FOLDING AND UNROLLING SYSTOLIC ARRAYS*

K. Culik II and J. Pachl
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
NZL 3G1

Research Report {S-82-11
April, 1982

* This research was supported by the Natural Sciences and Ergineering
Research Council Canada under grant No. A7403.

Abstract

This paper is about two constructions for transfaorming planar
systolic arrays. By a systolic array we mean a uniformly structured
processor configuration that allows only local communicatien {between
neighbour processors) and supports high throughput by pipelining. Mead
and Conway argue that such configurations are suitable for VLSI implemen-
tation ([41, p. 271).

We show how new connections in a systolic array can be
established by folding the array along a line; and how computations in
one-dimensional arrays unroll to two-dimensional structures resembling
trellis automata [2]. We construct systolic arrays for computing large
powers of a matrix; for matching keywords; for recognizing square-free

words; and for finding the transitive closure of a relation.

1. Folding Systolic Arrays

When constructing complex systolic arrays from simplie ones, ¢ne
often wishes. to connect the nodes in.one set to the corresponding nodes
in another. E.g. in the array in Figure 1, the node ay is to be

connected to b1 > A, to b2 , etc.

v w

ok

ay,

ag

a3

X ¥y

Figure 1

Long connections, Tike those in Figure 2, violate the systolic
design principles; we would prefer to keep the Tengths of all connections

in the array approximately equal.
a b
1 I PN P
QA A S S A AR AN S S R
a2 £ % 4 £ :l: £ % $ % b2
ag é(4) 4) %) & <£) (Ig 4; % bz

Figure 2

By folding the array in Figure 1 along the line vy , we

preserve the original grid pattern and establish the desired connections

(Figure 3).

1. Folding Systolic Arrays

When constructing complex systolic arrays from simple ones, one
often wishes to connect the nodes in one set to the corresponding nodes
in another. E.g. in the array in Figure 1, the node 2 is to be

connected to b} > 2 to b2 , etc.

v w

‘)G

4 X v z

Figure 1
Long connections, like those in Figure 2, violate the systolic
design principles; we would prefer to keep the lengths of all connections

in the array approximately equal.
a
1

ra

L
o\
e
NS
~
N/

Figure 2
By folding the array in Figure 1 along the Tine vy , we

preserve the original grid pattern and establish the desired connections

{Figure 3).

_a]b] uw \ 3

3%
2303
a4b4
%z y
Flgure 3

The small size of the array in Figure 3 may be misleading; the
nodes and connections have to do more work than those in Figure 2. The
new Tayout can be more or less expensive, depending on the cost function
used. Nevertheless, Figure 3 is more regular than Figure 2, and it
conforms to the systolic philosophy. It can also be implemented in two
layers; or, alternatively, the two overlapping computations can be
multiplexed in time.

For the square grid in the plane, the (repeated) folding
canstruction can be used to identify any two sequences that are congruent

in the sense of the following definition.

Befinition. A (planar) layout is a collection of curves in the
plane; the endpoints of the curves are the nodes of the layout. Two
(finite or infinite) sequences (ai) and (bi) of nodes are congruent
(retative to the layout) if there is a distance-preserving 1-1 transfor-
mation of the plane that maps the Tayout onto itself and each a; to bi'
]
The square grid in the plane has the following property, which

is also satisfied by a number of other planar patterns. If A and B

are two congruent sequences of nodes in the infinite planar square grid,

then A can be transformed to B by applying at most four reflections.
(In this paper, a reflection is always that of the plane about a line.
We only consider the reflections that preserve the layout in question.}
It follows that A and B can be identified {connected) by applying at
mest four foldings. Repeating the construction k-1 times, we get this

result:

Theorem i. If A}, A2, cees Ak

in the infinite planar square g¢grid, then A], A?’ e Ak can be identified

are gairwise congruent sequences

by applying at most 4(k-1) foldings.

Proof: The general case follows from the case k =2 . Let
A= (a1 3y ... an} and B = (b1 by ... bm) be two congruent sequences

in the infinite planar square grid. Assume, without loss of generality,

that the sequence A 1is not collinear and CH # 2y (hence also B s
not collinear and b1 # b2).

A plane translation, which is a composition of two layout-
preserving reflections, maps a to b] ; let C = (c1, Cps wees cn)
be the image of A . Thus S bI ,and B and C are congruent. If
B and C have the same orientation then a rotation about b1 maps C
to B ; since B and C are congruent retative to the grid, the
rotation is by a multiple of 90°, and therefore it is a composition of
two Tayout-preserving reflections. If B and C have opposite
orientations then .a single layout-preserving reflection maps <, to b2
and hence also c; to bi for all 4§ >2 .

We cenclude that there are four or fewer reflections whose

composition maps A to B . The composition of the corresponding

foldings identifies A and B .
il
In many cases the connections can be established with fewer
than 4{k-1) foldings. It is obviously desirable to use as few

foldings as possible, to keep the combined nodes small.

The same resylts hold for the triangufar grid, which is used
to lay out the hex-connected arrays ([4], ch. 8).

The theorem can also be applied to "approximately congruent"
sequences. It is not necessary to exactly identify (ai) and (bi) in
order to connect them; if (ai) is congruent to (Ci) and if b, and
¢, are endpoints of the same curve of the layout for each i , then
(ai) can be identified with (Ci) and hence connected to (bi) by one
curve of the Tayout. This point arises in Example 1 below, where such an
approximate identification requires fewer foldings than exact

identification would.

Example 1. Using the folding technique we construct a systolic
array on triangular grid, with no communication except between adjacent
nodes, to compute A" for an input matrix A of fixed dimension n
and m=2, 4, 8, ..., 2%

It is based on the Kung and Leiserson matrix-multiplication
array ([4], pp. 276-280), used here for dense matrices. A straight-
forward modification of the array from [4] is shown in Figure 4, for
n = 3. First we feed the input matrix A from.both left and right, to

2 . A<A . Then 1in each iterative step we compute

k

compute A

2

A by feeding the output from the k-th step as both "left"

—_—

.o'b:‘j:ﬁ

X ©
- o
. G
L]
.
"O .Oo %) 8]
o ° . o t
S O 5/
..Fo . a % . o
. . .) .
. e Q Y l.
O- 0- o] - . \
L) L]
. -
ooa . [=}]
.

axis 1
1

o8]
~ o
[
...I‘..M-u........'....'...‘.'.‘.I
L]
o %)
-rl@‘lu& ou-otliulllnl'iﬂlll!l‘t...loo0-IOOOQMVO
N
Py [}
<
m'l. v vvssn Revvasan esa

Lhd A LT T T T ey

I
L

o
-.- ..- ©
2 SN
o o gmﬁ o W
2 K Fe K
¥ o o «
%) o \ *
o 4 .- —
o 8 0 1t
» o sy
Ll .
Oy «

Figure g

Now we apply the folding technique explained after Theorem 1
in order to achieve "local" connections between 0 and Y; and
hetween B; and Y; for i=1,2, ..., n. This is done by folding

the Tayout along the axes numbered 1, 2, and 3, in that order.

and "right" input of the (k+1)-th step. This is done by non-local
connections from ¥; “to o and Bi » 1 =1, ..., n, and suitable

delays between the original array and point i and between ai(si} and

the original array.

The resulting array has only Tocal connections on the trian-
aular grid. At most eight processors of the original array are mapped
tc one. The same holds for the communicaticn Tines. The resuiting
array has U(nz) processors and computes the matrix A" in (3n-2)Tog m

clock cycles.

2. Linear Systolic Arrays with One Parallel Input

A Tinear systolic array is a semi-infinite one-dimensional
configuration of processors in which only neighbours communicate in each

clock cycle (Figure 5}.

Figure 5

The c¢ircles are memoryless processors. Each arrow represents a
communication that takes place during one time unit (typically the arrows
will be implemented by clocked registers).

We now consider an array to which external input (a sequence of
symbols) of length n ds fed in parallel, one symbol to each of the n
Teftmost cells. Assume that the output is emitted from the leftmost

pracessor; ‘all the other processors are identical (Figure 6).

output =e—-q T { eee

"

input

Figure 6

If the input length is n , we are particularly interested in the output
symbol produced n time units after the input has been read in. This
is the earliest time when the output depends on all input symbols; we
say that the output is produced in pseudo-realtime.

The pseudo-realtime computation in the linear systolic array
can be graphically arranged as a two-dimensional map, in which one

dimension represents time (Figure 7).

output
Figure 7

This picture may be regarded either as the logical description of the
computation in the linear array or as the physical layout of a two-
dimensional array which computes the same output. By creating additional
nodes and changing transmission paths, we transform the structure into
one whose connections are as in the trellis automata of [2]; see

Figure 8.

10

output
Figure 8

This is one half of a trellis in the sense of [2] . The
construction shows how trellises, which are well understood, can be used
to design linear systolic arrays. The pseudo-realtime computation of
the array on an input sequence w 1is simulated by a trellis computation
on the seguence $n'1w (where $ s a new symbol and n 1is the Tength

of w).

Theorem 2. To every Tinear systolic array corresponds a homogeneous
trellis such that the pseudo-realtime output of the array on the parallel

input w is the same as the output of the trellis on the input $|w|'}w .

Conversely, every homogeneous trellis whose innut alnhabet contains §

corresponds to a linear systolic array in this way.

Proof: The half-trellis in Figure 8 is simulated by the homogeneous
trellis in Figure 9 as follows: Use two new symbols, ¢ and # . The
input symbol $§ s transformed to two ¢'s. If a cell receives at least

one ¢ , it sends # to both outputs; if it receives # on both inputs,

11

it sends ¢ to both outputs; and if it receives # from the left and
another symbol from the right, then it sends ¢ to the left and on the
right it simulates the leftmost cell of the linear array.

Conversely, every homogeneous trellis can be folded in the
middTe to yield a haif-trellis such that the half-trellis on any input
w simulates the trellis on the input $|w|-1w . The half-trellis,
such as that in Figure 8, then corresponds to an unrolled computation of

a Tinear systolic array, such as that in Figure 7.

Figure 9

Corollary. Every Tinear context-free language is accepted in

pseudo-realtime by a Tinear systolic array.

Proof: It is proved in [2] that every finite intersection of Tinear
languages is accepted by a homogeneous trellis. If L 1is a]inear

language, then L$ = {$n—1 w|wel, [w =n} is the intersection of
two Tinear languages. It follows that L$ is accepted by a homogeneous

trellis and, by the theorem, L is accepted by a Tinear systolic array

in pseudo-realtime.

Example 2. There is a Tinear systolic array that decides whether
at Teast one of finitely many keywords occurs in a given string. The
array is universal; the string and the keywords are read as input. The

construction is based on the fact that the language

{s#k?#kg#...#ki [3, 1<iz<sp, k; is a substring of s}

is Tinear. (# 1is a new symbol, and k§ is the keyword ki in reverse

order.) Theorem 2 shows how to design a parallel linear systolic array

R
2

depending on whether s does or does not contain a substring ki .

that accepts or rejects every string s#k?#kg#...#k (in pseudo-realtime}

3. General Linear Systolic Arrays

In the previous section we concentrated, for the sake of
simpiicity, on the linear systolic array that reads its input at a single
moment in time and is then Teft on its own to compute the output. A more
general linear systolic array reads new inputs throughout its computation.

As before, we restrict our attention to the part of the array
computation that leads to the output produced by one cell at one time.
(The whole computation is an interleaved aggregate of such simple

computations.)

13

We again unroll the computation in time, and arrange it as a
trellis-Tike structure. The difference is that the resulting half-trellis
reads input symbols in various interior nodes, while the half-tretlis in the
previous section has all its input nodes within one row. In the array

in Figure 10,

O 0

ocutput

\ -~

input

Figure 10

the computation that leads to the output produced after three time units

unrolls as in Figure 11.

output

Figure 11

The vertical arraows in Figure 11 stand for external input and output.

14

The one-dimensional iterative array of Cole [1] is a special

case of a tinear systolic array; the input is read sequentially by the

Teftmost cell. The corresponding unrolled trellis-1ike structure (Figure

12) is a useful design tool.

output

_ Figure 12
For instance, the now standard problem of constructing a one-dimensional

iterative array to accept palindromes in realtime [1, 3] can be easily
solved, and, what is perhaps more improtant, the solution can be
intuitively understood, on this diagram.

Similarly, the one-dimensional iterative array to recognize the
language {ww | w < {a, b}*} (see [1]) unrolls as in the following

example.

Example 3. We want to design a Tinear array (with sequential input)
to recognize the Tanguage {ww | w ¢ {a, b}*} in real time. We start
with the diamond-shaped trellis structure in Figure 13. The solution
combines three concurrent computations. The first sends every input
symbol diagonally right; as a resuit, the second half of the input word

of length n 1is available at the bottom right edge of the diamond

16

The second computation transports the first half of the input
string to the same position at the bottom right edge. The data paths are
traced in Figure 13. Every input symbol moves diagorally left (along a
dashed Tine in the figure) until it hits a free trajectory to the right.
Then it moves right as indicated by the full line: two moves right and
one left. Note that an edge in the trellis is shared by at most two data
paths in this second computation; only finite amount of information is
therefore stored at each node.

The third computation collects the results of comparisons along
the bottom right edge of the diamond. If all compariscns are successful,
the output (at the bottom corner of the diamond) indicates success.

To get the structure of Figure 12 (the unrolled computation of
a one-dimensional iterative array), we fold Figure 13 along its vertical

axis of symmetry.

Example 4. The systolic array in Example 3 is a basic component in the
array that we now construct, which recegnizes the language

{wwkv | we Z+, u,v ¢ 2*} for a fixed integer k > 2 . We construct two
versions of the array; one reads its input sequentially, the other in
parallel.

We do not know whether the language can be recognized by a
realtime systolic array with sequential input; our array needs additional
time to broadcast input symbols and to collect results.

First we modify the construction in Example 3 to get an array

that recognizes the language {wkv | we E+, v € Z*} . Then we use the

17

unrolled form of the modified arvay (1ike that in Figure 12) and apply
it to every suffix of input. There are two ways of doing this, depending
on whether the input is read sequentially or in parallel.
In the case of sequential input, the n-th input symbol is
broadcast to the top n input points in Figure 12. When the input
string has been read, the results for all its suffixes are available
along the left edge of the array: The answer whether the whole string
beTongs to the language {wkv | we 2+, v ¢ Z*¥} is at the bottom square
box in Figure 12, the answer for the next shorter suffix at the box
above it, etc. It then remains to collect the answers and OR them
together. The broadcast and collection operations can be implemented via
external connections (e.g. by a binary tree, whose time cost is
Togarithmic in some models); alternatively, either broadcast or collection
can be implemented for free by means of the systolic conversion
theovem [3].
The array with parallel input operates in pseudo-realtime.
Again we start with the unrolled array of Figure 12 that recognizes
'{wkv | we Z+, v e I*¥} , but now input is fed in parallel to the square
boxes along the left edge. Every square box remembers its input symbol
and retransmits it with each clock pulse. The answers produced sequentially
by the array are ORed together at the bottom box. If the Tength of input is n
then after n time units the bottom box has the answer.
We conclude with an example in which unro]]ing and folding
are combined to construct a systolic array for computing the transitive

closure of a finite relation.

18

Example 5. Our goal is to construct a systolic array that computes

the transitive closure of a relation. Both the -input and the output
relation are represented by matrices of zeros and ones. We start with
the Tinear systolic array {"linearly connected network" in the terminology
of Kung and Leiserson) for matrix-vector multiplication described in ([4],
pp. 274-276). By unrcolling the computation in time, we get the trellis
structure (direction from top-left to bottom-right) in Figure 14 (for

n = 3), which computes

a1 32 43 X o
31 32 33 *2 |7 Yo
d31 3 233 X3 Y3

19

o

[¢]
1
o

o
w
i
o
..-‘..‘.I."’.”.ﬁ’b'mh

seasanseranen

x1

sesenteasbnsnss

X2

PPTOT Y S R L T R R I TR LA AL L LA

Figure 14

To find the transitive closure of the relation represented by an n x n
matrix A , we want to compute A + A2 + ...+ A" , Wwith the + and

.

operations suitably interpreted.

We modify the array in Figure 14 by adding new non-local

connections, shown in Figure 15, and then by folding to identify the

sequences (a]l, Gpps ves an]) R {u1], Oqps eevs uIn) and

20

(a]n, Gops ves ann) . This can be done by three foldings. The result
is a planar orthogonally connected array, which operates in two phases:

In Phase I the matrix A 1is loaded to the array.

a1
a a9 all
-.]:S‘,...‘-..‘....}.&.....‘.. a“
2
Beys app agq
lQ...O..Oll.‘ll.-.’.“'l.....OCIOOD.-.l.‘t' &‘z
&3
azs ago az i
.0‘.‘.‘0‘.00.‘..0.’0.. ..D'.l."..“' e .‘."‘.0".‘----.. @‘3
—

Figure 195

In Phase Il the values aij remain stationary (as loaded in Phase I);
initially the matrix A 1is again put on input X as shown in Figure 15
and zeros on input y , then the intermediate sums for A+ ... + A"
cycle back on both inputs x and y . The execution time is n clock

cycles for Phase I and n2 clock cycles for Phase II.

21

References

[1] S.N. Cole: Real-time computation by n-dimensional iterative arrays
of finite-state machines, IEEE 7th Annual Symp. Switching Automata
Theory (October 1966), 53-77.

[2] K. Culik II, J. Gruska and A. Salomaa: Systolic trellis automata
(for VLSI), University of Waterloo Research Report CS-81-34
(December 1981).

[3] C.E. Leiserson and J.B. Saxe: Optimizing synchronous systems,
22nd Annual Symp, FOCS (Octecber 1981), 23-36.

(4] C. Mead and L. Conway: Introduction to VLSI Systems, Addison-Wesley

1980.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

