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Abstract

We present an algorithm for balancing binary search trees. In this
algorithm single or double rotations are performed when they decrease
the internal path of the total tree. The idea is very simple and the com-
plete balancing algorithm can be coded in a few statements. It is shown
that the worst internal path on such trees is never more than 5% worse
than the optimal and that its height is never more than 447% taller than
the optimal. This compares very favourably with the AVL trees whose
internal path may be 28% worse than optimal and the same worst height,
and with the weight-balanced trees which may be 15% and 100% worse
than optimal respectively.

Key Words and phrases Binary search trees, balanced trees, AVL
trees, Weight balanced trees, searching, analysis of algorithms, rotations,
internal path.

CR Categories 3.74, 4.34, 5.25.

1. Introduction

Balanced binary trees are very important in computer science. In
theory they provide an excellent dictionary data structure with
guaranteed logarithmie cost for various operations. In practice they
prevent search trees from degenerating into lists under (a rather usual
circumstance) ordered insertions.

Height balanced trees [1] and weight balanced trees {17] are the
most popular methods of balancing trees, In the first case we require
that the height of two subtrees rooted at the same node to be '‘about
equal'’ and in the latter we require the number of nodes of each subtree
to be "balanced'. Balanced trees have received a lot of attention in the
literature
[2,3.4,5,6,7,8,9,10,11,12,18,14,15,16,18,19,20,21,22,23,24,25,28,27].

In the above cases, whenever we perform an update in the tree that
alters the balance, we perform “'rotations'’ that cleverly restore the bal-
ance conditions. A rotation is a transformation operation on trees that
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changes the shape of the tree without altering its lexicographical order.
For example

Figure 1. Single left rotation .

The literature often describes single, double and sometimes triple
rotations. It is important to recognize that in most cases complicated
rotations can be effectively described by more than one single rotation.

If we consider these rotations as the basic operations on our trees,
the AVL algorithmn can be viewed as a rule which performs a single or a
double rotation whenever this rotation can reduce the height of a
subtree. This point of view is quite important since it describes in a
simple way the rotations and emphasizes the fact that the AVL rotations
bound the worst case (given by the height) of operations in the tree.

With' the above in mind the new algorithm can be described as a
counterpart of the AVL trees: perform single or double rotations
whenever these rotations can reduce the total internal path of the
subtree. To do this balancing, as we will see in the next section, the only
extra information that we need to store in each node of the tree, is the
number of nodes in its subtree. Intuitively these trees should have
smaller internal path than AVL trees, Baer [4] derives a criteria for
rotations using weighted paths that could be translated into a similar
algorithm but the algorithm and properties of the resulting trees were
not discussed.

The internal path of a tree is directly related to the cost of an
average successful search and also to the external path and consequently
to the average unsuccessful search. let G, and (, be the average
number of node inspections required for a successful and unsuccessful
search respectively. Let I, be the internal path and i, the external path,
then it is known that [9,12]

I
G, = 1+n.
E, = I,+2n

En
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By reducing the internal path we reduce the average successful and
unsuccessful search complexity.

The following table shows two of the most important measures of
complexity for various balanced trees.

AVL BB(x) Our

height =1.4402.. logzn =2loggm <1.4402...logzn

worst

intzﬁ‘nal =1.8793..nlogen >1.1482..nlogsn  1.058150..nlogsn
patl

Although the above are important measures, one could easily come
with other interesting measures. Depending on the implementation, use,
constraints, ete. any combination of

worst case rotations search AVL
average number of node inspections tofinsert }akey in{BB(x)ttrees
amortized w.c. delete our

is an interesting measure of complexity. (The amortized worst case is the
cost of the worst possible sequence of n operations divided by n.})

Several of the above measures are still open questions. In the next
section we will find upper bounds on the height and on the internal path
of our trees. These measures will answer most of the worst case
questions and will give good bounds on the averages.

2. The balancing algorithm.

In this section we will derive the conditions on which a rotation will
reduce the internal path of a subtree,

The internal path of a binary tree is defined as the sum of the depths
of all its nodes. The depth of a node is its distance to the root.
Consequently the root is at depth 0. For example, a balanced tree with 3
nodes will have internal path 2.

A single rotation, as described in figure 1, will reduce the total
internal path by n, —n,, where n, is the number of nodes in the subtree a
and similarly for n.. This follows by simply taking the difference of the
internal paths before and after the rotations

LAng +L+2ny +1+2n,+3 — (Jp+2ng + L +2ny + I, +ng +3) = ng—ny

where J, denotes the internal path of the subtree labelled o and so on.
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A double rotation is a transformation described by the following

figure:

Figure 2: Double rotation

Consequently we see that the total internal path in the subtree will
change due to the subtrees b, and b, that will be one level closer to the
root, the subtree a which will be one level farther from the root and by
one due to the reorganization of the nodes A B and C. The reduction in
total internal path due to a double rotation is

Ty, + T, + 1T
or using our previous notation where ny, =ny, +my + 1,
Ty —TNg .

The criteria for single or double rotation is exceedingly simple: if
n, -1, >0 a single rotation will reduce the total internal path of the tree
and we should do it, or if n,-n,>0 a double rotation will reduce the
internal path.

In a balanced tree, rotations are needed only when we change the
shape of the tree, i.e. when we insert or delete a node. In case of
ambiguity, i.e. we may perform a single or a double rotation, we may
decide to rotate according to the biggest gain in internal path — the
largest of n, or n,. If the gains are equal we should clearly use single
rotations since, the way we code themn, they require less work than double
rotations.

The complete code for an insertion with rebalancing is simpler and
easier to understand that those for AVL or BB(a) trees. In pseudo Algol 68
the insertion code is:
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Balanced Tree Insertion
proc insert = ( ref ref tree t, typekey key) void:

if {:=:nil then # insert new node here #
t:=.....
elif k of t = key then # error: element already in tree #
action-for-error
else if k of t < key then insert( right of t, key )
else insert{ left of t, key ) fi;
noft:=noft+1;
checkrot( t ) fi;

proc checkrot = ( ref ref tree t ) void:
#f Procedure to check for possible rotations #

if size( left of t) < size{ right of t) then
# Check for left rotations # '
if size( right of right of t ) > size( left of t ) then
lrot( t ); checkrot( left of t)
elif size( left of right of t ) > size( left of t ) then
. rrot( right of t ); lrot(t); checkrot( left of t ); checkrot( right of t )
i
elif size( left of t ) > size( right of t ) then
# Same as above exchanging left and right # i;

proc size = (ref tree t ) int :
ift .= nilthen Oelsen of t fi;

Single Left Rotation

proc Irot = ( ref ref tree t ) void ;

t:=right of t :=:=left of right of t :=:=1¢;

noft:=nofleft of t;

n of left of t := size( left of left of t ) + size( right of leftof t ) + 1;

proc rrot = (ref ref tree t ) void:
# Same as Irot exchanging left and right #

The operator :=:= is the displacement operator; e.g. a :=b :=:=c:=:1= a
rotates left the values of a, b and c.

Note that a double rotation can be expressed as a sequence of two
single rotations, and since a single rotation reconstructs ali the
information in the nodes, this is all we need to do. For example the
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double rotation in Figure 2 is achieved by
rrot( right of A); Irot( A).

3. Analysis of the new Tree.

In this section we will give upper bounds on the height and on the
total internal path of trees constructed with this algorithm.

The worst height will be achieved by trees {or their mirror images)
with the following characteristics:

Figure 3: a worst-height tree
(1) The tree rooted at A has height h +1
() There is no tree with the same height and less nodes.
We can conclude that the subtree rooted at B is also a worst-height tree,
and a has the least possible number of nodes. This means that
ng=max(n, n;). Hence a has less nodes than the subtree rooted at B.
But the largest of & or ¢ is the subtree in B that gives the worst possible
height, so it is also a tree of the same class and height A—1. Let n(h) be
the number of nodes of a worst-height tree of height k, then

n(h+1l) = l+n(k)+n{h-1),

n(l) = 1, n(2) = 2
This recurrence relation is the same as the one for the tallest AVL
trees, and n(h) can be expressed in terms of the Fibonacei numbers:
n(h) - F)Hg"'l
= kg™ —1+0(p™)
where ¢=(1+Vv5)/2 is the “golden ratio’, Fy=Fp=1, Fns =F, +F,_, and
o -n

= 7B
The inverse of this function gives the height of the tallest tree with n

nodes, consequently
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Theorem 1. The height of a tree with n nodes balanced fo minimize
internal path is bounded by

height =< log,R2logan —0.32772... = 1.44042..logzn ~0.32772...
To find the worst internal path in these new Lrees we will use a

similar method. Let A be the root of a worst-internal-path tree with n
nodes. Then if n=2 we can represent the tree (albeit symmetries) as

Figure 4: Worst internal path tree.
Let I, be the worst internal path of any tree with » nodes, then

I, = rrll;ﬁrinf( 14l #ng +In, 4230y + 1 20, )
where n=n, +n, +n, +2 and the maximum is taken over all possible values
of n, and n, that satisfy the balancing requirements. It should be noted
that the equation is symmetric in n; and ny, so without loss of generality
we can assume that n;>n, and my<n,+n;+1. Due to the balancing we
further deduce that

n,

: < T,

o n, < 2ny,+1.
let my=an and n, =gn. Then when n is large, ignoring O(1) terms, the
recurrence is translated into

I, = (B—a)n+lm +Iﬁn +1(1—a—ﬁ)‘n (1)
where o and 8 are in the region delimited by

p=i% 1-eas=p Esp ash

which are derived from the balancing requirements.
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(1/3,1/3)

(2/5,1/5) (1/2,1/4)

{1/2,1/6)

PFigure 5 Valid range for a and g

From the discussion on the height we know that the total internal
path is bound by 1.44..m logzn. Since it is obviously bound below by the
internal path of a perfectly balanced tree, the internal path is ®(n logzn).
The following discussion is simplified significantly by assuming that the
worst internal path of a tree is

I, = kmnlogen+0(n)

Taking partial derivatives of the right hand side of equation (1) with
respect to & and f we find that there is one minimwm at a=1/2, g=1/4,
and a few other minima on the perimeter, The maximum in the region
occurs for a=g=1/3. Under this condition

k, = %10&2 = 1.06155...

or finally
Theorem 2. The internal path of a tree with n nodes, bolanced to
minimize internal path is bounded by

I, = 1.05155..n logen +0(n)

This result shows that this new balancing algorithm yields trees that
under all circumstances have an internal path at most 5% off optimal.

It is in order to compare this worst internal path with the other
balancing schemes.

Lemma. There are weight balonced trees with n nodes which have
internal path

_ 1
I, = W logzm +0(n)

where H(a)=—alogza—(1-a)loge(1—a). This is easily proved by
constructing the most unbalanced BB(«a) tree. Then

1',_ = n"1+1an+[(lfa)n
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For the suggested value of a, x=1—V2/2
I, = 1.146224..nlogan+0(n)

Lemma. There are AVL trees with n nodes which have an internal
path

I, = (1=V5/20)log,2 nlogyn+0(n) = 1.279376..n logen +0(n).

This follows from the construction of a tree as illustrated below

b
N

Figure 6: A bad internal-path AVL tree

where the k left subtrees are Fibonacci trees and the rightmost tree is a
full tree of height h. Selecting & close to {log,2—1)2 and deing a lot of
manipulations we gbtain the internal path mentioned above.

1t should be noted that a Fibonacci tree, although it gives the worst
height of an AVL tree, does not give a bad internal path. A Fibonacci tree
with n nodes has internal path

I, = g—gl-logq,znloggn+0(n) = 1.042298..n logan +O{n ).

4. Rotations

First we should note that in these trees each rotation improves the
tree (by reducing the internal path), consequently we may be willing to do
as many rotations as possible.

The number of rotations is a very important measure of complexity
for updates. An insertion or deletion is typically preceeded by a search
and then we have to reconstruct the balancing of the tree. The cost of an
update is then the cost of a search plus the rotations needed. Only the
nodes from the root to the inserted/deleted element need to be checked
for an altered balance. If a node becomes out of balance we will perform
rotations to restructure this imbalance. Next we can show that two
rotations cannot happen at consecutive levels. Tc prove this we have to
analyze a few cases like
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Figure 7

and its symmetrics. The proof is based on the fact that if the tree rooted
at X is balanced, then among other restrictions,

TN tl <ng, N <Ny,
If an insertion in ¢ is to cause two consecutive rotations then
n.+1>ng, ond ng+my+l>ng.

But this is not consistent with the previous inequalities, hence two
consecutive rotations cannot happen.

An upper bound for insertions and deletions can be obtained by the
following argument: the internal path of any binary tree is
nlogan+0(n) = I, = 1.05155...n logan+C(n). Bach insertion contributes
at most 1.44.. logen to the internal path (the maximum height) and each
rotation decreases the internal path by at least 1. Consequently

Lemma. The amortized worst case number of rotations for each
insertion is

1.44042. logan+0(1)~logan = 0.44042logen +0{1).

For deletions a similar result follows from the observation that the leafl
closest to the root is at depth at least logs{n+1). Consequently

Lemma., The amortized worst case number of rolations for each
deletion is

1.05155.. loggn+0(1)—logs(n+1) = 0.4206R...logan+0(1).

These upper bounds appear to be pessimistic since we were not able to
produce even small examples with these properties. Intuitively the
reason is that an insertion can be done at the deepest possible node of a
tree, but then a rotation shrinks the height and we require several other
insertions to restore its maximum height. On top of this the tree will not
go in few steps into an optimal state either.
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Unfortunately, although the average number of rotations is bounded,
there are some situations in which a rotation may propagate other

rotations down the tree. The simplest example of such a case is a tree of
size 22

Propagation with a single rotation

where the numbers indicate the size of the subtrees. The above tree is in
balance, but if we add a node to the rightmost tree, a single rotation is
produced, resulting in the tree

Tree after single rotation

which now requires another single rotation at node A to produce, finally

Final tree

Double rotations can also propagate rotations below and furthermore
they can propagate them in two directions. This flaw is the saving grace
for both AVL and BB(a) trees which would, otherwise, loose all interest in
favour of these trees.

The worst tree that we are able to construct is one on which an

insertion causes %ﬁirotaﬁons. An example of size Bl follows.
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Bad case of propagation of rotations

The reader can verify that an insertion where indicated will unchain 7
rotations.

5. Extensions
There are two natural extensions to this balancing scheme.

(a) k—balancing. The single rotation is performed only il n, —n,>k, and
the double rotation is performed only if n,—n,=k. The l-balanced
trees are the ones just described.

Surprisingly, for this balancing scheme the height is still of the same
order:

height = 1.44042.. loga(n—k +2)+k—1.32772...
The recurrence relation for the thinnest tree with height A is
nh+1) = n(h)+n(h-1)+2-k
with n(k)=k and n(k+1)=k +1; or
n(h) = Fppsstk—2.
The internal path is also bounded by
I, = 1.051..nlogen+0{n).
The amortized worst case number of rotations is bounded by

0.44042.../ klogpn for insertions and by 0.42082.../ kloggn for deletions.

(b) e—balancing. Single or double rotation are performed whenever the
gain in internal path is significant compared te the total number of
nodes in the subtree, e.g. we perform a single rotation when

L
Ny +ny +0, +2 > E
Our trees are the 0%-balanced trees.
Theorem. The height of an g~balanced tree is bounded by
1
loga(1+V5+4e)—1—loge(l +¢&)

height = logan+O(1).
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For =57, height<1.5540.. loggn + 0{1), and for £=10%7,
height=<1.6797...loggn + 0(1).

Theorem. The internal path in an t—balanced free can be as large
os

5+2¢

< -
fn (1—2¢)loga(1-Re)+2(1+2)logs{1+£)—3logz 3

n logsn+0(n).

For £=5% the constant multiplying n logzn is 1.0750... and for £=10% it is
1.1040... .

The k —balanced trees have the nice property of preserving the same
asymptotic behaviour for both the height and the internal path while,
intuitively, reducing the number of rotations by a factor of k.

The e—balanced trees although may have a slightly worse height and
internal path, perform rotations only when the gain is proportionally
significant. When the rotations require significant cost (i.e. related to the
size of the subtree) this variant should be preferred.

B. Conclusions.

We presented a balancing algorithm for binary trees. This balancing
requires to store at each node, the number of nodes in its subtree. In
this respect the storage requirements are the same as for the weight
balanced trees. The performance of such trees in height and internal
path is superior to the weight balanced trees in both measures and
superior in internal path, sharing the same worst case height, compared
to AVL trees. To further complement the above advantages, the
algorithm is very easy to understand and simple to code.

Both extensions, the k-balanced trees and the e—balanced trees
may provide the necessary tailoring for particular real applications.
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