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Abstract.

¥We present several algorithms to search data bases that consist ot
text. The algerithms apply mostly to very large data bases that are
difficult to structure.

We describe algorithms which search the original database without
transformation and algerithms requiring pre-processing.

The problem of misspellings, ambiguous spellings, simple errors,
endings, etc. is nicely treated using signature functions.
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graphic search; membership testing; inverted files; full text search.

1. Introduction.

There are several examples of large collections of related data which
cannot, under the current data base theory, be treated as a data base.
This class is characterised by having little or no structure; units of data
{records) consisting mostly of text; additions, but otherwise virtually no
updates and unpredictable queries. A few examples of such collections of
data clarify this immediately:

(a) Law,

(b) Journalism,

(c) Technical and scientific information,
(d) Consumers’ information,

(e) Intelligence information.

In all these examples there is some structure that may provide a rough
classification of the information. This classification usually is not enough
to single out records and it is often of little value for the type of queries
we want to perform,

Examples of gueries on the above data bases are
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Recent cases of married women poisoned by their lovers

All the articles, of any type, that mention *'Mark Springlove'” who will
be named secretary of state

Papers that mention ''Unstructured data bases" more than twice
Information about sand disposal in washing machines

Country "X claims to have an atomic bomb and we want to trace all
radioactive material shipments that may have been diverted.

Although most of these queries could be properly answered with the

right indexing it is important to note that we cannot hope for this ideal
situation since

(1)

)

)

hit
it

the required indexing may be unpredictable at the time the record is
stored (owing to lack of criteria or changing ecriteria). E.g.
Shipments of radioactive material were a nuisance and did not have
any strategic importance 50 years ago.

The indexing may require professional manpower which may not be
available or affordable given the rate of growth or starting size of the
data base. E.g. Information institutes report that there are about 1.3
million scientific papers published in the world every year.

Any error in the initial indexing may cause an important record to be
ignored.

In principle the answer to this type of queries is a list of records, the
list. Typically this list is not processed further inside the system, but
is post-processed by humans to determine its applicability,

interpretation etc. Schematically:



Unstructured Data Bases 3

Representation Data
base

l

Posing of query D.B.
Manager

l

S

Post-processing

The query Scheme

This process is certainly different from a transaction oriented
process, which in some sense is much more '‘deterministic’".

In all the examples presented we already have a methed for
representation of the information which is suitable for computing: the
information is written. The weak link in this system is posing the query.
This is a major problem in Information retrieval theory.

As in statisties, the list of hits is subject to two types of errors:
(1) maise; records that are listed but are not related to our query.

(I} misses; records that were relevant to our query but were not
retrieved.

In information's retrieval terminology, the Cleverdon measures precision
and recall are the complements of the type I and type Il errors
respectively, Invariably, trying to lower one type of error will increase
the other. In real terms, however, we are much more interested in a low
type II error since the human post-processing could easily get rid of type
1 errors. This is a crucial observation, we are prepared fo admit certain
amount of noise in the enswer.
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2. Definition of the Model and Notation.

Our data base consists of a collection of textual records. A record is
the “"atom' of information, i.e. it is indivisible (a paper in a journal, an
article in a paper, ete. if split, the parts become meaningless)., We will
only use a sequential structure among the records, conseguently we
could possibly store the data base in tapes. Each record is uniquely
identified by its record number. A pre—processed data base is one in
which the contents of the records have been modified according to some
function. Pre-processing does not require interpretation of the
information.

In the algorithms we present in the next sections we will be looking
for a common goal: speed of retrieval. Moreover we have to consider:

{a) efficient algorithms that will work on a typical main-frame computer
(b) simple and efficient algorithms that could be implemented in a
microprocessor, and hence allow distributed processing of a query.

Efficiency in our context is the number of operations needed to
answer a query. If we have to read all the data base to do this, efficiency
is related to the internal speed of processing each character, since CPU
time rather than 1/0 time will be the bottleneck in this case. Otherwise
efficiency is proporticnal to the amount ef information transferred and
processed.

We assume that the updates to the file are mostly insertions and
these can all be appended to the end of the file. In this model, unless we
have a complicated pre-processing, updates will not cause trouble.

Qur notation will be the same for all the algorithms, namely

denctes the number of records in the data base.

o denotes the average number of characters per record na is the
total number of characters in the data base.

m denotes the size of the internal tables used and is also the range of
the hashing and signature functions.

k is the number of “‘patterns’ or strings that we are simultaneously
searching.

¢ is the average number of characters per word in our data base, a/¢c
is the average number of words per record.

s is the shifted-preloading factor; (i.e. the number of times that we
shift and reload the searched patterns}.

7 is the minimum number of words in any searched patterns or

number of internal tables we use in the merbership testing
algorithms.
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Jfi('..." denotes a hashing or signature function that operates on text and
returns an integer in the range 0.m—1. Different subindices
indicate different and independent hashing functions.

We may consider a fypical data base as one with the following
characteristics: n=108 a=1000, m=2'8 k=100, c=5.2, s=8 and r=3. This
means a data base with 10° characters which we search for 100 patterns
simultanecusly and with tables that will normally fit in main memory.

3. About the Queries.

As we mentioned earlier, the process of transiating a question into
computational terms is the most difficult one, and where we introduce
the largest errors (both type 1 and type II). In this paper we will consider
that our queries can be expressed as pattern matching problems.

Eg. identify those records where the string "data basefs|
without structure
unstructured
The problem of misspellings, simple errors, case differences, punctuation,

ambiguous spellings or ambiguous endings will be treated separately in
section 6.

" appears.

An algorithm that will give no error of type Il (will retrieve at least all
matching records) will be called a filter. Filters, even if they produce a
large noise, are extremely usefu! since we can pipe the data base through
several different ones. The next figure illustrates the use of two filters, F1
and FR which have rates (time/token) A, and A; and noise error levels p,
and pa.

AP A .p
1771 272
>
Data F1 F2
base
Two piped filters.

The resulting error level, if the filters are independent, is p;pg, while
the running time will be essentially determined by nai,. Unless we have
huge noise levels we will pipe the data base through the fastest filter first.
More precisely, if Aj+pihg = Ap+paA, the above filters are in the best
order, otherwise they should be inverted. This concept could be extended
to any number of filters and consequently reduce the noise error
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arbitrarily at a modest search cost. If we use r filters all having the same
rate and error level, the time will always be less than noA/(1—p) and the
noise level p”. :

In the next two sections we will concentrate in exact matching of any
of several strings in the data base. Counting for a given number of
matches, as well as more complicated boolean operations can be
implemented on top of this facility. In some sense, exact matching of one
of several strings will be our primitive data base operation.

Finally we will try to find algorithms whose efficiency is insensitive to
the number of strings to be searched.

4. Algorithms Which do not Require Pre-processing.

Without any structure and without pre-processing, we are bound to
read all the data base to answer a query. Our geal, in these algorithms, is
to achieve the highest processing speed per character.

4.1. Classical Algorithms.

In this group we have algorithms that use a classical dicticnary
structure {hashing, binary trees, B-trees, etc.) to store each of the
strings to be matched. Most likely hashing would be preferred over the
others, since its average search time can be made constant (independent
of the number of strings to be searched) and rather small.

Direct application of these methods is too expensive, since they
require one search per character read. (Note that at the level of
efficiency we want to achieve, searching for the beginning of a word is an
intolerable overhead.) This can be improved drastically with the fellowing
trick which we call shifted preloading.

Search the data base only every s characters and load the dictionary
with each string replicated and shifted s times.

E.g. If we want to search for ""Unstructured data bases’ and s=3, then we
will store in the dictionary the following strings:

unstructured data bases
nstructured data bases
structured data bases

In this case we will search in the data base only every 3rd character, ie.
locations 1,4,7,... .

This trick essentially produces an s times speedup at the cost of
increased noise in the answer.
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4.2. Membership Testing Algorithms.

Any algorithm for membership testing should be applicable, in
principle, to our problem. Moreover since we are prepared to accept
some level of error we can use approximate membership testers Bloom
[1] and Carter et al. [3]. The membership tester will be unsuccesstul in
most of its trials since only a fraction of the database is expected to be
retrieved, Consequently we will select a tester that has a good
unsuccessful case. The best suited is the first one described in both [1,3]:

Let f('...")»0..m~1 be a hashing functicn over the set of strings (of
fixed length) giving values from 0 to m—1. A table of m bits will be
set up so that the hashed value of each searched string is set to 1.
We will use the shifted preloading technique. The input data base is
scanned every s characters. Each time we compute the hashing
function and if the corresponding bit in the table is 0 we discard the
input, else this record may be a hit.

Obvicusly, with a single table, unless m is very large, the noise will be
too high. This method makes an excellent filter if we use independent
and different hashing functions. Here we can do all the filtering steps at
once if we can keep all tables in main memory. For example if the
probability of a random hit is p=1/ 10, by having = tables we reduce the
prebability to 107, Note that the processing time remains bounded by
1/(1-p) ™ 1.1 searches here, since we only search in the next table once
we succeed in the previous. The expected value of the noise is

Elnoise] = Z2{1-(1-1/m)*)"

If we have a total of M bits and we want to optimise r so that we have
minimum noise, then

_ M2y (3-In4)In2 _3
T = T\ Sintgy-nye + O
and
na _InB(2)K

Elnoise] ~ P sk

For this optimal r the tables are about 50% filled, so on the average we do
2 searches for every group of s input characters.

Note that a noise level of 1 per billion, which should be considered
excellent, requires less than 45 bits per string to be searched; this is very
economical.

The second method described in both [1,3], although more
economical in storage, requires two comparisons per search and the
computation of two hashing functions. The methods proposed in [1,3]
work with a single table, i.e. all the filters work superimposed over the
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same bit table. The noise remains almost unaffected under our variant.

In principle we assume that all the functions have equal cost. This
need not be so, and since the first few hashing functions will have a
dominant effect in the total running time, we may want to select
particularly fast functions to be first. An example of such economy may
be to insist that the first function uses only the first four characters of
the strings.

4.3. Pattern Matching Algorithms.

These algorithms are motivated from the fast pattern matching
algorithm by Knuth, Morris and Pratt [8]. Briefly, for each string we build
a programme that, in linear time (one action per character), determines
whether there is a match or not. For example if we want to match the
string 'abad’’ the programme wilt look like:

Start: Read; if not "a" goto Start;
1 Read; if ''a’" goto 1,
if not *'b"" goto Start;
2: Read; if not “'a’" goto Start;
3 Read; if ''b'' goto 2;
_+ if not "'d" goto Start;
Succeed; ("abad" was matched)

These programmes are extremely simple and could be implemented
in hardware with a small memory and a clock. We can envision then,
several '‘pattern matching micros” working in parallel over a common
input streamn. Each micro is responsible for one string, and each input
character is made available to all micros in parallel. Here the processing
speed will be limited to one character per memory cycle. The number of
strings we can search simultaneously is limited by the number of
microprocessors. The latter suggests that this type of methed is not
likely to be very successful.

The improvements by Boyer and Moore and later Galil [2,4,6] may
drastically speed up the searching. Their main idea is to skip as many
characters as possible once the partial matching failed. These algorithms
would require more sophisticated micros, and if the input is shared
among several micros it is unlikely that all the micros would agree on
skipping several characters. The advantages over KMP [8] algorithm
would disappear,

4.4, Other applications.

The algorithms described in sections 4.1 and 4.2 are suitable for any
type of string searching. They could be used, for example, to implement
string search in a text editor.

(=3
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Harrison [5] was probably the first to propose the use of hashing
functions for fast string searching. Tharp and Tai [12] use signatures of
entire lines to quickly search for occurrences. Both methods assume
that we compute the signatures of all lines and keep them to later search
with the signature of a given string. We would do the converse: set up a
table with the string to be searched and compute the hashing function on
the strings as we search.

5. Methods Using Pre-processing.

The algorithms presented in this section will use a copy of the data
base which has been mechanically (without interpretation) changed.
Very frequently we will use a signature function. A signgture functionisa
function which maps words inte integers in the range 0..m-—1. This
function is clearly many-to-one (not invertible) and in many aspects is a
hashing function. Here the complexity of computing the signature is not
too relevant and consequently we could use sophisticated functions.

When we use a signature function, the preprocessing consists of
converting all the words of the data base into their signatures. This
conversion by itself provides three advantages:

{1) there is a significant reduction in the volume of the data base {if an
integer smaller than m can be represented in two bytes, for
example, then we have a compression factor of c/2), and
consequently in the processing time.

{8) the problems originated by separators (multiple blanks, tab
characters, new-line characters, etc.) disappear.

(3) Inmost computers and some programming languages it is easier and
more efficient to work with integers than it is to work with strings.

5.1. Shift-And Method.

The Shift-And method searches in a pre-processed data base in the
following way:

Let 7 be the minimum number of words in any given string te be
matched. We will use an internal table T with m locations, each
location with capacity at least = bits. The loading of the table is done
in the usual way, except that for each string the first word will set
the first bit of the corresponding location, the second word will set
the second bit, and sc on.

E.g. If the strings to be searched are:
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data bases without structure f('data') = 10

unstructured data bases i('bases’) = 101
f("without’) = 587
r=3 f('structure’) = 707

f{'unstructured’} = 200

0 0 ) 0 1
V] 1 . V] . 3 . V]
1 1 [} 0 0
1 0 1 0 0
10 101 200 587 707

Table T for the above example.
For each signature S of the data base we perform the operation

A = ( shiftleft(A,1) or 1) and T(S)
if (Aand 2"71) # 0 then 'succeed’;

The counter A keeps track of partial matches, e.g. its second bit on
means that the before last signature matched the signature of a first
word and the last signature matched a second word.

The noise produced by this method has a formula similar to the
previous case

Enoise] = Z&{1-{1-1/m)*)".

Here we cannot alter v so our only choice to lower the noise is to increase
the value of m. If the value of 7 is too small (r=1 or r=2), in order to
obtain reasonably small noise we can add information to each entry on
whether one of its bits correspond to a last word of a string. In terms of
the previous example, an associated table T* should contain T*(707) =
01000 (a fourth word being last) and T*(101} = 0100 (a third word being
last).

For the latter case, if there are k; strings with ¢ words, (k=k,+kz+...}
then the expected noise is less than

E[naise] < %g-igl(l—(l—l/m)k)i_l(l-—(l—l/m)k‘)‘

5.2. Inversion.
Although inversion [7] is typically a successful technique for this

kind of problem, it is easy to see that in this case it may fail badly, For
example, for our string ''data bases without structure’ we may find that
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roughly all papers contain the word “without”, about 50% contain the
word “structure” or the word "data" and probably 20% contain the word
"'base'’. Consequently our string searched in an inverted file will retrieve
5% of the data base. This will normally be unacceptable even as a filter.
These may not be true across all applications, some technical terms may
be rather unique, but clearly this method is too sensitive to common
words to be of real interest.

Several commercially available systems allow text searching
facilities using inverted files. These systems use data bases which are far
more restricted than the ones we consider.

(a) Searching is done in the title, abstract and keywords but the text
itself is not searched. This restriction is crucial to the success of
inverted files.

{b) The inversicn is done under a contrelled vocabulary and common
words (''stop words”'} are not used.

(¢} The inverted file may contain information about the position where
the word appears, so that phrase searching can be done.

6.3. Inversion on Signatures.

An inverted file on the signatures of the data base is likely to be
worse that direct inversion. We will now introduce a new signature
function that works on pairs of words rather than on single words. For
example

f('unstructured’,'data’) = 107
f('data’,'bases') = 532

The pre-processing will consist of a file with the signatures of the first and
second word, second and third, third and fourth and so on. Clearly a data
base pre-processed in this way will be of the same size as the previously
described pre-processing {one signature less per record),

We will now invert the data base on these sighatures and search it as
such. For example, suppose that we want to search for the string
‘unstructured data bases’. Using the above definitions of the signature
function, we will need to search the entries 107 and 532 in the inverted
file and find all the records that are referenced in both lists. On the
average, if we have a string with r words, we will have to retrieve a
fraction (r —1)/m of the total data base. The noise is

E[naise] = nm(ﬁ)r

Note that we do not have the restriction on m that we had before, namely
that we had a table in main memory of size m. The value of m will only
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affect how atomised is the inverted file and consequently affect linearly
the total size of the data base. This method searches only one string at a
time.

This concept may be further extended to use functions that take into
account 3 or more words at a time. By doing this we will increase the
amount of information on the ordering of the words, and hopefully reduce
the noise in our queries. The signatures will become much more
“randomised’’, since there are very few groups of 3 words or longer that
occur with high probability. Both advantages are eclipsed because for
any given query we will now reduce the number of list to “'and”. For
example, using tri-words, the string "unstructured data bases" will
retrieve an entire list instead (of a likely smaller set) the intersection of
two list as proposed.

The idea of hashing sequences of tokens to include information on
order was present in the method suggested by Harrison [5].

5.4. Related algorithms.

Signatures and superimposed codes have been used extensively in
searching: Gustafson as reported in [7], Knuth [7], Rivest [10] and more
recently Roberts [11] and Pfaltz et al. [9].

The main differences between our work and the above referenced
are:

(1) The records have either a fixed format of a wel! defined structure.

2} The gueries are well defined in advance and of most concern are
q
partial match queries,

(3) A signature replaces (or describes) the entire record.

(4) We keep the values of the hashing function as opposed to keeping a
bit map representation of it.

6. Signature Functions.

In Section 5 we use various signature functions which were defined to
be essentially hashing functions. Since the signatures have to be
computed once over the whole data base (pre-processing) and then only
on the words of each query, we can in principle afford a computationally
expensive signature function.

We will use this extra power to try to correct misspellings, single
errors, endings etc. There are two basic approaches to build such a
signature function.

(a) The Soundex method {as reported in [7]}, or a medified version of it
to allow for the proper range. Such a method will group letters
according to their sound, eliminate duplicates and endings ete. in
such a way that similar sounding words are likely to end with the
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same soundex code.

(b) A thesaurus method for which each group of words is numbered
sequentially. Each word is looked up in the thesaurus and its group
number becomes its signature. The thesaurus should be expanded
with plurals, multiple spellings, verbs in all their tenses and
complemented with some strategy for words that still cannot be
found in it. For the latter we could use a closest match to an existing
word or a soundex methad.

Of course all signature functions should be case independent.

When posing a query, for each string we form (maybe automatically)
all the variations we think are appropriate. This will generate a rather
large set of strings which, when converted to signatures, will surely
contract due to the properties of the functions.

The thesaurus method seems vastly superior to others since it may
catch synonyms overlooked by the initial posing of the query.

7. Conclusions.

In this paper we present several new algorithms to quickly search a
textual data base. The emphasis is in speed of internal processing. The
inclusion of cur version of signature functions gives several advantages:
reduced volume, speed of processing, handling of ambiguities,
misspellings, simple errors, etce.
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