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Abstract

We present a variant of the distributien sort appreach which makes use of
extra storage to sort a list of n elements in an average of about (2+VZ)n
= 3,412,.,n probes into a table. An accurate analysis of this technique is made
by introducing a transform from a Poisson approximation to the exact (finite)
distribution. This analysis also leads to the solution of an interesting parking
problen.
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1. Introduction.

Qur interest, in this paper, is in the detailed analysis of the behaviour of
algorithmis and in the development of techniques for performing such analyses.
In particular we present a new interpolation-based sorting algorithm and an
accurate analysis of its expected time and space requirements. In performing
these analyses we first obtain an accurate analysis under a Poisson-filling model
and then by use of a new transform are able to convert (expected values) to the
exact model. We feel that the introduction of this transform lemma is one of the
main contributions of the paper.

2. A Sorting Algorithm.

Consider the following approach to sorting a sequence of n numbers which
are assumed to be uniformly distributed over a bounded range (or are easily
transformed into such a distribution {Gonnet,5]). As each element is read, it is
interpolated into one of the first m positions in an array. {Note that m will be
taken to be grealer than m unlike most other interpolation sort methods
[Knuth,8, MacLaren,8].) If a conflict arises, then the smaller clement tekes the
location. in question and the larger element moves forward to the next location,
and the process repeats until we find an emply location. {This may, ultimately,
cause elements to overflow beyond position m..) After insertion of all elements, a
single pass through the array compresses the file Lo the first » locations.

In the more formal outline below, we let A denote a "large enough' array
and interpolate(x,m} be the function which linearly interpolates the data into
integers in the range 1,...,m.



fori:=1tondo
begin
Read the next input, x;
j:= interpolate(x, m);
while Aj| not empty do

n
i%lx < A[j] then interchange (x,A[j]);
=i+l
end
Aljl=x
end
i=151:=4
while j=ndo.
begin
if A[i] not empty then begin A[j] ;= Ali]; j:=j+1
end
i=i+l
end.

This method is very much like the process of inserting elements into a hash
table in which conflicts are resolved by linear probing. There are, however, two
differences, one minor and the other more significant,

(i) We move elements already in the table in a manner similar to the ordered
hashing technique of Amble and Knuth [2] (this is of little consequence),

and

(ii} there may be an overflow beyond location m. In the case of hashing this
wraps arcund te the beginning of the table.

There are two standard models used to solve this type of problem: the Pois-
son. model and the exoci filling model. In the Poisson model we assume that
each localion receives & number of keys that is Poisson distributed with parame-
ter o and is independent of the number of keys going elsewhere. {This implies
that the total number of keys is itself a random variable whose expected value is
ma.) In the exact filling model we have n keys (balls) to be distributed among
m locations (boxes) and all m® possible arrangements are equally likely to
oceur.

Both moedels have been used extensively in the analysis of hashing algo-
rithms. Itis generally agreed that the Poisson-filling model is simpler to analyze
than the exact-filling model. The main difference lies on the fact that in the
Poisson model, the number of elements in each group {or bex) is independent of
the number of elements in other places. This is not so in the exact-filling model.

Although the Poisson medel is satisfactory for most situations, there is at
least one case where it fails badly. This case is exemplified by a full or almost
full hashing table. In such situations the formulas are simply not applicabie or
give a tremendous error.

Several algorithms have been analyzed using both models. In most cases it
was demonstrated that the results of the two models coincided asymptotically.
In this paper we show that the results from one model can be transformed into
the other and furthermore we derive an asymptotic series that represents the
relation.

We perform the analysis of linear probing sort under both models. There
are two issues of concern in the analysis of the algorithm:
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(i) the size of the overflow, that is, the size of array beyond location m which
should be taken to be relatively sure of success

and

(ii} the number of comparisons, or inspections of data locations, which are
required

Consider first the overflow.

3. Analysis of the Cverfiow

Konheim and Weiss [7] have considered the special case of determining the
probability that there is no overflow. They pose the preoblem in terms of drivers
randomly deciding to park as they move aleng a street containing m parking
places. If the driver comes to the end of the street, his parking effort is deemed
unsuccessful. They show Lhe probability of n drivers all finding places is

(1+;—nl1—ﬂ (1)

and in particular as m,n -« but n/ m=ao, the probability becomes
{(1-eje”. ()

In this context, we are interested in the average and in the distribution of
the number of drivers who fail to park.

We begin eur study by considering p; ;, the probability that j keys overflow
from the first © table locations. (Note then, for example, pg;=0.) A recursive
relation p; ; in terms of p;_; 4, can be developed.

Pio=Pi10T0 T P11 To + P10 ™1
Pii=Pi10T2 ¥ Pin T T P12 To

jil _
Pij = kz_:o Di1eTiesr  (3>0) (3)

where r; denotes the probability of having i keys map te one location. Under a
Poisson filling model with parameter o, v, = e~/ %!

The analysis below is based on this model, We will then translate expres-
sions for expected values to the exact model.

Let Pi(2) =3, pyz’ be the generating function of the py, then the above
relation can be rewritten as
— Pi—l(z) R(z) + (2—1) Pi10%0 (4)
z
Polz) = 1,
where R(z) = }iriz* = e®#-1) The overfiow, W, , is described by the generating
T

P(=)

function Fp(z) and so our primary interest is in the expected value,
E[Wn] = Pp{l) and in the variance o%(#,,) = Pn(1) + Pp(l) (1-Pn(1)). We can
establish thal if the sequence P;(z) converges,

Pw(Z) = P(Z) = (1_2)?)00.07‘0 _ (1—2)(1—0() (5)

R(z)—= Riz)—=z
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and so, with a couple of applications of I'Hospital's Rule, it will follow that
®
o
== s 8
ELW.] = 5 ®)

and
Bo® — 20® — ot
12(1-0)?
We emphasize that at this point we still must demonstrate

{i) that P (z) does converge to P(z)}, and in doing so obtain approximations to
relevant moments of finite F;(z) under the Poisson model

(ii) that the moments obtained under the Poisson model can be translated inte
the exact model.

We continue with step (i).

As it happens, P;(z) does converge to P{z). To establish this asymptotic
behaviour, however, we must resort to more detailed derivations, considering
the case of finite m.

First note

0¥ W) = {7

femma 3.1: No P;(z) has a pole al z=0.

Proof: by induction, Pg{z) does not have a pole at z=0 and by inspection of
equation (4) we see that if B, 1(2) does not have a pole at 2=0, 7;{z) will not
have one either. =

Next we can use the original recurrence for p; ; to derive a closed form for
Pi(z) in terms of p; o (5 <4)

. . izl -
Lemma 3.2: Pi(z) =9 + E’jz_:opi*j*mf (8)

wherey = R(2)/z andf=a?{z—1)/z.

Proof: Follows as a direct application of the solution for recurrence equations
used for eq, (4), =

Equating the terms independent of z in eq (B} we derive the following
recursion for p; o

. fiadt i— N o) 1 .
Pio= f’“%*’ e 1_22!’1'—_-,‘—1.0 ke %L(l—ﬁ%%- (9
! - !

Using these lemmata we are able to express p;g in terms of a truncated power
series expansion for e®.

g (x) = i: i/ §i (10)
j=0

Lemma 3.3: o = e e ([E+ 1)) — ae ((E+ 1)) (11
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Proof: To prove this lemma we use induction on <. The result is trivial for ¢=0.
If the result is true for j <i, then we can substitute 11} in (2) and after simplify-
ing e ~#? it remains only to show:

e ((i+1)e)—oe ((E+1)0) = (12)
G Sl st6-d-oee s () LFo- 22

The above equation is far from trivial. We present a full proof of it using an
embedding technique very well suited to treat the function ;{x).

First note that the left side is a polynormal in o of degree i {the o*! terms
cancel) as are those of the right. This fact is of considerable help since we can
add terms of order o'l or higher on the left and right without altering the
embedded polynomial of degree i.

In doing so we complete the functions g;(z) to e® using the equality

g;{z) = 2% + O(z'+Y) (13)
noting that only terms in of*? or higher are added. The claimed equality is now
g it _ ne fi+l)a — (14)

(o) | it _ gty TV (1 day , ppeny
Q! =0 ! F+1

i+1

including —%on the right hand side and regrouping we obtain
(1-a)et+ e = e"“(l—a}Ze M(l 5’“ L85+ 0(0+) (15)

and finally completing the sum with more terms of order af*! or higher

g“-’- [L] ¢ "3"” | (e)

This is an Abel expansion of ¢® which can be derived also from the lLagrange
inversion formula [Riordan, 10 S.3.2]. This type of summation can be, rather sys-
tematically, treated with the aid of the transcendental function 'w{x) defined by
W (m)e"”‘“‘)—z It is well known that

ilﬂ;,—ll"—rj—z —w(—z) (17)
= !
from which it is easy to verify that
L v - 9)
and
i fitlgitl _ gw(-=) -1 (19)

i= (G+1) T+ (—x)

Consequently, regrouping terms in 16) we need only show

- o VT e
2[% =1 L-T] (7 +1) (20)
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which, noting that w(—oe ) = —a by definition, reduces to the identity

a— & i _gale® _
g 1+ TR —— e {l—cx 1]

From Lemma 3.3 and the definition of e;{z) we can derive not only the
bounds of Konheim and Weiss, but also that the convergence in terms of © of p; ¢
to (1—o)e®is exponential:

Theorem 8. 1: for a<l

P = (1—ade® + O(i felatak) {21)
(note that for a<1, 1—a+lna<0) and for a=1
Pip= 0@ (=)

Proof: For a<1 we can see, from the definition of e;(x) that

le™t0(gqu{(i+1)o)—2 () | (23)
< prialli+a)™*® 1
R T T
i+3

= (e (l-atna)i; 15 iff o<l .
Consequently, applying the above twice on equation (11} we find that for
fixed o eq. {2%) holds true. (Note that when o approaches 1,

1—o
—a+ [
1—ot+Ina 5

For a=1, using the definition of p; ; we conclude that

Pie = e (e (E+1)e (i+1))

I (53 e - i .
L s Ty =GR O

Another line of attack is to apply Lemma 3.3 (note the o*! term is 0) and
express p; o as a power series in a. This leads to a technically useful lemma.

femma 3.4: i o=(1-a)e® + O(at'®) (R4)

Lemma 3.2 logether with the convergence of p; o demonstrated above leads
to:

Lemma 3.5: limP,(z) = ilg—a‘%)l—)= P(z) in the interval {1,1/ «}.
i -

[In fact the lemma holds for a much larger range, however, the proof is easier in
the restricted range and no more is necessary for our main results.]

Taking derivatives with respect to z and evaluating at z=1 we use the last
two lemmata to demoaonstrate

P = R{1)+ P (1) + poygro—l (5)



i=1

= 2 o—1 +pj,|39"“,
§=0
Using eq. (24) we find that for j<i
i1
Fi(1) = £(1) + ) 0(a®*%). {28)
k=g

2
. ey
Since we know that %LE,LPl(i) = i)

N ‘ jHRY = e i+
Fi(1) = PL(D) = 20(a3") = gyt O(af™?) (27)

we conclude that

Theorem_3.2: The expected overflow of table of size m with load factor o is
o€ | o(amte).

2(1—0)
For example computing directly from equations (26) and {11) we find:
Pt ot o8 ot
W= e T

vey - 08 o Bat | 4708
Pa(1)= 5=t 7= %+ 120
. o & ot 4925 | 133108
= _+ — —— — ——
Pl =t et " 720
As previously noted, this result is valid under a model in which each leca-
tion receives an independent random number of keys with Poisscn distribution.
To translate this result to the model in which n keys are distributed randemly
among the m locations, we will use the following development.

4. The Mathemaltical Transform

Let f (m,n) be an expected value computed using a model of n cbjects ran-
demly distributed among m locations. Let g(m,a) be the equivalent expected
value compited using a model with m random independent Peisson distributed
objects each with paramenter ¢. Then

g(m.a} = 20f(m,n)ﬁ§X1 +Xag+ o+ Xy =i (28)

where X; is a random variable with Poisson distribution and parameter o. The
above equality is easy to verify once we realize that the distribution of the X's,
conditioned to their sum being ., coincides with the random distribution of n
objects in m. places. In some sense this is a non-interesting conversion since in
general f(m.n) is more difficult to compute than g (m,«). In what follows, we
will be able to invert this equality, i.e., obtain f {(m,n) from g (m,a).

It is known that Lthe sum of independent Poisson distributed variables is also
Poisson, and hence

_ L Mmool ne*mzx

glm.e) = ¥ fimm) Rele ™ (29)
a=0 n:

Note that this is valid for any value of o; therefore it is an identity in a. In our

case we know the function g(m,a), and want to find its inverse transform
according to this identity. To de this, we simply write it as

emeg(m.o) = 33 1 (m.n) (30)
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Note that by definition, or by the use of equation (29),
li g (m.,«) = f (m,0)
o

is finite and furthermore, any order of derivative of g({m ) with respect to &
has a finite limit when « - 0. Consequently g{m,a) has a unique Maclaurin
expansion in powers of a. From 30, eguating powers of o and using 7t to denote
the descending factorial n* = n!/ (n—1)!, we obtain:

Lemma 3.6: If g{m 2) = Y e;0! is an expecled value in a model consisting of m
independent, (Poisson-distributed with parameter o) number of objects {the o
may be funclions of m.) then

7 mm) = Yo o (31)

is the corresponding expected value in a model censisting of n objects randomly
distributed among m loeatiens,

For exarnple, in the case of haghing, the Poisson-filling medel assumes that
to each location there is a Poisson-distributed number of keys initially probing
to it. In the exact-filling model, the first probes of the n keys are randomly dis-
tributed among m locations such that each of the m”® distributiens is equally
likely to occur.

A table of useful transforms fellows



Poisson Model Exact Model
g(m,a) fm.mn)
T, —na
Eﬂf (m.mn) ‘(ﬂ),nlg_ J{mn)
nz=l ’
galm o) m[f (mn+1) - f(m.n)]
o =1
Sgtm.t)dt ;,L—TE J(m k)
0 k=0
o n*
mT
1 _ T+ nk
(T—ay e imm) 'Eu( kS mk
oo m+a n
¢ (zte)
an n® (mia\"
o (mte)
o4 L -mt
{ 1—‘1——4: Hy
i 7 .
ot (C)em-pem

Intuitively, f {m,n) is well approximated by g{m. ) with a = n/m. We will
now formalize this approximation by finding an asymptotic approximation of

f{mm)in terms of g(m,n/m). To do this we will approximate m7by ot with

a=n/m.
Consequently
Flmmn) =Yg ﬂi =Yoo + g n _ ot (32)
T omt g T \mt

- - i
=g(m.a) + Z.i:m‘.[m"af - lloc

=g{m,x) + sz.&[n_1~ - 1]04"'

nt

Using the Stirling asymptotic approximation of factorial Lo compute 77+ and
deing some computation we derive
Flmm)=g(mn)+ (33)

Z“’t[_l(;;i) _ '*'3(?:“1)(;4—53(37:“1) + O(n )|t
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. Now if g (m &) can be differentiated with respect to a & sufficient number of
times we know that

g8 (m,a) = Poyi(i-1yet %,
9l (m.) = Doyt
and so on.
Substituting in the above we find the first 3 terms of the asymptolic expan-

sion:
Theorem 3.3 (Approzimation theorem,)
agy (m.o)

am

+ Efgg{ﬁayﬂ" (m. ) +8g 7 (m..a)]

- -fatgli(m.a) + bag(m.a) + 1295 ()] +...

JF(mn)=glm.a) - (34)

foro=n/m.

Depending on the asymptotic behaviour in m of the derivatives of g(m o)
with respect to «, the above may be a proper asymptotic expansion in terms of
m. {In all our real examples this is the case). For example in the analysis of
liner probing hashing, we may want approximations of g{m.a) = lia which is
independent of m and consequently we obtain proper asymptotic series, The
function g (m,a) = e®™ has derivatives in o that are of increasing order in m,
consequently Theorem 3.3 dees not produce an asymptotic series in m; in this
case the transform is f (m,n) = 2*

We are now able to complete the proof of the main results of linear probing
sort. Let #p,, denote the overflow of a table with m locations and n entries.
Note that n* = 0 for i>n, consequently for n<m+1, Thecrem 3.2 gives an exact
transform.

Theorem 3.4: if n<m +1

1 & nt
EiWpri= 5 3 35
nal = 55, o (35)
and
B W] =Vmn/B+2/8 + O(m™%) {38)

Proof: The auxiliary functions @.(m.,n) prove useful. In particular we can show

e A -
_.La__‘_ O(m™)
gm(m-n) '

E[Wmn]

LI

Similar values on the variance of Wy, , can also be achieved.

Theorem 3.5;

(W) = n®(6mP-2mn-—n®) O(m) forn<m (37)

12mP(m—n)?
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and

(W) = Ly Lo T 0

Sketeh of Proof: The preof is completely analogous to those of the preceeding
two theorems as the second moment of Wy, , is computed. The variance is then
determined as

bmP+4mn —n{n—2) + Gi(m.n) +

Oz(%m.n)“‘ 12m2
— Qelm.n 2
3n—4m Qg( } ) 0( ) :

leading to the result. =

If we are to use the interpolation sorting algerithm, the key issue regarding

the overflow is not its mean or standard deviation, butl in fact the probability of
it exceeding a given bound. Such probabilily is given by Lhe following theorem:

) —Jafs NItk+1

Theorem 3.6: Pril,>k} < (l—cx)ze 6 .

§=0 {f+k+1)! (38)

Proof:
FriW,>kl= ¥ pm; < ;p,,j
ik >k

1 P!z!E _ 1 Plz)dz
= jgkzm; P gmlec-i-l{z_l)
1 f (1—)dz - 1-a R(Z)IJ dz
RmiY 2btl(z-R(z)) ~ Bm Y S| z | z¢?
[ EYRPRS Frey
< (1-a) Y e TMjot T .

o= (F+k+1)!

A careful bounding of the summation in Theorem 3.8 by the saddle point
method [de Bruijn,3] {in this case the main contribution is proportional to the
maximum) and the application of the transform leads to

Theorem 3.7: In(FPr{Wpa >k ™ —2](:(1—7:;—) (39)

Exact computations in Theorem 3.6 lead to statements such as

. “Tor a table 80% full the probability of exceeding 36 locations is less than
107

5. On the Number of Comparisons

The algorithm clearly falls intc two parts, the insertion phase and the
compression phase. The latter requires m+ Wy, , probes into the table, and so
the former is the topic of this section. To determine this number of probes we
start with the analysis of linear prebing hashing.

It is well known that the number of comparisons to search or build a linear
probing hash table is independent of the order in which the keys are inserted
{Knuth [6], Peterson [9]). In the insertion phase of our algorithm, the inter-
changes are equivalent to changing the order of insertion. Consequently the
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total number of comparisons does not depend on the order of the input nor on
the ocutcome of these interchanges,

The number of comparisons would be exactly given by the number of com-
parisons in linear probing hashing except for the fact we do not wrap-around the
table. It can be seen that in no situation does our algorithm requires more com-
parisons than an equivalent hashing table, While the converse is not true, the
gain is not significant either. If we simply ignore the Wp, , keys that overflow,
the number of comparisons is in this phase C(m,n), is bounded by

Hmmn—Wu.)=Clmn)= Himn)
where H(m,n) denotes the number of comparisons {(or probes) to insert n ele-
ments into a linear probing hash table of size m. The exact value of H{m n} is
well known [6,9], and so we immediately have a rather good approximation to
C(m,n), the total nurmber of comparisons required by linear probing sort.

We can, however, apply the technique of the preceding section to produce a
much better analysis.

The total number of comparisens can be expressed as the sum of three
components: the initial comparisons; additional comparisens inside the table
and additional comparisons in the overflow area. For the Poisson model this is
simply

E[total comparisons]| = C{m.,«) {40)

=ma+ 3 A1) + g FmalPma=i)y ﬁ;”‘-“_l) :
i=1

From the analysis in the previous section we conclude thal

. W, Won a—1 u
femma 4.1: Pt m.al Bm,a )] = Po(1) (41)
- 1 __ 8 af+4o+? ol
T 4(1-a)?  B{l-o) M e

The main problem remains finding a closed fermula for the summation. As
beforigwe are mainly interested in the expression of the sum up to terms of
Oa™"%).

Using eqgs. (25) and {11} we can rewrite the sum as

2&'(1) = (42)

I [?'Js

2[(a~1)+e-w(e,-+l(j+1>a>—ae,-(<j+1)a>)e-ﬂ]

=f1 zg F(J”;ﬂle n((7+1)a)—e U —a(e; (J"+1)a}—gﬁ‘f1)ﬂ)}
%=1 j=
j=0 (m.~7)e _Uﬂ)q[ef“((j +1)o)—e i+ De—u(e, (7 +1}a)—e (J'”W]

Now let us compute the coefficient of the term in o™*! in the above summation,
it follows after checking the limits of summations that

e 65 PIL} = (43)
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(G RSN VSV G RS i
Eim—ﬂ i‘ < { (v " fm—k)!}
m Lm—ji-1 — m m+1 ] m
S (m=)G+1) 1( L)AL ()

(—1)%
To solve the above summation we make use of the formulae

"3 (DY g = 2

(44)

()0 e = Gt mr2)
£=0 j=0 24

mg—;(m’:-fl)<_1)km§°—l(j+l)m+l _ -m.!'rr;+1!!

:Z:—: (m;-l)(—l)km;é:(j_‘_l)mm = ‘(‘m—*-lugz_w

These formulae are readily verified by substituting (5 +1)™ for a sum of descend-
ing factorials of 7 +1 using the Stirling numbers of the second kind (Abramowitz
[1]). The inner summation becomes also a descending factorial and all summa-

tions except the first vanish.
Substituting in the above, after expressing m —j =m+1—{j +1) we obtain
m+1 : 1 m{m+1)l  (Bm+lym{m+2)
[O& ]221:”1(1)% F[ 2 + 24{?’71.+1} (45)
, maDm+1)  Bmame2) ]
2 24

- —3mP+bm +10
24

In general, the term in of *! will be

[+ pita)y = LI ()

since, due to eq {27} the coefficient of o/ *!in P;(1) is 1/2 for i>j. Consequently

i aiBiss )
{ﬂlpi'(l) =:i[m. I 31 +51+10}a,_+1 + O(om*?)
= =1

z 24 (46)
which after normal summation methods yields
lemma 4.2
moo, 2 2 —10 2)
prey = Mo o®{(18a-1008) | 40 mee 7
-J,Z=:1 'I( ) 2(1—3} 24(1—(1)3 (O‘. ) (4 )

Finally, putting all the results together we find
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is much simpler to average values for the whole table.)

2
The total number of additional comparisons is then % and its
transform is %{—1—;—+ Qg(m ,n)]. The average number of accesses per key is

the latter divided by n plus 1 {first access):
_ 1. m _ 1, Bmmn—1)
Cn - 2 + ﬁ{@o(m-n} 1) - 2 + P

which ceincides with the previously reported results. Furthermore, we can
apply the approximation theorem and obtain new asymptotic approximations for
G,. For example, using the first three terms we obtain

m 4 1 ot

_1 _ -3
&= §[1+‘m*‘nJ Rm (1—o)® * em?(1-a)® +0m™)

where o = n/m.

Another example can be found in Knuth's problem 6.4.56 [M48]: find the
exact average number of buckets accessed in linear probing hashing using buck-
ets of size &. This is solved by computing the transform of an equation given in
the same text [Knuth,6.4, eq (61)].

In direct chaining hashing it is relatively standard te use a Poisson-filling
model. In this case several measures are known in both models. Further meas-
ures are investigated and converted in [Gonnet,4]}.
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