#A for some
>k +1 then T could not lead to (S',C").

(]
Proof of 8.3. Clearly (a) => (b) and {c) => (d). To prove the

implication (b} => {c), cbserve that
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Qp(s)xéﬂ% = LUSINt (zgfeE) | z=A for &#F 1.
i)
The relation {(zgéck)|zg=A for £#8} is recognizable, hence the

right hand side is rational ([Ber], p. 57). Since @g(S) is a
homomorphic image of the left hand side, it follows that @g(S) is

regular.

It remains lo be shown that (d) => (a) (this is the only part
of the prool that uses the fact that P is cyclic). . Assume, without
loss of generality, that E={agoy, - - - 0,i —ag=td,, —o;=+a,

© ., O =+0p -, and f=cg By induction on k& we show that
the relation

L, (S} = { (zgtek)el(S) | z4,=A for k+i<izm |
is recognizable for O<k=m and cvery S. As L,{S)=L(S), this
proves (a).
Induction basis: To(S) = @a(S)% >E<EE?\§ and @g(5) is regular,
=g
hence Ig(S) is recognizable (for every S).
Induction step: Assume that O<k<m and 1;{S) is recognizable

for every S. Thus

sy ™
L(S) = | X Qus)
v=0

where every set §,(S) is regular, @,(S)cMX, and Q,(S)={A} for

a0

k<i<m.

For each S', the relation I;,,(S") can be expressed in terms of
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the relations L.(S}, S€_>E<NKj, and the finite state machine
J

Fr=(K, 2, T, h,), where m=+o;=—04,; Write S'=(p;:;jeN) and for

every g€ denote by R(g)c ME xHX the rational relation
oy

g+

defined by the transducer

(K Moy Mgy, T8 8P01) -
Let S'(g)=(g;:jeN) where g;=p; for j#n and gn=g. By Lemma

8.11,

r(3(@) m

BalS) = U U | X @S @R@ONG(S @)

o€k,  v=0 |k k+1
in the notation of Lemma 8.10. Hence L;,,(S" is recognizable by

8.10.
(]

The next two lemmas, 8.12 and 8.13, are used in the proof of

8.5.

8.12. Lemma. A faemily of sefs Q(S) is consistent (with
respect to a cyclic protocol P and an edge G<E) if ond only

if the following three conditicns are sofisfied.

+b
(@) If (S,(zp£cE)) |—— (S'.(z'gEcE)), behig, zg=x'=A for £#B,
and zgcQ(S) then z'geQ(S).

—b
(6) If (S,(zetek)) |— (S'(z'¢EeE)), beMp z=x's=A for £#f,
and zgeQ(S) then z'gc@(S").
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(c) If there is o poth T from (S,C% to (S',C%) whose no step
is lobelled +b or —b, bely, then Q(S)C@(S).

Proof. Observe that (c) is equivalent to the following, formally
stronger, condition:
(@) If there is a path I' from (S.(zgéck)) to (S'.(z'pEck)),
zg=xz'g=A for &f, £geQ(S) and no step in T is iabelled +6 or -5,
beMg then zg=z'5eQ(S"). |

It is clear that (;l.), (b) and (d) each are necessary for the
consistency of @(S). To prove that the three conditions together
are also sufficient, take any path T' im the global state space, say
from (S, (zgéck)) to (S, (x'g€€k)), such that zg=z'¢g=A lor £#8 and

xge@(S). Using the priority argument again, rearrange T' so that
+b
ye=y's=A for §£#£f whenever (S,(ygicE)) |—— (Sa.(y'g¢€E)) or

-
(S1.(yg€cE)) |- (Sa(y'g¢€k)) is a step in the rearranged path.
Thus the rearranged path is a concatenation of paths to each of
which either (&) or (b) or (d) epplies. It follows that x'ge@(S").

]

8.13. Lemma. Jet P be o cyclic CFSH protocol and (EE.
Then there is an algorithm to find, for ony composite state S,
every composite state S' for which there is o paih from
(5,69 to (S,C°%) with no step labelled +b or —b, BeEMg
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Proof Construct the following directed graph #. The nodes
of H are the composite states of P. There is an edge in H from

S, to Sy iff there exisls ¢€E, &#F, such that S,=(p;ijen),

—b +b
5x=(g;:j€N), p;=g; for j#+{-f and p_g > gy Pig @ ¢4g for

some beM; Now &' can be reached from § by a directed path
in H if and only if there is a path T from (S,¢% to (5',C% in the
global state space such that no step of T is labelled +b& or —b,
beMg. Hence the property can be decided by the standard
reachability (tramsitive closure) algorithm in the graph H.

]

Proof of 85. To prove that there is an algorithm to decide
the consistency of a family of regular sets @(S), we construct
algorithms to decide the properties (a), (b) and (¢) in Lemma 8.12.

+b
It is easy to check (a). The condition says that if p - g in

F+ﬂ, Sz(ijjEN), Sf:(qj:jEN): Bj=q; for j?é'l-ﬁ’ p+ﬂ:}7 and Q+ﬁ=Qx
then

fz | bzeg(s) ] c @S] .

The inclusion is algorithmically decidable for regular sets @(S) and
Q(s7).

A similar algorithm decides (b).

The algorithm to decide (¢) has two components. The first,

based on the algorithm of Lemma 8.13, finds every pair of compo-

site states S and S’ for which there is a path T' from (S,C% to
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(5,¢% whose no step is labelled +b or —b, beMg The second
component of the algorithm checks the inclusion @(S)c@(S").
[l

Proof of 8.6. let P be a cyclic CFSM protocol and geF. If a
composite state S’ is not stable then there is a consistent family
of regular seis, namely the sets Qp(S) of Theorem 8.3, such that
A€ Rp(S?) and AZQg(S").

Conversely, if S' is stable lhen (S%C% |——* (5',¢C%); hence for
any consistent family of sets Q(S), regular or not, such that
AEQ(SY), we must have Asg(S").

(]

Proof of 8.7 An algorithm to decide the deadleck problem
combines two semialgorithms, one of which always terminates.

The first searches for a deadlock, using the exhaustive reacha-

bility analysis. It términates whenever the protocol allows a

deadlock.

The second semialgorithin searches for a proof of deadlock-
freedom in the form of a consistent family of regular sets @(5)
such that A€@(S%) and AZ@Q(S) whenever S consists solely of
receive states. It terminates if the protocol is deadlock-free.

]

Proof of 88. Construct a finite state automaton # with
A—transiltions as Iollows: The states of F are the composite states

of P. There is a A-—transition from S; to Sz in F iff the graph H
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in the proof of B.13 has an edge Ifrom S; to S There is a tran-

sition from S;=(p;:j€N) to Sp=(g; €N} labelled b, beldg, iff p;=g;

+b w
for j#+f snd pi.g > gup . Write S’ > S, weMg, if the automa-

ton F can move from S' to 5 by reading w.

For a given family of regular sets &(S), SE_XNY?-, define
i€

T
QS) = § yeHF | 3.5"6j>E<NT{,- FreMy : S'»S and zyed(S) 3
X K- X V.
for every SEjENKJ J_EN%
Both the given sets and the newly defined ones are regular.

In view of 8.5, il is now sufficient to prove this lemma:

8.14. Lemma. If there is o consistent fomily @(S), SE-szK"
. i

such thot Q'(8)=Q(S) for every SE_>€(N1[G_: then
i
{e) @{S)cQ'(S) for every ng?s(NX,; and

(b) the family Q(S), Se >E<NKJ is consistent.
1

Proof. (a) Let zeQ(S), Se X K— X V. Write C=(zgécE)
JjeN JEN
where zg=z and z~A for &f. From the definition of Q(S) it fol-
lows that there are S'E_>E<NT/;- and C'=(z'p¢€k) such that z'g=A for
J

£#B, z'5€Q(S)=Q(S") and (5°,C7) |——* (5,C). Hence ze€Q'(S) and,
since ze@(S) is arbitrary, 2(S)c@'(5).
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{b) Let C=(zg¢cE), C'=(x'gtcE), zg=xz'=\ for E£B, z'ge@Q(S")
and (S,C7) |—* (S,C). It is to be shown that zge@(S). We dis-

tinguish three cases:

I S€ _>E<NI§-; then the inclusion in (a) and the consistency of @'(S)
i
imply that zge@(S).

I. Se X K;— X V; and S'e X V;. Since (5',C) | -—*(S,C), there
FEN JEN jenN !

is a path T from (5'.C") to (S,C) in the global state space. We
assume, again, that E={aga, @ @ - 0pi  —dp=tap,, —oy=tag,

©, —Qp=+0,,_;, and f=og. As before, we rearrange the path
T' by using the highest priorily at +a,,, the next at +ap,_; eic,
with the lowest priority at +eg In the rearranged path, let Ip be
the longest prefix whose last step is labelled —b, beMg and let T,
be the remaining suffix of the path. Thus I} is the longest suffix
whose mno step is labelled —b, beMp and the path Tgly is locally
equal to T. The path Iy leads from (5°.C7) to (S".C"), say, with

C'=(z"ggcE). TFrom the choice of priorities it follows that
S"EJ_?E(NT/} and z";=A for &#B. At the same time, I} defines a
sequence of transilions from S” to S in the automaton F; let
yeMF be the corresponding input of F, ie. S” £ S. Then

yrg=z"gcQ(S") and, therefore, zgeQ(S).

m. 5,5'c X k- X .

X XV By the definition of @(S'), there are
i J

S"e X V; and C"=(z; ¢€E) such that z";=A for &8, z"geQ(C")
JEN



- 78 -

*®
and (S",C") |—=* (S'.¢"). Hence (S",C") |—— (8,C) and the result

follows from the already proved case II.

This completes the proofs of 8.14 and 8.8

(]

9. Recognizable channels for general protocols.

By Theorem 8.3, the rational and the recognizable channel pro-
perties are equivalent for cyclic protecols. We begin this section
by showing that the two properties differ in general.

a
9.1. Example. The communication graph is 0 °, 1 ; both M,

B
end Mg contain a single symbol: M, = tad, Mg = (6. The transi-
tion diagrams of the iwo finite state machines are in Fig. 9.1. We
have
L((00,10)) = {(d™,b™) | n=0}
L((00,11)) = {(d™,b™*) | n
1((01,10)) = {(d**6") | n
L((01,11}) = {(d",6™) | n=0}

All these relations are raticnal, but none is recognizable.

=

}

0
0}

v

(End of Example 9.1.)

The results in section 8 (particularly Corollary 8.7) suggest the

following problem.
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9.2. Open problem. JIs there on clgorithm fo decide whether
an orbitrary CFSM protocol with the rofionel channel properiy

is deadlock-free?

The present section gives a partial sclution: There is an algo-
rithm to decide deadlock-freedom for the CFSM protocols with the
recognizable chanmel property. (This also yields another prooi of
8.7.) The key property of recognizable relations needed in this
theory, and not possessed by rational relations, is the decidability

of inclusion.

The following Definition 9.3 and Theorems 9.4 through 9.7 are
analogous to 8.4, 85, 886, 87 and 8.8. The results will be proved
at the end of the section.

9.3. Definition. let P be a CF3SM protocol, and Ilet
R(S) ¢ X HF for S € X K;. Say that the relations R(S) are
teF +  JeN

consistent (with respect to P) if (S.C) |——* (S,C") and CeR(S)
imply C'eR(5".

9.4. Theorem. There is an algorithm lo decide whether any
given fomily of recognizable relotions R(S) is consistent (with

respect fo o given P).

8.5. Theorem. Let P be a CFSWH profocel with the recognizoble
chonnel property. A global stofe (S'.C") is mnof reachaoble if

and only if there 4s o consistent fomily of recognizable



~ 79 -

relafions R{(S), SE'>E<NKJ-' such that C9eR(S") and C'#R(S").
j

9.6. Corollary. The simple reachability problems (such as the
deadlock problem) cre clgorithmicelly decideble for the CFSM

protocols with the recognizable channel property.

9.7. Theorem. Ilet P be o CFSM protocel. For each jeN let

-b
V;cK; be o set of stefes such thal h;jeV; and if p; = g;,

P;.G;€K;, then g;€V;.  There is on olgorithm fo decide whether

any given family of recognizable relofions dndexed by

S e 'XNVj can be extended to o consistent family of relutions
je

R(S) indered by S € 'XNK;" Moreover, if the fomily con be
JE

extended then the smallest such sefs R(S) are recognizable

and con be aulomalically constructed.

Theorem 9.7 should be compared with the similar result in the
next theorem, which is analogous to placing intermediate assertions
in program loops, as in the Floyd-Hoare invariant asseriion method
[Man].

Recall that a feedbock werfex set in a directed graph is a set
of wvertices that intersects every directed cycle in the graph.
Theorem 9.8 refers to feedback vertex sets in the product groph
{of the protocol P). The nodes of the graph are the composite

states of P, and the edge S - S5’ is in the graph iff there exists
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1N such that S=(p;:jeN), S'=(g;:jeN), pj=g; for j#i, and the

edge p; -+ ¢; is in the transition disgram ol F;.

9.8. Theorem. Iet V be o feedback werlex set in the producl
graph of o CFSM protocol P. There is un olgorithm fo decide
whether any given family of recogmizoble sels R(S) indeved by
ScV con be exstended to a consistent fomily of sets R(S)

indexed by Se _XNK}. Moreover, if the given fomily con be
JE

exfended then the smallest such sets R(S), Se€ _XNK;- - V, are
je

recognizable and con be oulomafically consiructed.

The results in this secltion are to be used to construct
automatically verifiable proofs of reachability properties for the
CFSM protocols with the recognizable channel property on general
communication graphs, in the same way as the results in section 8
are used for cyclic protocols. The proofs are again in the form of
tables; the entries are recogmizable relations. Theorems 9.7 and

9.8 help us to limit the size of the tables.

The method in this section is in fact more general than the
method of regular sels in section 8. Indeed, we can construct a
proof that a general global state (5,C) is unrcachable, whereas
previously we could only prove that (S,C% is unreachable (ie. that
S is not stable). We can even decide certain second-order reacha-

bility properties:
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9.9. Theorem. Jet P be o CFSH protccol with the Tecognizable
channel property. Iet beMg pick;, i=+f.  The messoge b
connol orrive of p; if end only if there is o consislent family

of recognizable relations R(S), Se 'XNK‘.,-, such that COR(SY)
JE

end if (zpiek) € R((pj:jeN)) then zg does mot begin with b.

9.10. Corollary. The problem "Can b orrive af p;?" is algo-
rithmicelly decidoble for the CFSH profocols with the recogniz-

wble channel property.

Now we prove 9.4 through 9.9.

Proof of 9.4. Although the consistency of a family R(S),

S€_>€<NIQ, is defined in terms of the relation |——% it can be
3!

equivalently defined in terms of |—— : The relations R(S) are com-
sistent if and only. if (S,C) |—— (S,C) and CeR(S) imply

C'eR(S"). In other words, R(S) are consistent if and only if these

two conditions hold:

+b

{a) If S=(p;:jeN), S'=(g;:jcN), i=+f, p;=g; for j#i, and p; > ¢
in F;, then
f{(z'gE€E) | g(zE:EEE)ER(S) t zgma'e for £7f and zg=bz'g § C R(S1).

._b
(by Il S=(pj:jeN), S'=(g;:jchN), i=—f, p;j=q; for j#i, and p; - g;

in 7, then

{(x'pEek) | a(xfz.fvEE)ER(S) : we=x'y for £#f and zgh=z'g ! ¢ R(S).
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Since these inclusions are decidable for recognizable relations, both
(a) and (b) are decidable.
[]

Proof of ©.5. The proof is similar to that of 86. If (S'.C7) is
niot reachable, then the relations L(S) of Definition 8.2 fulfill the
condition. Namely, L(S) are consistent, C%L(S%) and C'ZL{(S").

Conversely, if (S',C) is reachéble then mno consistent family of
relations R(S), recognizable or mot, satisfies CPeR(S?) and C'R(S").

13

Proof of 9.6. As in the proof of 8.7, we combine two semialgo-
rithms, one of which always terminates.

Given a global state {5',C'), the first semialgorithm searches
for a path from (5%C% to (S',C"). It terminates whenever (S',C")
is reachable.

The second semialgorithm searches for a proof of nen-
reachability of (S,C"), in the form of a consistent family of recog-
nizable relations R(S) such that C%€R(S%) and C'£R(S'). Since the
pratocol has the recognizable channel property, the semialgorithm

terminates whenever (S',C") is not reachable.

Proof of 9.7. Define

W¥g.p) = {bgby - - - b, | b;eM, for O=i<n and ¢ —————— - pi

for g.p EK+€' and



- pa -

5 = x . 1.

we(s5',.5) Pavd (g5.25)

for S'=(q;:jeN) and S=(p;;jeN). Tor a given family of recogniz-
able relations R(S), SEj>E<NVJ-, define

R(S) = ()  (ygEcE) | Az £cE)WH(S',S) - (zgypteE)ER(S) |

seX V;
JeN

for S € XK — XV, . Al the relations R(S), SeX K;, are
JjeEN jeN

JeEN

recognizable, and Theorem 9.7 follows from this lemma:

9.11. Lemma. I[f there is a consistent family R'(S), S€_>E<NKj,
F
such that R'(S) = R(S) for every SE.?_:(NIG., then
7
(ﬂ) R(S) ¢ R'(S) for every SE.XNK?_; and
jE

(6) the family R(S), .S'E?E(NKJ—, is consistent.
J

Proof of 9.11. (&) Let CeR(S), S € ,_XNKj—XNVJ-. By the
JE

JE
definitien of R(S), there is S'E_>E<NI§— such that (S'.C) |——* (S.C)
J

for some C'e€R(S'). Since the relations R(S} are consistent, it fol-
lows that C<R'(S). Hence R(S)cR'(S).

(b) Let (S5,,CY |—=* (5.,C) and C'ceR(S"). We want to prove that
CeR(S). We distinguish three cases:

L SE_XNV_,‘;. Then the inclusion in (&) and the consistency of R'{(S)

JE

imply C<R(S).
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I Se X K—X V¥ and S'c X ¥. Since (5',C") |-—* (5,C), there
: jeN jeN JeN )
is a path ' from (S',C) to (S,C). There are two paths I'" and T'"
such that T'T'" is locally equal to I' the end state (S",C") of T
satisfies .S'"E_XNV,-, and all the steps in I'" are receptions (i.e. are
je

labelled +&). Since R'(S) are consistent and R(S)=R(S") and
R(S"=R(S'), it [ollows that C"€R(S'"). The path I'" defines a vec-
tor  (zpfEB)EWH(S",S), arnid  with C=(ygé€E) we  have
(zgypécE)=C"cR(S"). By the definition of R(S) we get Ce<R(S).

. 5,5 X K; - X V;. By the definition of R(S"), there is a glo-
jeN JEN

bal state {S",C") such that S"E_>€<NV;,-, (5", |—* (S,C") and
7

C'eR(S™). Hence (S",C") |——* (S,C) and we apply the already
proved case 1L
{1
Proof of 98. We start with the given recognizable relations

R(S), SV, and first define relations R(S), for S£V, as follows.
For Se€ X K; -V, let R(S) be the set of all those Ce X M} for
JjeN 53]

which there are S'e€V, C'eR(S'), and a path from (S',C") to {(S,0)
such that no composite state S" along the path (except S5°)
belongs to V. Since V is a feedback vertex set, no such path can
pass through the same comp®site state twice. Hence the length of

all such paths is bounded, and therefore the sets R(S),
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Se _>E<NKJ-—V, are recognizable and automatically constructible. The
i

result now follows from this lemma:

9.12. Lemma. I[f there is a consislent fomily R'(S), SE_XNK-,
JjE

such that R'(S)=R(S) for every S<V, then
(o) R(S) ¢ R'(S) for every S, and

(b) the fomily R(S), S‘G_i(NKJ-, is consistent.
i

Proof of 9.i2 is similar to, bul simpler than, that of 9.11,
(a) Let CeR(S), SE_Z(NKJ-—V. There are S'€V and C'eR(S") such
je

that (S,C" |——* (S,C). Since the relations R'(S) are consistent,
CeR'(S). Hence R(S5)cRYS).

(b) Let (5.C9) |——* (5,€) snd C'€R(S"). We want to prove that
CeR(S). We distinguish three cases: _

I S€V. Then the inclusion in (a) amd the consistency of R'(S)
imply CeR(S).

II. SgV and S'c€¥, There is a path T from (S',C") to (S.€). Let
T", frem (S"“.C'") to (5,C), be the shortest suffix of T such that
S"eV. Thus T=I'T", T’ leads from - (5°.C") to (S".C"), and
C"eR(S"). No composite state along T'" {except S') belongs to ¥,
hence CeR(S) by the definition of R(S).

IIl. SEV and S2V. By the definition of R(S’), there is a global
state (S",C") such that S"€V, and a path from (5",C") to (S',C7).
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Hence there is a path from (S",C") to (S8,C), and the result fol-
lows from case Il
]
Proof of 9.9. If b cannot arrive at p; then the relations L(S)

of Definiticn 8.2 fulfill the condition. Conversely, if there is a con-
sistent family of recognizable relations R(S), S E_§N1Tj, such that
g

C%R(S% and =®p does not begin with &  whenever
(zpeel)€R((p;:j€N)), then, by Theorem 9.5 mno global state
((}UjleN},(Z'E:EEE)) in which zg begins with b is reachable. In
other words, & cannot arrive at p;.
(]

Proof of 9.10. Again it is sufficient te show that if & cannoi
arrive at p; then there is an algorithmically verifiable proof. This
follows from the previous results in this section and from the fol-

lowing: There is an alg“orithm to decide, for every recognizable rela-
tion Rc X M¥, every BeE and every belM, whether there is
I35 £ g

(zgEc)eR such that xg begins with &.
§ [

{1
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10. Abstract flow control in general graphs.

We now return to the idea of abstract flow control, inlroduced
in section 5 for cyclic graphs. Recall that our first aim is to Emjt
the number of locally equal paths to be examined by the reachabil-
ity algorithms. This alone is easily achieved; we can order all
nodes of the communication graph by assigning them distinet prior-
jties, and thus select a wnigue path in every class of locally equal

paths.

!

However, not all such priority assignments are of equal value.
Our second aim is to choose locally equal paths that use a small
number of global states. Two methods for making the choice,
leading to two different priority schemes, are described in Lhis sec-
tion. Then the priority arguments are applied to give a partial
solution of the reachability problem for the rational channel CFSM

protocols.

Let T be a path in the global state space of a CFSM protocol
Suppose that #(S,C) is a proposition applicable to every global
state (S,C); that is, 8(S,C) is a (true or false) statement for every
{(S,C). Say that 8(5,C) is true frequently olong T if ¥(5.,C) is
true for at least ome of every two consecutive global states along
[. In particular, if # is an edge in the communication graph and
the statement "if C = (zgf€f) then =zg = A" is true frequently
along T, then the transmissions and receptions on the chanmel §

are tightly coupled in the execution described by I; in other
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words, every symbol sent on § is received at once (in the mext

step).

The first result uses collections of noncrossing boundaries in
the communication graph; the concept is somewhal similar to the
laminar collection of {or a valuation on) directed cuts in a directed
graph, in the sense of Ilucchesi and Younger [Luc]. Let
G = (N,E) be a directed graph. For ACN denocle

07(4) = § ¢€F | +g€4 and —E£ A}
B8Y4) = § geF | —gcd and +Ei£A}
and call the sets 97(4) and 8%(4) the mnegelive and the positive

boundary of A.

A set ¥ of subsets of N is smooth if for all A,Fe¥ we have
() AcB or (i) Bc4 or (i) AnB=¢ and ¢ (4UB) = 87 (4} " (B).

10.1. Theorem. Jet G = (N.E) be the communicelion groph
of @ CESHM protocol ond let ¥ be o smooth sel of subsels of
N. JFor every poth thol ends in o global stafe with emply
channels, lhere exists o locally equol path olong which the fol-

lowing 1is freguently true:

VAl 3ped~(4) : it C=(z;¢cE) then zg=h.

Proof of 10.1. Order the sets in ¥ in a sequence
Ag Ay, - -+ A4, such that if 4, CA; then i<j. Set Fg=4; and
k-1

By = & — | J4& for £>0. Let I' be a path ending in a global
i=0
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state with empty channels. We rearrange I' by execuling the
processes in Hg with the highest priority, those in B; with the

second highest, ete.

Formally, if T' contains twe adjacent steps

Tyt (83,01 1o (52,09

Ty ¢ (S5Ca) 1= (Sa.Cd
such that Tm; (T;) and Im;(T2) are nontrivial paths, 1,65;, 265,
F1>j2 and if it is mot the case that epy=+b, beMy C1=(zgéck)

and =xg=A, then we replace the subpath T Iz in I' by the path

€2 L3
(5:,C1) |— (SuCy) |—— (53C3) for a suitable (S,Cs;). We repeat
the same with the new path, etc., until ne further transformation
is possible. Let I" be the path comstructed by this process. We
wish to show that
ac¥ Fgea(a) ;U C=(zg¢€k) Lhen zg=h
frequently along T''. '

If not then there are two consecutive global states (S,C) and
(5,¢) in T' and tiwo sets A,4'c¢¥ such that C=(zgéek),
C'=(z'gfc k) and

EedT(4) ¢ zeEA
V(A ¢z AN
First observe that we can assume, without loss of generality, that

A=4'. Indeed, if the move from (S,C) to (S',C7) is a reception on
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a channel fe8=(4) then

Need—(4") LeEA,
and if the move from (5,C) to (5.C") is not a reception on a
channel in 87(4) then

EEdT(4): A

Now assume A=A'. Since I'" ends in a global state with empty
+2
channels, there is a later step |—— in IV, for some beMg Bcd™(4).

+b
Taking the first such step, say {5,,0y) |— (52.Cs), we gel a con-
iradiction with the construction of T'': We have bel, Bed™(4) and

from the properties of ¥ it follows that +f8€B;, —f&B;, i<j.

Hence the step {S,C;) Iib— (Sg,Cs could be exchanged with the
previous step in [, contrary to the assumption that no further
transiormation is applicable to T'".
]
Observe that Theorem: 5.2 follows imimediately Irom 10.1.
Indeed, with the notation of 5.2, there is a smooth set ¥ of sub-

sets of N such that {B}=0%(4) for every Ac¥ and

F07(4) | Aev 3 = (g | £ B - {61
Fig. 10.1 shows such a set ¥ for a cyclic protocol whose graph has
four nodes.

The priorities in the proof of Theorem 10.1 are inlerpreted in

the "standard” way: A node executes (ie. its finite state machine



Fig. 10.1. The smooth set { A] , A2 s A3 1.
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makes a move) if and only if it is not blocked (waiting for input)

and all the nodes with higher priorities are blocked.

A different priority scheme arises when we apply Theorem 1i0.1

recursively, in a divide-and-conquer manner.

10.2. Example. Consider the following communication graph.

o—%—0e—"t—0

Y

Every execution that begins and ends with empty chamnels can be
reordered so that o, § and 7 are frequently empty. However, such

a reordering cannot be achieved by the standard priority scheme.

Instead, we first apply Theorem 10.1 to the set {{+73}}, to make
7 Irequently empty. Then we restrict all subsequent reorderings to
the remaining nodes of the graph; we next apply 10.1 to the set
¥ = |{—B,+8¢}; this makes o frequently empty. Then, in the graph
‘with the two nodes —f and +3, we apply 10.1 to ¥ = {{+Bi, to
make £ frequenily empty.

Another way of describing the new execution is to say that the
nodes are ordered +y, —y, —f, —a, from the highest to the lowest
priority. However, the priorities now have a different meaning. In
the standard scheme, the unblocked process with the highest prior-

ity executes. In the present scheme, that unblocked process
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executes on which the process with the highest priority is {directly

or indirectly) blocked. In our example, the priorities are as fol-

lows: 4 é 3
» -
O
1

O O
If 2 is blocked on 4 and both 4 and 3 are unblocked, then 4 (not

3) exccules; in the standard scheme, 3 would execule.

(End of Example 10.2.)

Clearly the priority schemes, as well as any other abstract flow
control methods, improve the efficiency of the exhaustive reachabil-
ity analysis by reducing the number of global states that the
analysis must enumer?te. It iz difficult to make any quantitative
claims about the efficiency gains because, as Brand and Zafiropulo
. [Bra] note when they evaluate two analysis methods, "in both
approaches a protocol can be analyzed. successfully only if ils
behavior is far from the worst case, as is true {for protocols
designed in practice.” However, in the context of the tiheory
developed in this paper we can prove qualitative claims about

eristence of algorithms (rather Llhen their cost).

We have already seen (in section 8) how a priority scheme can

be used to construct an algorithm to solve the deadlock problem
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for the cyclic protocols with the rational channel property. In the
remainder of this section we shall see, on two examples, that the

same can be done for some other communication graphs.

10.3. Theorem. 7he problem "Is a gwen composile stole
stable?" 1is olgorithmically decidable for the CFSM profocols

with the rofional chonnel property ond the communication

graph 0 1.

Ty LR

10.4. Theorem. The problem '/s o given composile slale
stable?” 4s algorithmically decidable for the CFSM profocols
with the ralional channel property ond the communication
graph in Fig. 10.2(a).

The same result cen be proved for the graphs in Fig. 10.2(0),
{c), {d) and other similar ones. On the other hand, it is not
known (to the author) whether the stable. composite state problem
is decidable for the CFSM protocols with the rational channel pre-
perty and the communication graphs in Fig. 10.3(a) and (b).

In the forthcoming proofs, we say that a family of relations

R(S), S € 'XNK-’ is consistent relative fo o resiriction if this con-
je

dition holds: if (S.€) |— (S'.¢"), CeR(S), and both (5,C) and
(S',C") satisfy the restriction, then C'eR{S").
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Proof of 10.3. If a composite state is sltable then its stability
is verified by the exhaustive reacheability analysis. Thus it suffices
to construct a semialgorithm that verifies non-stability and ter-
minates whenever the composite slate is not stable. We show that
there is an algorithmically verifiable proof of non-stability for every
non-stable composite state; the semialgorithm then simply generates

proof candidates until it finds a correct one.

Choosing ¥ = {{1}} in Theorem 10.1, we can restrict our atten-
tion to the paths along which frequently o or # is empty. Thus

for every non-stable composite state S’ there is a proof of non-
stability of .S', in the form of a family of relations R(S), SE‘XNK"
JE

that are consistent relative to the restriction "[z4|=<1 or |zg|=1"
and such that ¢%€R(5% and CP%¢R(S'). The consistency is algo-
rithmically verifiable when the relations are recognizable; hence the

result follows from this lemmna:
10.5. Lemma. If R ¢ MIxMF is o rotional relafion then the
relation
Rl = % (Eu,zﬁ)ER E |.‘l,"u|5]. or |Zﬁ|$1 g

is recogrnizable.

Proof of 10.5. For every ze€M¥ the relation

R(z) = { (za2p)cR | z5=2 |



_98_

is recognizable; similarly, for every yEM&* the relation

RYy) = { (zozp)ER | zp=y §
is recognizable. Since the relation R' is equal to

RO URMN U | Rlzdu | R zp),

T &My zgeHpg
it is recognizable.

This completes the proofs of 10..5 and 10.3.

]

In the forthcoming proof of 104 we split the graph in Fig.
10.2(a) into the two graphs in Fig. 10.4. For the given CFSM pro-
tocol P {with the communication graph in Fig. 10.2(a)) and for an
arbitrary deterministic (complete) finite automaton F over the
alphabet M., , we define two protocols P'(#) and P"(F) as follows:
The protoeol P(F) has the communication graph of Fig. 10.4(a}, the
finite stale machines at the nodes 0° and 1’ are the same as those
al 0 and 1 in P and .the machine at 2' is # (with every label in
its transition diagram prefixed by +). The communication graph of
PYF) is as in Tig. 10.4{(b), the finite state machine at 0" is F
{with every label prefixed by -) and the machines at 1" and 2" are

the same as those at 2 and 3 in P.

10.6. Lemma. et P be a CFSM protocol with the commumnica-
tion groph in Fig. 10.2(a), and let (po.p1.paps be o composile
slate of P. Assume thot there exisi o delerministic finile

automaton F (over M,) and e set U of ifs stafes such thof
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(a) if p is a state of F, p£U, then (popi1.p) is not steble for

P{F),; and

(6) if peU then (p.,psps) is nol steble for PU(F).

Then (popPapPa) is nol siteble (for P).

Proof of 10.6. Suppose that S' = (ppp,.pzps) is stable, ie.
(8°C% |—* (S',€%. We use higher priority for the nodes 0 and
1 to get two paths Ty and I'; and a channel content €' = (zgéck)
such that
(1) z¢=A for &%y (where 7 is the edge from 1 lo 2 in Fig. 10.2(a));
(8) T leads from {S%C% to ({po.puiahs),C);

(3) Iy leads from ((pophzhs),C) to (S,C%; and
(4) the images Ims(Ty), Ims(T), Tmp(Ty), Imy(Ty) are all trivial paths.

Let F be any deterministic finite automalon over M, , and U
a set of its states. Let p be the state of /7 to which F moves
from its initial state by reading =, . The composite state (Pop1.P)
is stable for P'(F), and (p.ps.ps) is stable for P"(F). Thus (a) and
(b) in 10.8 cannot be both true.

1]

The crucial step in the proof of 10.4 is the following lemma,
which (together with 10.6) shows ilhal Ior every mon-stable compo-
site state of P there is an algorithmically verifiable proof of its

non-stabilify.
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10.7. Lemma. Let P be o CFS¥ profocol with the rabional
channel property and the communicalion graph in Fig. 10.2(a).
If o composite state (po.p1.Paps) of P is not stable then there
erist. o deterministic finite ocutomalon F ond o sel U of us
stoles such that

(a) there is a fomily of recognizable relations R'(S’) indezed
by the composite stales S' of the protocol P'(F), consistent
relative to the restriction "|z,!=1 ond |z,|<1", such that
CO%eR'(S9) and C°%2R'{(po.p1p)) for every state p of F mol in
U;

{b) there is o family of recognizable relafions R"(S") indexed
by the composite stales S of the protocel P'(F), consisient
relative to the resiriction " z,.]<l and |z, |=1", such that

CP%eR"(5%) and CP#4R"((p,paps)) for every pel.

Prool of 10.7. Let @ be the set @/((pop1.hahs)) of Theorem

B.3; that is,
Q = { 2l | (550 =% (Popuhaha) (setcE))
and x =A for ££y §.

Since P has the rational chennel property, @ is regular. There is
a deterministie finite automaton F to recognize §; let U be the
set of accepting states of #. To define the relations R'({(go.q1.0))
and R"((p,gsg9s)), we use the relations L{S} of Definition B8.2.

Denote hg the initial state of F. Define
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R'((go.q1.0)) =
E (mu’»mﬁ‘-zy') 1 ﬁ(xa,mlg,x7,:r5.zs)€1.((qo,ql,hg.hg)) gyEM; :
To=To , Tgp=g , T=T,=A , [Ty l=L

¥
lzyl=2l , hg2p in F and yz, =z, |
for every composite state (gq.g.p) of P'(F). If (p.g293) is a com-
posite state of P"”(F) such that a state in U can be reached from

p in F then define

R((p.92.93) =
¥

§ (xa..,xﬁ..,.j:y.,) | Yyely Yp'elU 1 p » p' =>

20,7826, 2)EL((P0.P1.92.93)) ©

Ba=Tg=h , Tgr=xg , TH=Tg , |Tyv|=1

lﬂ:a"!.ﬁl , and xyeYy =z, ; ,
and if no state in U can be reached from p, define
R"((p.92.93) ={ (zanzgezy) | |Terl=1 and fz,.[=1 .
Since P has the rational chammel property, L(S) are rational, and

therefore R'(S’) and R"(S") are recognizable.

The consistency of RY(S’) and R"(S”) follows from the con-
sistency of L{S) and from the definition of F and U. It also fol-
lows from the definition of F and U that if C°eR'{(pop1.p)) then
pel, and that if C°eR"((p paps)) then p£U. This completes the
proof of 10.7.

il

Proof of 10.4. As in the preof of 10.3, it suffices tc show that

for every non-stable composite state there is an algorithmically

verifiable prooi of ils non-stability. By 10.7 and 10.6 there is such
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a proof, consisting of F , U, the family R'(S’) and the famﬂy-
R"(S™).

indeed, if p is a state of F not in U/ then the family R'(S") is
a proof that (pgpyp) is not stable for P'(F) (by the priority argu-
ment applied to the graph in Fig. 10.4(a), every stable composite
stale is reachable by a path along which frequently o' and 7' are
" empty). Similarly, the priority argument applied to the graph in
Fig. 10.4(b) shows that the family R"(5'"} is a proof that (p.pa.ps)
is not stable for P"(F) whenever pel.

]

i1. Recapitulation and conclusions.

The theory of communicating finite state machines, or, maore
precisely, of finite state machines connected hy unbounded gqueues,
is emerging as a valuable tcol for the specification and correctness
analysis of communication protocols operating over channels with
indefinite delays. Although the CFSM model is very simple, it is
rich encugh to encompass certain basic protocol properties, which

are expressed as reachability properties in the global state space.

The reachability properties cannot be automatically verified in
the class of all CFSM protocols; in other words, the reachability

problems are (algerithmically) undecidable. However, since the use-
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‘fulness of the model is greatly enhanced by its amenability to
automated analysis, it is well worthwhile to look for classes of
CFSM protocols in which the problems are decidable. Traditionally,
the emphasis has been on the class of the prolocols with the

bounded channel property.

The presenl paper advances our understanding of the question
"“What makes Lhe reachability problems in the CFSM theory undecid-
able?" The paper contributes three mnew concepts to the theory:
Aﬁ'iﬁity of SR-machines, simple-channel properties, and abstract flow

control.

The results about affine SR-machines point out close ties
between the traditional automata theory and the theory of CFSM
protocols. It is also shown (in section 8) that, although many
interesting properties of communicating SR-machines are undecid-
able, some become decidable under additional restrictions (affinity

in this case).

Similarly, the results about simple-channel (recognizable channel
and rational channel) properties demonstrate how some protocols
with unbounded channels can be aulomatically analyzed, although
the problems are undecidable for gemeral protocols. The simple-
chamnel restrictions formally express the observation that common
protocols do not meke use of the full generality of the CFSM
model. "Protocols with unbounded channels usually use them in a

simple manner, which makes them worth considering” ([Bra],
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p. 10). The results in this paper suggest a new formalism for pro-
tocol description (CFSM augmented with channel expressions)
together with algorithms for automated analysis of the protocols so

described.

It should be poinied out that a proof of, say, deadlock-freedom
in the form of a table of recognizable relations can be potentially
advantagecus even for a protocol with the bounded channel pro-
perty. Indeed, it can happen that the reachable global states are
separatled from the deadlocked ones by a consistent family of
recognizable relations that are described by short expressions, while
at the same time the complete list of all reachable global states is
very large.

The theory of "recognizable proofs” (i.e. proofs based on recog-
nizable relations) is &ll ready for use; the theory of "rational
proofs”, on the other hand, is not well understood. The key open
question is whether reachabilily problems are algorithmically decid-
able for protocols with the rational channel property. The problem
is answered in the afiirmative for cyclic protoccls in section 8, and

for several other simple communication graphs in section 10.

The aim of the abstract flow control, as defined and studied in
this paper, is to limit the redundancy in the global state space,
thereby improving the efficiency of the algorithms that decide the
reachabilily properties.  Abstract flow control methods should

exploit the topology of the communication graph, as do the two
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priority schemes propesed in section 10.

In section 10 it is shown how the pricrity schemes lead to
qualitative gains: They allow us to construct algorithms for solving
reachability problems for the rational-channel CFSM protocols with
some communication graphs. Abstract flow control metheds yield
guantitative gains as well, but these are difficull to estimate in any
meaningful way for general protocols. Perhaps a fruitful approach
would be to study algerithms for finding optimal abstract flow con-
trol methods, or, for the sake of concreteness, optimal priority
assignments. For example, one can formulate the optimization
problerr of finding {for an arbitrary communicalion graph) the
priority assignment thal minimizes a cosi function, which measures
the number of "ﬁeedlessly reachable’” global states. But that, as

Kipling says, is another story.
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Appendix: Post’s tag systems.

The tag systems are first mentioned by Post [Pos] as a source
of possibly undecidable problems. The undecidability is actually
proved by Minsky ([Mii], [Mi2]).

A tag sysfem is a 3-tuple T=(X,g,wy) where ¥ is a finite alpha-
bet, g is a funclion from T to £¥ and weel® Define

lg|” = min { |g(b)] | beZ],
lg|* = max { |g(&)] | bcE} .

For every positive integer (delefion mnwmber), the tag system
defines a function from Z* to £¥; in what follows we only consider
the function corresponding to the deletion number 2. The functiom,

denoted fy, is defined by
(a) if |w|=1 then fq(w)=A; and
(b) if w = bgby + - - by, , n=2l, then folw) = by - - - brg(bg).

The sequence of T, denoted Esn(T)E,;_O ., is defined by s¢(T) = wo,
and sp+1(T) = fa(sa(T)), n=0.

A.1. Theorem. There is neo algorithm lo decide, for every tag
system T=(Z,9,wp with |g|” =1 and |g|* = 3, whether

s,(T) = A for some m.

Proctf: See Theorem 5 in [Wan].
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A2 Theorem. There is no algorithm to decide, for every ilag
system. T=(Z,9,wp) with |g|” =1 and |g|* = 38, whether

|s,(T)| = ¢ for some constant ¢ and every n.

Proof. If there were such an algorithm, we could construct é.n
glgorithm to decide the problem s,(T) = A of Theorem A.l as fol-
lows: For a given T, first decide whether |s,(T)| = ¢ for some ¢
and all =. If this is not the case then s,(T) # A for all n. If,
on the other hand, the sequence of T is bounded then generate
the successive strings s,(T) until sy (T) = s, (T) for some m; and
my, my # my; now if s, (T) = A then the problem is decided, and

if sp,(T) # A then s,(T) # A for all n.

]

A.3. Theorem. There 1is no algorithm io decide, for every lug
system T=(L,g,wy) such that |g|~ =1, |lg|* =3 and
s, (T) # A for all n, whether |s,(T)| < ¢ for some constant ¢

and every m.

Proof. For every iag system T=(X,g,wg) choose a symbol #£IL

and define

I = But#t
w'y = WoHE
g'(t) = g(b) for &el ,
g'#) = # -
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Then the tag system T' = (Z'.g',w'y) is bounded (ie. |s,(T"}| = ¢
for some ¢ and all n) if and only if T is. Moreover, s,(T"} # A
for all n, because every s,(T') contains the subsequence ##.

Thus if we had an algorithm to decide the boundedness for
every T = (¢’ w') such that |g|~ =1, |gi* =38 and
s,(T) # A for all m, then we would also have an algorithm Lo
decide boundedness for every T=(I,g,wp) such that |g|~ = 1 and

lg|* = 3, in contradiction to A.2.

[l
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