Data Types as Algorithms
by
M.A. Nait Abdallah

Department of Computer Science
University of Waterloco
Waterloo, Ontario, Canada
N2L 3G1

and

Laboratoire d'Informatique
Théorique et Programmation, Paris

Research Report CS§-82-10
March, 1982

Research supported by the University of Waterloo under grant 126-7124-99

DATA TYPES AS ALGORITHMS

Areski Nait Abdallah

Résumé :

Le présent mémoire décrit une construction simplifiée d'un espace
d'algorithmes. La notion de collection d'algorithmes est due 3 Nolin (1974).
Le but a &té ici de simplifier sa présentation et de 1l'eunrichir de la notion
de calculabilité par le biais de l'utilisation des faisceaux. On construit
une collection d'algoritkmes d&nombrable dans laquelle tous les objets sont

calculables.

Abstracc:

This paper presents a simplified construction of an algorithm space.
The notion of an algorithm collection goes back to Nolin 1974. Our goal is
here to simplify this presentation of algorithm theory.' The introduction of
a computability notion was induced by the utilization of bundle theory. We

build an enumerable algorithm collection where every cbject is computable.

Introduction

This paper presents a simplified construction of an algorithm
space. [4, 3]. The idea and the terminology go back to Nolin 1974, who
wanted a semantics for a programming language with type declarations. How~
ever, a proof of the conceptual reascnableness of the idea, or in other
words, a mathematical proof of the existence of such a space, was missing.
Such a proof was first given in [2], using bundle theory, which, as shown
in [3], underlies a significant part of programming language semantics
model theory.

In [6], which is a shorter version of [5], Nolin and
Le Berre present a simplified version of this proof, where they use "solely
elementary set theory properties" [6 1. Technically, this amounts
to abandon the upper bundle structure used in [3]. Uafortunately the
paper has an error in a crucial step of the argument: the representation
of every ncrmal self-function f : E—+ E as an element of the domain E(*)
which makes the entire proof unsound.

The argument in [5,6] follows, in a "set of subsets; setting,
the one given in [3], which referred to previocus work by D. Scott 72 and

C. Wadswerth 71, The goal is to obtain a domain E such that
E=D+ [E+>E] =D+F

where F=[E+E] ={f : E>E | £ is normal} . The representation of

normal functions as elements of E can be reduced to the representation

(*) For this discussion, the reader is referred tec Cras, Litp for notation
and definition details.

of threshold functions:

£ iz +if z < =x then y else T
xy it then else

which we shall also denote [x,y]. Since in the projective limit E any

element =x verifies:

w70,

one easily sees that

[yl =tz ,yl=UIx_, vl
p P p P

Thus it is sufficient to represent the threshold functions {xp , ¥v]

The representation used by Nolin and Le Berre amounts to define

VEE€F, ¥Yx¢€E

denoted f£{x] in [5] p.22

[£] ¢+ x> [£](x) =7 fn+l(xn)
n

The element f € F intended to represent the functions [xp s v]- is the
projective sequence
g = PGE,) e, (), f ,

?YP PYP P'P

(cf. [6] pp. 50%, [5] pp. 25).

£ > £ 2
el)Y 4q) 7 TRV s

)

Lemma 6 of [6], whose main theorem is a consequence, states that

- P
Exp,y] [g"]

This lemma dces not hold. Indeed, for any two projective sequences

{(a) (b) we have either (an) = (bn) or (an) % (bn) .

q/nen * VPn’nen

Or in other words:
either Vn a =b
or AN €N n>N=a #b ,
n n

since we have projective sequences and the projections r are monotone.

The first case applied to [gp](z) gives:
z <x =[x (z) = and
o [p,ﬂ) y

p = =
[g]{z)—'n{----o: Yps Yp+l’yp+2’ cee} ¥y

Here the first p elements of the sequence ((gp)

n+l(zn))n€ﬂ' aré of no

importance since the rest of the sequence is projective.

The second case applied to [gp](z) gives:
z ¢ xp w zp # xp = [xp , ¥1(z) = T and for any n = p
(&) 41€2) = [& (xp},yn](zn) T

Thus:

[gf1(z) =M{..., T T

» T 3 "'}
P ptl * Tp+2

. P
But here the first p elements of the sequence ({g)1_1_'_1(z1_1))1_1€:N are
very important since the others are top elements, and we are taking a

greatest lower bound. Thus
(r[x Dz) =1if e(z_ _.) = x_ then else T
p? Ypt el T A p-1 p —= Jp = %
Unfortunately we know nothing about

e(

<
-1 T %

which may or may not be true. As an example if =z € D and xp € F, then
rp(xp) = (xp)O =%, = Y
[xP s ¥1(z) = T

whereas [gp](z) =Y = e (yo} .

Which means that outside of the lowerset

¥ = €E : =
xp {z z xp}

the two functions [xp , ¥] and [gp] are unequal. Therefore the pro-
jective sequence gp does not represent the threshold function {xp , ¥l
As a side remark, one may notice that the correctmess of Nolin and Le Berre's

proof would have given a positive answer to the following question:

Is there a poset X , which has more than one element,
such that the set (X - X) of monctone self functions

has the same cardinality as X ?

In this paper a simplified comnstruction of an algorithm space
is presented. The intent of this construction is to enrich and simplify
Nelin's original presentation of algorithm theory.

The simplification we propose is a better mastering of algorithm
collections cardinality: din fact we describe an enumerable algorithm
collection. The enrichment is the introduction of computability notions:
all our algorithms will be coﬁputable in some sense. And this makes the

whole algerithm collection itself effectively presentable.

I. Bundle Structures over P(N):

Let N Dbe the set of integers and E = P(WN} be the set of

subsets of N . We have

¥x € E x= U {m}= U a

if we define an enumeration a : N - E ,

a:n~>{n-1} if n#0
ay = o) where ¢ is the empty set

This gives an elementary monic ordered bundle structure over E [3] .

The spectra are defined by:

s : E—- P(E}

> ta ¢
x {a11 L x}

The elements a, belong to their own spectrum and are therefore called
rationals. They constitute the kernel of the bundle, which means that
every x € E can be obtained as the union of some well-chosen raticmals
(in fact the elements of the spectrum of x , s(x) }. The function

a: N +»E, n-—> a gives an enumeration of the kernel. The limit func-—
tion is simply the set-theoretical union of elements of E . This bundle

structure will be called the lower bundle structure of E .

On the other hand we also have:
¥Yx €E x= N b
<

if we define an enumeration

b: N > E
m - bu1 = C{k0 N kl seens kp_l}
_ i
where m = .z 27, ko < kl LS kp—l
i<p
(Thus we use the dyadic expansion of integer m) . Notice that b0 =N .

The set of bm's is closed under finite intersection, and each bm verifies
the following algebraicity property:
For any descending chain {xi}iEI of elements of E ,

b 2N x, =3ib_ 2x, . The spectrum function
m- 1 m i

s + E—- P(E)

x > s{x) = {bm : b 2 x}

defines an algebraic monic ordered bundle for the inverse inclusion over E .
Every bm is rational, and the kernel of the bundle is exactly the set of
all b _'s .
m
The spectra are obviously closed under finite intersecticn, and
the limit function is simply the set-theoretical intersection of elements

of E .

This structure will be called the upper bundle structure of E .

InQeed the set of ﬁm's is exactly the set of all co-finite
subsets of N ; Every co-finite set is recursive, thus recursively enumer-—
able. Furthermore the relations a < a s bn < bm > ay < bm N bm = bn n bP

are all recursive in the indices m, n, p .

II. Computability im E = P(X):

2.1 Computable Elements of P(N):

We say that an element x € E is inf-computable, i.e., computable

when considered inside the lower bundle structure, if and only if the set

fn i a ¢ =x} is recursively enumerable in the index =n . We see at once

that:
x € E is inf-computable ® x is r.e.

We also define: x € E is sup-computable if and only if the set

{m : x c bm} is recursively enumerable in the index m .

Fact 1:

x € E is sup-computable = Cx is inf computable = Cx is r.e.

Proof:
fm:xcp }=im:xcCliy,k , ..., kit
k,
m = I 21, k, all different}
i<p t
v PN c C
X C C{k-o 3 kl s ’ kp—l} = {k-o s kl s » kp—l} S VX
i.e., we have to enumerate all finite subsets of (Cx . In fact omne can

show that Yy c N if Pfin(y) is the set of finite subsets of y ,

then

y is r.e. & Pfin(y) is r.e.

11.

For:

y r.e. = Pfin(y) r.e. ! we take a trecursive enumeration of vy ,
and we enumerate 211 finite subsets of y we can construct,
Pfin(y) r.e. =y Tr.e. : we take a recursive enumeration of Pfin{y) and
we evaluate, in an effective manner, the cardinal of each (finite) subset of
v . If this cardinal is one, the subset is added to the enumeration of vy ,
otherwise we discard the subset and consider the next one,

Whence the three equivalences. N

Definition:

x € E is computable if and only if x is inf-computable and x

is sup-computable. 0

In a programming language, the availability of a ground data type,
say integer, amounts to the availability of a procedure with one variable,
int(x) , such that, for any input data a , the call int(a} returns the
value true if a € N and false otherwise. This is exactly realized by

the recursive subsets of W . More explicitly:

Lemma 2: Vx € E = P(I)
(i) x is inf-computable ® x is r.e.
(ii) x is sup-computable « Cx is r.e.

(iii) x 1is computable » x is recursive a

12.

As a summary:

1. The computable elements of E are exactly the recursive subsets of W

2. E 1is an elementary monic ordered bundle for € , with ¢ and the
singletons as rational elements and the r.e. sets included in W as
inf-computable elements. The set of inf-computable (resp. computable)
elements forms a sub-bundle of E .

3. E is an algebraic bundle for 2 , with the cofinite subsets as
rational elements, and has as sup-computable elements {i.e., computable
for this bundle) all subsets C N whose complementary is r.e. . The
set of sup-computable (resp. computable) elements of E forms an

algebraic sub-bundle of E .

2.2 Computable Sequences:

We define computations in E . We call them computable sequences.

Definition:

A sequence {Xp} of elements of E is said to Ee_sug

pEW
computable (resp. inf-computable) if and only if there exists a recursive

function W:N2+N , such that for any p € N, Y(p.») 1is an

enumeration of the (indices of the) spectrum of Xp for the upper bundle
(resp. the lower bundle) structure of E . d

As a consequence, every term xp of a computable sequence
{xp}pEN is computable according to the bundle structure considered {(i.e.,
Xp is inf-computable if the sequence is inf-computable; and xp is sup-

computable if the sequence is).

.

13.

There is an important fact about the compatibility of the com-

putability and bundle notions in E .

Lemmaz 3: For any sequence {xp}pEI\T in E

’

(i) if {Xp}pEN is inf-computable, then its limit in the
lower bundle U x_ 1is inf-computable.
(1i) if {XP}PEN is sup-computable, then its limit in the

upper bundle 0N Xp is sup-computable.
p

Proof:

(1) We know that inf-computability amounts toc recursive enumerability.
Let ¥ : N -+ N be the function associated with the sequence
{x

p}

pEN The function

u 1\12 - ¥ , {m,n) +%(n+m) (n+m+l) -+ m

is primitive recursive and bijective. Its inverse

2
viN >N, p~(ps Py

is also primitive recursive and it enumerates 1\12 along the "little

diagonals", going from left to right:

(0,0}, (1,0), (0,1), (2,0%, (1,1}, (0,2), (3,0), ...

14.

Therefore:

8@ = Yoy, p) = VW), T@)))

is a recursive enumeration of the (indices of the) spectrum of U x

P
Hence {n : a cy XP} is r.e. , di.e., U xp ig inf-computable.
P
(ii) Similarly, we have
() = ¥(p,» p) = ¥(UL(v(p) , UA(v(p)))
1’ "2 2 ? 2
is a recursive enumeration of the spectrum of 1 x_ . Therefore
P
{m : bm 2N Xp} is recursively enumerable, i.e., N Xp is sup-
P
computable, a

2.3 (¢-domains:
Let X be a poset. An element u € X is c-algebraic iff for

any decreasing computable chain ixk}REN which has a glb in X ,

> 1 >
v= K ' E X . As an example, in the poset E ordered by in-
clusion, every bm is c-algebraic. More generally, in any c.p.o. for
the opposite order which has an enumerable set of compact elements, every

compact element is c-algebraic.

i5.

Definition: C-domains

A poset X is a c—domain iff

(1) X has a largest element

(id) E#ery decreasing computable sequence has a greatest lower bound
in X .

(1ii) An enumeration a : N - X of the set of c-algebraic elements is

given, and this enumeration verifies:
Yx¢X =x=[Ha :a = x} and
n n
{n : a z x} 1s recursively enumerable . 0

Examples of c—domains included in E are
X={{n} :n €W} U{W} , and X=YU (W} where YC P, (W) is
any set of finite subsets of N which is closed under finite intersectiomn.

However some c—domain included in E plays a special vole:

Lemma 4: The set Es of sup-computable elements of E is the unique

c-domain such that:

(i) it is included in E = P(N) as a poset

(ii} it has the enumeration b and contains every recursive subset

X € N as an element. a

16.

Proof:

(i) Es is a c~domain by lemma 3.

(ii) Let X C P(N) be a c-domain containing every computable (recursive)
element of E . Then bm € X for every m , whence every sup-
computable element is in X . Thus E.CX. If x ¢ E_ then

{m : bm 2 x} is not r.e., i.e., x # X . Therefore X = Es . a

In fact it appears that, once b : N - E is chosen, ES is,

by comstruction, the largest c-domain contained in E = P(W)

17.

IIT. Computable Functions:

3.1 Computable functions:

A function f : E~ E is said to be regular iff it is regular for
the lower bundle i.e., iff

Y x€E fxy= U f(an) = U f£({n}
angx néx

A regular function £ : E >~ E is computable iff the set {(m,n) : f(an) cb }
is recursively enumerable in the indices m , n .

Since f = I_I{[an, bm] : f{an) c bm} [3 1, the definition of a
computable function amounts to the definition of a recursive enumeration of

the set of threshold functions
{fa, b 1 : £(a) b}

approximating £ . If we define

(E+E) ={f : E~E | f regular}

3

[E -+ E] {f : E=-E f f computable}
supplied with the extensional order

f=z=ge¥x £(x)cy®

there is a canonical bijection between [E -+ E] (resp. (E - E)} and the

set of principal lowersets of [E -+ E] (resp. of (E = E)):

+[E+E] = {+£ : £ ¢ [E » E]}

i8.

where +f = {g € [E~+E] :y = f} (resp ...}, defined by:

S
[E + E] & +[E + E]

r
s(y) = Uy = max y
r(x) = 4x={z : z = x}
Thus tke above definition of computability gives a better insight in Nolin's

definition of an algorithm (= a principal lowerset) through intersections

where Xi =4 X Yi~ =4 v o F Xi Yi = +[xi, yi] . Here what is re-
quested by the definition is a recursive enumeration of the family

{F Xi Yi}iEI i.e., {[xi, yi]}iEI . This is made precise by the following

lemma.

Lemma 5: The threshold‘ function

[x, y] = € E. if t Cx then y else N

is computable if and only if =x is inf-computable and y is

sup-computable.

Proof:

{(m,n)

(%, yl(a) ¢ b } =
{(m,n) : if an<_2x then y else W ghm}=
{(m,n) : a Cx and y< bm} =
{m:ygbm}x{n:angx}
Hence {(m,n) : [x, ¥ (an) c bm} is r.e. iff
fm:yc bm} is r.e. and {n : a € x }is r.e. [1]. Whence the lemma

by Lemma 1. |

19.

It is worthwhile to notice here that computable functions
f : E> E may be coded, via the bijection (u,v) as r.e. subsets of K,
i.e., ¥f : E > E computable we define
graph*(f) = {(m,n) | £(a) b } =

{m,n) | £{n-1}) <

2}
o
(-

The corresponding definition in Fy [8 1 is:

graph(£) = {(m,n) | {n} € fle)l, e, =0y

Any element u € Py operates as a continuous function by
fun(u) (x) = {m l 3 e < x:{n,m) € u}
The correspording definition for our functions is for any u € E = P(I)

fun®* (u) (x)

4

U (N{b_ : (a+l, m) € u})
né€x m

One easily verifies that:
(1) for any regular f : E—= E , f = fun®*(graph*(f))
(ii) . for any u € E, u € graph*{fun*(u)) , where the equality holds iff
{(p,0) ﬂ{bm : (p+l, m) € u} © bq} Cu
(iii} Any computable £ : E -+ E yields, by definition, a recursively enu-
merable graph*{(f) . However, a r.e. set u € E defines a computable
function fun*{u) : E*> E iff

{(p,q) : ﬂ{bm t (ptl, m) € u} < bq} is recursively enumerable.

20.

However, this analogy between Pw and our construction will be-
come fuzzier at higher levels of functicnality, due to our use of Wadsworth
scheme (cf. infra) .

Actually we can define Fab = {¢[a,b]

‘[a,b] = {f € [E—= E] : f(a) Cb}={f € [E~E] : £ = [a,b]}

Obviously VYf € [E -+ E]

E]

¥£ = N{¥a,bl: £ = [a,b]}

or Af =U{t[a,b] : £(a) < b}
The relation
Yfe¢€(E-E) f= ﬂ{[an, hm] : f(an) c bm}

gives a bundie structure over the set of regular functions (E - E); more

precisely this makes (E - E) an elementary monic ordered bundle, with
s(f) = {la, b] : f(a) cb }

as a spectrum function. This structure may be made algebraic by taking
the closure of the spectra for finite greatest lower bounds. The set
[E > E] forms a subbundle for this structure.

An enumeration of the kernel is given by:
with m=) 2° k., <k, <
= [a i b 1

k 1 ?
1 W) T ()

where function v , here applied to k.i , 1is the inverse of function u

. . 2
(recursive enumeration of N~ , <cf supra).

21.

The set of ﬁm's is closed under finite [] and every Bm ver-

ifies the following algebraicity property:

v{x.}

m =]
i7i€1 Bmz *5 R

i

Moreover, for the ccmputability aspect, we have

Lemmz 6:
The relations ﬁm = Bn R {an, bm] =B, Em = En ad BP are all

recursive in tte indices m, n, p .

Proof:
We consider the proof for 5m =< Bn . TFirst notice that
la, bl S [c,dle(ccanbcd)or d=N
Thus la, byl = la,, b .1 =
an, < a, (recursive) A bm < bm, (recursive)
or b, =N (recursive)

m

Therefore the relation [an, bm] = [an,, bm,] is recursive in the indices

n, my n', m' ., Now consider Bm = Bn . We have:
R
B =e T1...MNe m=) 2
mok Kom1 i<p
& =2 4 » by]
i Uz(‘vfki)) UZCV(ki))
- 23
B—egﬂ...ﬂeg n=22
n 0 q-1 j<q
¢, =l 'b o 1
i Uz(v(lj}) U2(V(£j))

Thus B
and

and

B =8
m n
lemma.
Lemma 7:

1A
W
8

ekU M. n e Te, n...

p=-1 0

= (simplifying the notations)

[a, , b, 10 ...M [a ,
ako kg k

p-1
=
N{b ta, = } ¢ niv
T 2
-ﬂ{bk‘ : a, = ak } c ﬂ{bg
i 1 i j

ﬂ{bk. tay = aki} c ﬂ{sz

22,

p-1

Each of these inequalities is decidable. Thus the inequality

is decidable (recursive) in the indices m, m .

We have a similar argument for the other relations. Whence the

The set of computable functicms

following simplicity property

v a, 3 m f(an) =a

are closed under composition.

a

£ 1+ E-~+ E which have the

23.

Proof:
£ g .
Let E* E* E be two computable functions.
f computable = {(m,n) : Ean, bm] > £} is r.e.
g computable = {(p,q) : [ap, bq] =g}l is r.e.
The spectrum of gof , which is a monotone function, is given by:

s(gof) = {[an, bl :3dm [an, bm] € s(f) ,

Ip a, = b~ and {ap, b1 €s()}

xCa = f(x) © b~ and g(bm) = U{g{ap) tay = bn}

The relation ap c bm is recursive, thus it is enough to transform through

s

g the elements a_Cb in order to find cut s(gof). If b_=Ua
b- m m i pi

then we have the diagram:

— g
a d b
Pg q,
a -+ b
P1 4
£ :
& ” bm = :
a g b
Py 94
- :

24,

This gives [an, g bqi] as approximating gof, i.e., (gof}(an) c 2 b .
The set bm = g api is recursive, thus the sequence {bqi} is recursively
enumerable since {(p,q) : [ap, bq] > g} is recursively enumerable.
Therefore U b is r.e., 1i.e., inf-computable. What we need is the
sup—computabilit; of Q bq' in order to have a r.e. decomposition

i M

fa ’ Ub 1 =0 [a s b]
T
from which we would deduce a r.e. spectrum for gof. Buf if we impose that
gof be simple, i.e., f(an) =a for some p € N , then, since
= : C = = . C
8 ﬂ{[ap, bq] g(ap) < bq} » (gof)(a)) = gla)) Z{bq a ¢ ap}
which is a sup-computable element of E , whence an r.e. spectrum for

gof:

g{gof) = {[an, bS] : f(an) =a; g(ap) c bs} 0

Lemma 8: There is a canonical bijection between the simple computable
functions £ : E + E and the recursive functions from N
to N

Proof:

Cbvious.

Lemma 9: Let £ : E~+ E be a computable function and {Xp}pEN be an inf-
computable sequence of rational @ elements of E . Then the image

{f(xp}}PGN of the sequence is a sup-computable sequence of E .

25.

Procf:
(xp)pEN inf computable sequence = 3 : N2 -~ N recursive

such that V¥(p,.) enumerates s(xp). f computable = {{(m,n) : f(an) < bm}
i . . - i i = H C
is r.e Since every xp is raticmal, {f(xp) ﬂ{bm xp Ca
f(a) € b } the relation x_ < a_ is recursive, the relation f(a) C b

n’ - m p-"n n” - m
is recursively enumerable, thus the set {m : xp c a, f{an) c bm} is r.e.
which implies that {m : bm 2 f(xp)} is r.e. . Whence a recursive function

2

¥ : B° - K such that V{(p,.) enumerates the spectrum of f(xp) for

the upper bundle:
Y(p,q) = (enumeration of {m : bm 2 f(xp)})(q)

Thus {f(x)}

o e is sup-computable. 0

3.2 Computable sequences of functions:

Definition:

A sequence {fp} of regular functions from E to E is a

pEN
computable sequence iff 3 y: N2 + N recursive such that V p € W

¥(p,.) 1is an enumeration of the spectrum of fp' a

In particular every fP will be a computable function. We have

an analogous of Lemma 3 (i) for computable sequences of functions:

26.

Lemma 10: If {fp}pém is a computable sequence of functions, then

its greatest lower bound g fp is a computable function.

Proof:
The function I fp is regular since (1 fp) (an) =[] f(an) for
P P
every rational a and we take the least regular extension of this to
non rational elements:
n = : c
(fp)(x) u{ fp)(an) sa ¢ x}
P P
Now we just have to glue the spectra together:
s £) = U s(f)
P P P P
By means of the indices, the sequence {s(f)}‘EE' defines an inf-computable
PP
sequence of E . Hence U s(fp} is inf-computable, therefore recursively
P
enumerable.]
Let us define for any regular £ € (E—~+ E) , £ is finitely
computable iff the set {(m,n} : f(an) < bn} is recursive, Then we have

the analogous of lemma 4:

Lemma 11: Given the enumeration [of the c-algebraic elements, the set
of computable functions [E + E] is the unique ¢—domain such that
(1) it is included in (E -+ E) as a poset

(ii) it contains every finitely computable functiom. O

27.

Proof:

(i) [E -+ E] is a c—domain: The largest element of [E - E]
is the constant function x + N . Every decreasing computable sequence
has a glb in [E + E] by lemma 10. The other requirements are trivially
fulfilled. (i1) Let X € (E + E) be a c-domain containing the finitely
computable functions. Then every Bm is in X , therefore ES which is
the closure of {ﬁm :m € N} for the glb's of decreasing computable

sequence is included in X . Thus [E - E] C X and one easily sees that

[E-E] =X.

28,

Iv. Wadsworth scheme:

We have a c-domain structure over [E -+ E] = Al . We can define

the partial computable function spaces [E —+ Al] , [L’.\1 - E} , [Al - AI]

[E - Al] ={f : £f(x) = U f(an) and
a Cx
n
{(m,n)} : f(an) = B, is T.e.}
[Al -+ E] = {f : f(E xk) = g f(xk) for every decreasing

computable sequence (xk) and

{{m,n) : f(Bn) - bm} is r.e.}

[Al - Al] = {f : f(z xk) = 1;[f(xk) for every decreasing
computable sequence (xk) and

{(m,n) + £(B)= B} is r.e.}

We must be careful here, we are dealing with partial functions in the set-

theoretical sense,.

Lemma 12: The spaces [E Al], [4, -~ E], [A

1 17 ﬂ\l] , when supplied with

the extensional order, have all a c¢-domain structure.

Proof:

Analogous to Lemma 11, Only the rational elements change, and we

use the same enumeration technique as for [E - E]

29.

Then we can define

A, ={E~E] , A =E+4
Ay=E+ 28, =E+ [E+A > E+ 4]
where
by = [E+ 4 = E+A] =
[E->E+,51]x[Al->E~I-A1]
with [E~E+ 4,1 =[E~E]+ [E~>4]

(8, > E+ 8,1 = [4) ~E] + [& —>'A1]

[E+E]+[E+A1] {f+g:fe[E+E],ge[E—>Al]}

f + g being defined as the canonical extension of f and g , if

{Dom(f) , Dom(g)} is a partition of E . ‘(Here, as has been said earlier,
we use partial functions.) The space [Al -+ E] + [ﬂl -+ A] 1is defined in a
similar way.

This defines the partial sequence of spaces:

Ao = E
Al =E + Al =E + [AO - AO] L
A2 = E2 + A2 =E + [A1 i A1]

As may be seen from the ceonstruction, &2 has a c~domain structure by
using Lemma 12. We also have the following property: if {fp}pEﬂ' is

a computable sequence of Al and G : Al -+ E + Al is a computable function,

30.

then {G(fp)}pEN is a computable sequence, by an argument similar to the
one used for Lemma 9.

The finite sequence of (1) can be extended by:

An+1 = ES + An+1 b ES + [A.n -+ An]

where for any n € W, A

1 [Arl +-Ah} has a c-domain structure by con-

struction, and An+l is supplied with a bundle structure obtained by

gluing together the E-structure and the A structure as follows:

n+1
T,
//// \\\ An+l
Es An+1

Every An is a c—domain. Now the threshold function

I

[x,y] : z+if z =< x then y else T

is computable iff x is inf-computable and y is sup-computable. If
x € E, this can be checked at once, If x € An U {T} , we make x
inf-computable, since An U {T} is enumerable, by setting the lower bundle

as follows:

Y x € An U {1} 10w {(x) = {x}

which implies that every x € An U {T} is inf-computable. Because of its
triviality this lower bundle structure will be somewhat overshadowed in the
sequel.

We now make the above sequence a diagram, by defining, following

Wadsworth 71,

Vo

i,

0

i
n

3o

I, ¢

€N

AU -+ A

1
s A >A L, xvx if x €F u{T}

31.

s X+ X

i1 0x0 I if x € An

1

PA Ay LT Y if y € £ u{T}

NOif y €4,

A %-An sy >y 1if y € E

o+l

jn-—l 0yo *n-1 if vy ¢ An+1

This diagram will be called Wadsworth scheme. Notice that, for every n ,

i
n

An elemert x =

i = 1?&
n
jn = idA
n
and i, are distributive with respect to [1 and U
(xn)nﬁlle I An belonging to the cartesian pr?duct of

n€N

the An's will be called computable if and only if there exists

¥ o: R2 -+ N

recursive such that for every n ¢ ® ¥{n,.) is an

enumeration of (the indices of) the spectrum of z - 1f LS € E, then

we concider the spectrum of X, for the upper bundle. Computable sequences

of elements of

m A
n€N

are defined in the usual way. Notice that TII A
néN

has a c-domain structure. Its kernel is the cartesian product of the kernels,

Consider now the projective limit

32.

A = {(xn)nEN € E A | x = jn(xn+1)}

Then for any {(xn)nEN €4 , we have:

- either x belongs to the E-part of A and LI
- or x_ belongs to the functional part of A and

n
X =i 0 x 6 i

Therefore we have the equality of sets:

€ E} +

AL = {0 oy € E A | x = x

1}

(G e “}1 by lxg =y x =5 Gy

Thus A, = E + 4, where A 1is the functional part of A

0

Now both notions of computability and projective limit are put

together in order to define the set of computable projective sequences:

Aw = {{x) €A

' n€N oo f (Xn)nEN is computable}

One easily sees that Am = ES + Aw The closure of Aw for decreasing com—~

putable sequences will be called an 'algorithm space'. Here again, we dis-

regard the power bundle structure of Am , as far as functional elements are
concerned, because of the triviality of this bundle structure. Thus

computability here means computability for the upper bundle structure.

33.

Definition:
The algorithm space A is the smallest set containing Am and
such that every decreasing computable sequence in Qﬂ has a greater lower

bound. Elements of A are called algorithms 0

In other words, A 1is the smallest c-domain containing Am .

Its kernel is canonically isomorphic te the union of the kermels of the
A's :
n

N(A) = U N(An)

n
Lemma 13: Let i, tA 7 A be the canonical injection of A into A,
and j i A+ A the canonical projection of A onto A .
oe n n

Then both in» and Jup ~ BTe computable.

Proof:
The regularity comes from the distributivity of functions 1 and
i .
(L) injection inm : this set must be r.e. {(p,q) : in”(ap) S.bq} =
(if by = ())

n
N : <=b din A_; b
{(p,q) a, q Ay a

We know that in An the relation aP = bz is recursive, and the

. n
= lm(bq)}

set of rational elements of An is enumerable (this set contains
all the rationals of ES for the upper bundle, and all the

rationals of An), which completes the proof.

34,

(ii) Similarly: this set must be r.e.:
{pya) &+ Jpfa) b} = Gf a = (a)

= Lt < = PREPR LRSS
= {(p,q) : a, = bq} {(p,q) : a, s bq}

which is r.e. since the relation a; = bg is recursive in An by

the same argument as for Lemma 6. Whence the lemma. O

Lemma 14: Let £ : A+ A be a computable function. Then the sequence of

I Ah defined by
néN

Ifl, =W

]f[n+1 = Ay € An. (f(y))n = \y € An i (f(y}) 1is projective -

* g

and computable, and thus an element of Am O

Proof:

(1) the sequence (]f{p)pElq ~is projective since:

jn(]f[n+1) = jn—l 0]f[n+l 0 fa-1

(Gpq 03, 0£0 (0) =

*n-1

jM,n—l 0£0 1n—1,m =]f[n

€
Thus (]f[p) A

pém o
(ii1) the sequence (]f[p)pEN' is computable: spectrum (]f{o) = {N}

spectrum (]f[n+1) = j. O spectrum (£) 0 in
o .

Let ¥ be a function defined as follows:

35.

1. ¥(0,.) = \g. index of N in the enumerating of the kernel of A

2. W(p,q) = j 0 s{q) 01 where s : q + s(q) 1s a recur—
«,p-1 p-1l,=
sive enumeration of the spectrum of £ .
Thus ¥ : Nz -+ N seen as a function into the indices is recursive
and VY{(p,.) is an enumeration of the spectrum of]f[p . Thus
(]f[p)pEN is a computable element of E An . Therefore
(]f[p)pEI\T GA@ . O

Lemma 15: Any x € Am defines a computable function

[x] : A=A

v - g xn+1(yn) if y €4 or y= a € E

U{[x](ap) : ap Cy € E} otherwise.

Proof:

Regularity here means regularity for the c-domain structure, and

is obvious. The spectrum of [x] is U s(xn) , which is tr.e. since the

n

sequence X = (xn) is computable.

né€N
More importantly, we have a representation property, which justifies

the use of the c~deomain notion:

Lemma 16: Let f : A > A be a computable function. Then for any =z

in the kernel of qﬁ or such that =z = ap € E, the following

are equivalent:
(L) £(2) = [1f[1(=)

(ii) 41if z = (zn)nEN‘ =1 2

n
£(z) = £ zn) = g f(zn)

n

36.

Proof:

It suffices to see that
BE =ML, () =
MOy €A . (£) (z) =N (£(z))_

n n

= nﬂk (f(zn))k = (property of D)

= : Q (£(z)), = g £(z)

Thus [Jf[]1(z) = £(z) is equivalent to

z f(zn) = f(z)

Whence the lemma. a

Lemma 16 characterizes completely the representation of comput-
able functions as elements of Qn , because of the definition of the
operation [.] : Am -+ [A > A] and since A is a c-domain.

Thus, basically, we see that our functions must satisfy‘the

following "continuity' property:

v {xk}kEN decreasing computable sequence,

fEMx) =0 £(x)
k R k E
which is analogous to Scott-continuity, but for two modifications: the
inversion of the order and the introduction of computability. In the

present setting, the above property is what we need when computing with

procedures.

37.

Theorem (existence of algorithm collections):

There exists an enumerable set A , called algorithm space, such

that
(i) A = ES + F, and every element is computable.
(ii) Every decreasing computable sequence has a greatest lower
bound in A
(i41) if x,y € A then any computable threshold function
[2,9] : 2+ if 2z<x then y else T
is represented as an element of F which is
z € . i =
Az A % if zp Xp then Yo else Tn)n+1€N
Proof:

Results from the preceding lemmae.

The enumerability of A ccomes from the fact that the set of

. . 2 .
recursive functions V : ® - W is enumerable, and all our objects

are computable. 0

(91

38.

References

[1] J.D. Monk: Mathematical Logic, Springer (1976).

[2] M.A, Nait Abdallah: Types and approximating calculi in programming
languages semantics, 3rd Workshop on Continuous Lattices, Riverside,
California, (1979}.

[3] M.A. Nait Abdallah: TFaisceaux et Sémantique des programmes, Thése
d'Etat, Paris (1980).

[4] L. Nolin: Algorithmes universels, RAIRO rouge 2 (1974), pp. 5 - 18.

[5] L. Nolin, F. Le Berre: Les espaces informatiques, leurs existence,
leurs rapports avec la logique combinatoire et les A-calculs,

Rapport LITP, # 81 - 21, Paris (1981).

[6] L. Nolin, F. Le Berre: L'existence d'espaces informatiques, C.R.A.S.
t. 292, série I, pp. 499 - 502.

[7] D. Scott: Continuous lattices, Springer LNM 274 (1972), pp. 97 - 136.

[8] D. Scott: Data types as lattices, SIAM J. Comp. 5 (1976), pp. 522 - 587.

C. Wadsworth: Semantics and pragmatics of the A-calculus, Ph:D.
thesis, Oxford {1971).

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

