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ABSTRACT
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1. Motivation

The regular languages over a finite alphabet ¥ are those sets which
can be built up from finite and cofinite subsets of £° using Boolean
operations, concatenation, and the star operator. Star-free languages
are those regular languages which can be obtained without the use of
the star operator. A family or star-free languages that has been stu-

died extensively is the [amily of locally testable languages [BS, E, M].

Locally testable languages can be defined by certain congruences
of finite index. If x € £° then |z | denotes the length of z. For r 20,
let zf,. the front of length r of =, denote the prefix of z of length r or
z if |z| <r. Similarly, let zt,, the tail of length r of z, denote the
suffix of T of length r or =z if |z|<r. Also define
xm, = {v |z =uvw and |v| = 7} to be the set of all subsegments of z
of tength v. Then define the following congruences ~,. on Z*:
z ~ y if andonly if f. ; = ¥froy Thoy = Yoy, and zmy =ym, . (1)
A language [ is locally testable if and only if it is a ~, language (i.e. it

is & union of congruence classes of ~.), for some 7 = 1.

If in {1) we remove the condition zm, = ym,, i.e. if we test only the
fronts and tails for equality, we obtain the family of generalized
definite languages. Further, if only the tails (fronts) are tested, we ob-
tain the family of definite (reverse definite) languages. The intersec-
tion of the family of definite languages with the family of reverse

definite languages is the family of finite/cofinite languages. This is
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surnmarized in Figure 1(a).

The finite/cofinite, definite, reverse definite, generalized definite,
and locally testable languages have natural characterizations in terms
of their syntactic semigroups. More precisely, a language I C £* is in
8 particular family of Figure 1(a) if and only if its syntactic semigroup
S is finite and satisfies the corresponding property of Figure 1(b}, for

every idempotent e € 5.

The condition "eSe = e for all idempotents e € 5" can be general-
ized as follows. It turns out to be more convenient to deal with
monoids rather than semigroups. 1 M is a moncid and f € M, define
Py =tg |f € MgM{ and define M, to be the submonoid of ¥ generat-
ed by Pr. Now the top four conditions of Figure 1{c) define some very
well-known families of monocids, namely the J-trivial, L-trivial, and R-
trivial menoids of classical semigroup theory, and the recently studied
Gtrivial monoids [BF, E, F, FB, S]. We will call a language J-trivial if
and only if its syntactic monoid is J-trivial, ete., The purpose of this
paper is to study the family of subset of £* whose syntactic moneids M
satisfy the condition that eMye is idempotent and commutative for
every idempotent e € M. We call these generalized locally testable
languages; they generalize both the iccally testable languages and the

(rtrivial languages.
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finite /cofinite

definite reverse definite

generalized definite

locally testable
{e)

HeM, =e

Mee = e eM, = e

eM,e = e

eM e is idempotent
and commutative

()

Figure 1

Se=xze eS=e

eSe=e

eSe is idemmpotent
and commutative

(b}

J-trivial

I-rivial R-trivial

G-trivial

generalized locally testable

{d)
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2. The Basic Congruences

In this section we define two families of congruences that turn out
to characterize generalized locally testable languages over a two
letter alphabet . The cardinality of T will be denoted by #Z. For
z € %', zo will denote the set of letters appeé.ring in . Note that

o= zm,.

Any word w €L* can be written as wywy - - w, where 121,
w; =af‘, g€, n=1for1<i=<1 andg; # o, for1<i<!-1 This
representation will be referred to as the run form of w. The run
fength, |w|, of w is simply the value I, giving the number of factors
in the run form of w. By convention, we define the run form of 1 to be

1and 1] = 0.

Now let r = 1 and suppose w € X° has run form w, - - - w,. The
Jront of run length v of w, wf,, is defined by:

s _jw it Jw)l=r
Wi = lw o cwe o fw] >

Analogously, the tail of Tun length v of w is:

- _jw if Jwl=sr
W = ey wy dF fwl>r

By convention, wf, = wiy = 1 for allw € £°.
¥z,,....2. € and w =2z, - %, then {z,,....%) is a run

rtition of w provided jz,} + - - + |z | = [w]. Equivalently, this i
pa

says that zf, # 2,4, ) for 1<i <k. If (z.¥) is 2 run partition of w
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then x is said to be a run prefiz of w and ¥ is said to be a run suffiz of
w. Note that z is a run prefix of w if and only if z = wf, for soms

r = 0and z is a run suffix of w if and only if z = w‘fr for some T = 0.

Finally, we define
why, = {y | jy| =r andw = uyv for some uv € L°}
to be the set of all subsegments of w of run length r, where 7 = 0.
Note that wiyg = {13 for all w € E°. It is clear that if z is a subseg-

ment of w then /i, C w,. Ancther consequence of this definition is

the foliowing result.

Proposition 1 . If |z | =7 + 1 then (uzv)fy, = (uz}f, U (zv)M, for

aizuwvel”

Counting letters up to a threshold is an important concept in what

follows. Its use is formalized in this definition.

Definition 2 . Let A >1 and suppose w,w'€ L£® have run forms
w; - -w and w'; - - - w'p respectively. Then w 8, w' if and only if
) = Jw'| and, for ¢ =1, ... .1, wyya = w'a and either w; = w' or

fawg ], Jwil =R

This is just another way of saying that O, is the smallest
congruence such that a* @, a**! for all @ € &. Two sets §,5' CL” are
congruent with respect to B, if for each w € § there existsaw’' €.5"
such that w B, ' and vice versa, Note that w @,,w' implies

w B, w forallh =1,
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Definition 3 . Let A,r = 1. Then w %y, w' if and only if wf, 6, w'fy,

ul, 8, wi,, and wi, 0, w'm,.
The following fact is easily verified.

Proposition 4 . If w,w’ €I” then w S 1, w' implies w ~, ), w', and

w Ry 4w implies w Ry, w'

If Jw]=r then wfy = w =wt, If jwl=r and wh, 6, w'n,

then Jw'|| = 7. Together, these two implications yield the next result.

Proposition 5 . Forallww €T andrh =1, |w| <7 andw ~ , w'

'

imply w B, w'. Alsow @, w’implies w R w',

Thus there is a very close relationship between ©, and ~.n espe-

cially for words of short run length.
Theorem 6 . =, is a congruence of finite index.

Proofl: Let7,h > 1 and let w,w' € E” be such that w ~,, w'. We claim

that aw R, , aw' for alia € £*.

If jw] <7 or |w'| < then, since @, is a congruence, the claim

follows from Proposition 5.

Se suppose fw|.|Jw']=7+1 Let w=w; --w and
w'=w'; - - w' be the run forms of-w and w' respectively. We have
Li'zr +1, wf,. =Wy Wy, w?, = Wiyt W, w'f,. =wycowy,

and w, = Wy gy - w'p. Clearly (aw)?, = wi, B, wi, = (aw')?,..
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Also if {a] # w,a then (aw)f, = aw, - w,_; B, aw' - wj_; =
{ow")f,. I {a] = wa we have (aw)fy = aw, - wy B, ew'’; - w,

= (zw')f,. it follows that (aw)f, @, (aw)f,.

Now consider = € (aw),. If z € wm, then there exists z' € w'fy,
such that =’ @, z. Hence assume z & wim,. First suppose {e{ # w,a.
¥r=1thenz =a € (aw')M,. Otherwise z = aw, - - wy_pu where u

is a nonempty prefix of wy_,. Because -1 Oy w'r_; there must exist

a nonempty prefix u' of W such that
z B ow' - wypu'€{ow)m. On the other hand, suppose
fa] = wa. Then z = aw, - wy_,u, where u is a nonempty prefix of

.. Since w, Uy w', there exists a prefix w' of w'’s such that
z 0, aw'y - wru' € (aw')m,. Hence for all z € (ew)f, there ex-
ists ' € (aw'}, such that z @, z'. Similarly, for all z' € (@w)m,

there exists z € {@w)#, such that z @, z'. Thus (ow)f, 8, (ow' ).

The fact that wa ¥, w'a follows by symmetry. Hence Rop isa

ceongruence.

Finally, there are only a finite number of different @, classes of
segments of run length = and there are only a finite number of

different @, classes of fronts and tails, so that ., is of finite index.

0

Two additional facts are straightforward consequences of the

definition of 7., and Propositicn 5.
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Proposition 7 . Ifa € ¥ and 7,h = 1, then a® R, a**!,

Proposition 8 . fz €L, rh>1, |z =2 ands = (Jz] — 1)r, then

zrﬂ ~

. h zr+2

Consider z = a, - - - @ 1, where g,, . . . ,a, are distinct lettersin X
and let h=2. Since o,z7a, € x"*¥M,; but a;z"a, B,y for all
y € "1y, it is not true that z"*! %, 2"*% Therefore Proposi-

tion B cannot be improved, except in special cases.

lemmma 9 . letzuw €X', rh>1,and [z] =7+ 1. Thenzu 8, vz

implies zu <, zu?

Proof: Since |z ] =7 + 1, (zu)f, = 2f, = (zu®)f,. Because zu B, vz
we also  have {zu)i, ® (vz)i, = zi,. Next notice that
zu? 0, vzu O, v’z which implies (zu®)i, 0, (viz)f, = zf,. Hence
(zu)t, ®, (zu®)f,. From Definition 3 and Proposition 5,
(zud)#, O, (vzu)M,. Finally, by Proposition 1, (vzu)f, = (vz)f, U

(zu )i Op (zu)imy. Thus (zu?)fr Oy (zu)fr. ]

lemma 10 . let zuwel’, rh=1 and |z]=r+1. Then

TUTUZ Ny, TUTUZ

Proof: Clearly (zuzvz)f, = 2fr = (zvzuz)f, and
(zuzvz )i, = zf, = (zvzuz)f,. Also, by Proposition 1, (zuzvz)P, =

(zuz )y U (zvz)fy = (zuzuz)ie. )

These last two lemmas motivate the following definition.
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Definition 11 . Let r.h =1 and let &, be the smallest congruence
on I° satisfying:
(a) if 1 @, v then uw &, v,
(bYif Jz]>7 +1 and zu B, vz then zu &, zu?

and (¢)if jz| =7 +1 then zuzvr 8., zuzuz.

Proposition 12 . For all w,w' €I’ and r,h =1, w &, w' implies

w N W

Proof: This follows from Proposition 5, Lemma 8, and Lemma 10. Any
time we use one of the substitutions of Definition 11, we preserve the

congruence ~yj . (]

A (scmewhat modified) converse of Proposition 12 also holds but

the proof is considerably more involved as we will show.
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8. A Structural Decomposition of Semiautomata

The semiautomata of generalized locally testable languages are
considered in this section Specifically, we show that every such
semiautomaton can be covered by a cascade connection of a semiau-
tomaton of an I-trivial language with an idermnpotent and commutative
semiautomaton. It is convenient to phrase the proof in terms of
congruences. The results of this section will also yield a converse of

Proposition 12.

A (finite) cutomaton is a 4-tuple (£, @. qo. F), where £ is a finite,
non-empty alphabet, @ is a finite, non-empty set of states, gp € & is
the initial state, and F C & is the set of final states. The letters of &
are viewed as functions from & inte & Concatenation of letters
corresponds to functional composition [E]. An automaton is reduced
if, for all g,¢' € @, there exists = € £° such that gr € Fif and only if

g’z € F. An {initialized) semigutomaton is the triple (L, @, qo).

Definition 13 . Define the following equivalence relation on £° for
each7.h = 1. Forw,w €L°, w Ay w' if and only if
(a) w B, w',

or(b) [w{=7+1, |w]|=r+1 and wi, O, wi,.

Note that w A, w' always implies uff, By 'w’?,. However the con-
verse is false; e.g. let r =h =2, w = ba, and w' = aba, One easily

verifies that A, is a congruence relation of finite index on Z°. Let
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[z]; » denote the congruence class of ., containing z.

We now define the free A, Semigufomaton that corresponds in
the natural way to the congruence above. The semiautomaton is

& {[z)ln | = €27 [1]0), where [z]rha = [za s

For the case of a two-letter alphabet, the following result holds.
Let L be a regular language; then L is I-trivial if and only if there exist
r.h =1 such that L is a A language {B]. For the reader familiar
with locally testable languages [BS], we point out that the role played
by free definite semniautomata in that theory is played by free A p

semiautomata here.

It is also convenient to represent the free A, ), semiautomaton by
a directed graph G, defined as follows. The vertices of &), are the
congruence classes [z ],4. Thereis an edge from [z, Lo [y]x if and
only if there exists o € ¥ such that za A, ¥ the edge is labelled by
the pair {{z],». a). Clearly each edge in G- is uniquely identified by
its label. Let Iy, = { ((z]rn. €) |z €Z°, 2 € ] be the set of all the
labels. This set of labels forms a new alphabet and paths in G,
correspond to words in Ty,. However, not all such words correspond

to paths. Let Il » be the set of words corresponding to paths.

Define a mapping ¢:L* =+ I, n C T¥ as follows:
ap = ([1]pn.a)fora €L

(wo)p = (wg) ((wln.a) for well
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acl

To decongest the notation we will denote wyg by ¥, and letters in

Ty » will be denoted by 4, B, C, ete.

Proposition 14 . The mapping ¢:IZ* -+ Il is one-to-one. The image
of £* under p is the subset of I, corresponding to paths beginning at

[1]r.h‘

Proof: Clearly each word in " corresponds to a unique path in G, of

length n starting at [1],, and vice versa, []

Note that if # = ([z,],n.a))* ((zn]r s . 8,) is a path in [I,, then
We™'=a, - a,. Whenever possible Wy~ will be denoted by w. For

convenience, we let w = 1 when # = 1.

Next we define the congruence ~ on I° to be the smaliest
congruence satisfying

-'-EE

~z and Ty ~ Yy

for all z,y € L°, As above, we define a semiautomaton corresponding
to this congruence, namely the free idempoient and commutative
semioutomaton  over E,  (Z.{[z]. |z €3}, {1].).  where
[z).a = [za].. This is equivalent to a semiautomaton (I, @, go) which
is free except for the conditions gz = gx? and gry = qyz for all g € .
z,y €3° [BS]. One can verify [BS] that this is also equivalent to the

semiautomaton (Z, {Q | @ € 3, ¢ ). where gu = @ Uutalforall @ C L.
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Finally, we define the cascade connection of the free A, semiau-
tomaton over T with the free idempotent and commutative semiauto-
maton over Iy ,. This semiautornaton will be called the coscade
semigutomaton and is (E, P, py), where P={([z]n, X&) |z €L},
Po={{1lrs.¢). and ([z]-4. Xa)a = ([zal s, XaUl{[z]rn.2)]). An

informal representation of these ideas is shown in Figure 2.

[z)en Xa

Figure 2. Cascade Connection.

Suppose z has been previously applied to the cascade semiautomaton
and the present input letter is a. The front semiautomaton is in state
[z}, 5 and will move to state [zal,,. The present input to the tail
machine is the pair ([z];,.a). The tail machine is in state Xo where
X =zg, and will move to the state Xau{([z];,, e)}. Observe thatin
the cascade semiautematon

por =poy ifand onlyif [z],5 = [¥]-s and Xa = Yo (2}

We now prove thet sny language soccepted by (X, P.po) is a

Riane1 language. It is sullicient to show that z Roezae1 Y implies
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[zlen =[ylrn end Xa=Ya The fact that z S,pne ¥y implies
{z)rn = [y]rn follows from Definition 3, Propositions 4 and 5, and

Definition 13.

Proposition 15 . Let w,w'e€ £* and r,k = 1. Then
w Npyane; W' implies Fa = Wa,

i.e, W and ¥’ traverse the same set of edges in G, 4.
Proof: Suppose # = UAV, U,V €Ty, and 4 €Ty p.

If U=1 then A=([1lyn.2) where a=wf,  Since

Wfrip Brey W frip wehave w'f | =a and 4 € #'a.

So assume U # 1. Then |uz| > 0. (Remember v = Up™'.) Let the
run form of u© be u, - - - U, where u,, = b* for some b € X and i > 0.

We consider the cases b # @ and b = a separately.

Db #a.
If Juej<r+2 then ma is a prefix of wf,e But
'wf,,,g Br 1 w‘f,+2 so there is a prefix ¥'a of w' such that u @, u'.

Thusu Arpu'and 4 = ([u'lrp . 2) € W'

Otherwise Jua|>7+2 and Up-r' ' Un0 € Wity,z  Since
Wi g Bp 4y W'y 4p, it follows that w' = 'y 'e2’ where ty, * ' Una
@ne; ¥'a and y't; #a. Now |y'| >7; therefore (z'y" ¥, = ¥
(O Upr+1 ' " " Un = u?,. Hence uA.,z'y’ and

A={z'y'}n.a) e Fa
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2)b=a.
fV#1lletj>0andz €E"besuchthatv =afz and 2f, #a. If

V=1letj=0andz =1. Thenw =u, - - - up_a‘cafz,

I [ua]<r+2 then wa is a prefix of wf,.. Since
w2 84y W' Frep there is a run partition (u'.0*z "} of w' such that

Uy U@t B, u'ak,

On the other hand, if jue| >r +2 then
U pyUim 7+ U181 € w8y, w'fiy,. Thus we can
write w' = z'w'e¥z' where up, .y Uy @t B, uw'a® and

u't] #o.

In both caseseither k =i +1+jork,i+1+j=2h+1 li<h
leti' =7 andifi >k leti' = h. Then a'®, o' and a* = a¥an’ for

some j'= 0. Henceu A u'at and 4 = ([u'a*}, ».2) € Wa. []
We have now proved the following:

Proposition 16 . Any language accepted by the cascade connection
of a free Ar, semiautomaton with a free idempotent and commuta-

. - . -~
tive semiautomaton is a ~rizn+1 language.

Using Proposition 15, we see that if w R,5,,, w' then # and #'
are coterminal paths in G, that contain the same set of edges.
Therefore we can apply the following thecrem on graphs. For further

details see [E, page 224].
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Theorem 17 . Let ~ be the smallest congruence relation on Il 4
satisfying

XX ~ X and XY ~ ¥YX
for any two loops X and Y about the same vertex. Then for any two
coterminal pa.ths'W and #', the conditions W ~ W' and Woa = #'x are

equivalent.

We now have the conclusion that for all w,w' € I*
w R ppe w' implies W~ W
We will complete the proof of a converse of Proposition 12 with the aid

of the next result.

Proposition 18 . Let r =2, let h =1, and suppose ¥ and W' are
coterminal paths in G,, beginning at [1]rn. Then W ~ ¥' implies

wl_ ,w.

Proof: It suffices to verify the claim in two cases. Here U and U are

any two loops about the same vertex. Note that Juf. ju'f=1.
(1) W=YUZ and W' = YURZ,

Since U is a loop, ¥ and YU are coterminal paths in G . Thus

Y Arn Y. *

Consider fu] =1 Then u =e' where o €L and i >0. Now
y?,. ®, (yu)i, implies yt, = (yu)t; = a. Therefore y can be written

as y =za’ where j >0 and zt; #a. Since yu =zafu' and
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yt, O, {yu)t,, we have o’ @, a**J. Hence w = yuz = rafuz 8,

zef¥tuz = yu®z = w'. By Definition 11 (), w & _;, w'.

If |u| =2 then clearly |y ] < Jyul Since y Arx yu, we must
have [y | >7 and yi, ©, (yu)i,. Let z = y?r and let ¥ =y,z.
Then (zu)f, = (yu)i, B, yi, =2 and thus zu B, vr for some
v € £°. By Definition 11 (b}, zu & _,, zu® Therefore w = yuz =

yizuz B, y,zu?z = yulz = w' as required.
W=YUU'Zand W' = YU'UZ.

In G, the paths ¥, YU, YU', YUL' and YU'U are all coterminal;

thereforey A ¥ hrp Y2 Ara L' Aep YU,

I juj] =1thenu =of wherea € X and i > 0. Applying the argu-
ment of (1) te both ¥ and yuw' gives us ¥y @, yu and yu' B, yu'u.
Thus w = yuu'z ©, yu'z 8, yu'uz = w'. By Definition 11{a),

w &, w' The case |u'| =1 is similar,

Finally consider |u | [w'| =2 Asin (1), |y ] > 7. we let z = 4,
and ¥ = y.x, and it follows that (zu)?, @, = and xu 0, vr for some
© € L°. Then Definition 11(b) implies zu &._, , zu® By induction,
we get Tu™ @, v™ lzu. Since & _,; is a congruence we have

zu By, zut foralln = 1.

Choose m so that |u®™| > [z | this can always be done since

|[w] =2 Then u"%, = (zu™)i, 6, (" 'zw)i, O, z and u™ 8, sz
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for some s € £°. By Definition 11(a) it follows that zu®™ & _, , zsz.
Therefore zu &._,, zsz. Similarly zu'& _,, zs'z for some s' € L".
Then zuu' & _, zsru' §_,, zszs'z. By Definition 11(c), zszs'z
R,_n zs'zsz. Hence w = yuu'z = yruu'z B n vy fzszs'z)z

B i wilzszsz)z Ry, yizu'uz =yu'uz = w' ]

Proposition 19 . let 7 =2 h 21, and ww' €E°. Then w Spigps W'

implies w & _; 5 w'.

Proof: Ifw = 1 or w' = 1 then Proposition 5 implies w = w' and hence
w & 5 w'. Otherwise, by Proposition 15, ¥a = W'ain G 5. Theorem
17 implies W ~ W', i.e. ¥ can be obtained from W' by using only the
transformations of the type X* ~ X and XY ~ YX on loops in Gra.

From Proposition 1B we obtainw S_ 5 w'. [}

The results of this section can be summarized by the following

theorem.

Theorem 20 . Let L ¢ I°. The following are equivalent.
{a) [.is an ~., language for somer, h =1,
(b) L is an ®,, language for some 7, h = 1.
(c) The reduced automaton for L is covered by the cascade con-
nection of a free A, automaton with a free idempotent and

commutative semiautomaton.

Proof: By Proposition 12 and Proposition 19, we have the equivalence

of {a} and (b). Using Propesition 16, we verify that if a semiautomaton
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is covered by the cascade semiautomaten, then any language accept-

ed by that semiautomaton is 2 ~4z5+ language. Thus (a) implies (c).

Finally, we will show that {c) implies {b). More specifically we will
show that the semiautomaton (Z, @, g¢) of the reduced autematen of a
8 _,» language is covered by the cascade connection (I, P, pg) of a
free A, automaton with a free idempotent and commutative
semiautematon. It suffices to verify that pgr = poy implies gz = gy
If pox = poy then it follows from (2} that X and ¥ are coterminal
paths in G4 with Xa = Ya. By Theorem 17, we have X ~ Y. Now Pro-
position 18, implies = & _;, y. Since (Z, @, g¢) is the semiautomaton
of the reduced automaton of a & _,, language, we must have

gox = ggy. Hence (I, P, po) covers (T, @, go). []
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4. The Monoid Characterization

We are now in a position to relate the congruence characteriza-
tions with the monoid characterizations mentioned in Section 1. Two

preliminary results are needed first.

Proposition 21 . Let M be a finite monoid. If eMze is idempotent for

all idempotents e € M, then M is aperiodic.

Proof: Let f € M. Since M is finite, there exists m such that
fm™ =% Note that e = f™ is an idempotent and J € M,. Now fm*!
= f2m+l = efe in eM.e. Since el;e is idempotent, ot = efe =

{efe)? = &% = f™m*2 Thus M is aperiodic. [|

Lemma 22 . Suppose zu 8, vz, u # 1, {z.u) is a run partition, and ¥
is a run prefix of z. Then there exist a run partition (2,y',22) of £ and

a run prefix u' of u, suchthaty Oy ¥y u By u'zy, and zu' G, vz Y.

Proof: Letz =z, %, be the run form of z and let s = ly [ sothat
y =z, - Z. Furthermore, let k = max {9 |z Zivs—1Op ¥ 4 let
Y =Zp o Tees—1, L 21 =Ty T and let 2z = ZTgss * - Zyp. Then
(2;.y"z2) is a run partition of z, y ®p y', and z y'zpu = zu B v =

vz Yz

It fzz] = |u | then z; has a run partition (zgu') such that u Oy u'’
and z 8, vz,y'zs (It may be that zg=1) Note that izall > lzsl.

sincew # 1. 17 = vz, + 1thenz; -~ Ty On ¥’ Oy y. Butj=
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fvzil + 1= Jvzyy'zg] - Qy'l - lzsl +1= |z} - {y'l —Hzsl +1>
Pzl = ly'l — lzel + 1= lzwy'zel = Jy'] —fe2e] + 1= {2y +1=
k. This contradicts the definition of k. Therefore {z,| < |u |.

It follows that » has a run partition (u',z'g) such that z; 8, 2.
Then uw = u'z'y @ u'zz. Also, since zu'z', = ru 8, vz = vzy'zs

the final relationship, zu' @, wvz,y.is true. []

The key to relating language properties with monoid properties is
the concept of the syntactic monoid of a language. The syntactic
congruence =; of a language L CE* is defined as follows. For all
wv,z,yecl’

r =y ifandonlyif (urv € L ifand onlyifuyv € L ).
The quotient monoid M =Z°/ = is called the syntactic monoid of L.
The syntactic morphism of L is the natural morphism mapping z € *
onte the congruence class of =; containing x. For conveniene, z is

used to denocte the congruence class of =; containing x.

At this peint, it is necessary to restrict the size of the alphabet Z

to two.

Theorem 23 . Suppose #Z =2, Let L C £" and let M be its syntac-
tic monoid. I ¥ is finite and eM, e is idempotent and commutative for

elle® =e € M then L isa R, language for some 7.h > 1.

Proof: Suppose M is finite and eMge is idempotent and commutative

for all e? = e € M. By Propositicn 21, M is aperiodic. Thus there ex-
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ists anh > 1 such that f* = f**'forall f € M.

Let r = 2(##) — 1. We have to show that w & ), w’ implies 2 = '
in M. It is sufficient to verify Vthat foraliu,vx €L’
if 2 ®, v then a =,
if |z]=7+1 and ru @ vz then zu = zuu,

and if |z | =7 + 1 then zurur = zuruz.

For all w € L*, w € M and thus 2t = (w)* = {w)**! = whl In

particular this implies that z = u for all u,v such that u 8, v.

Assume |z | =7 + 1 and z =z, Z is the run form of z. Let
z'o=1. and let 'y = xp_1Tz for 1 <i<#M Then the ## + 1 ele-
ments of #:

I Tt T e, . ZoTHT e Ty
cannot all be distinct. Hence there exist 1,j such that 0=1i <j <#M
and

PRSERD VY USREE VT VREEE VN ¢ VAREE ¥R PICSERE YR

Lety, =z -z letyp=2'4yy -z, andlete =gk Hs=2 +1
then let ys = 1; otherwise let ¥s = Zgje1 - Zs, Then e is an idempe-

tent, (¥1.¥zYa) is a run partition of r, and y¥; = Y12 = 1y, ylt = ye.

Now z € H, if and only if z € (ya)®. Since |yel =2 and #X =2, it

follows that I = yea = y}a. Thereforez € M, forallz € .

In particular, ysuy, ¥svy, € M,. Since eMye is commutative,

rurvz =  y.eysuyieysvy,eys = da(eysuyie)(eysvye)ys =
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Ya(eysvyse )(eysuy e ya = Y1@YsUY | YUY, BYs = TUTUZT.

Finally suppose zu 0, vz. If ¥ =1 there is nothing to prove.

Therefore assume that « # 1. Let v = u; - -+ u; be the run form of u.

If Jul=1 then u=a' for some o €% and i>0. Now
Z, - Zgyza' = zu B, ur = vr,- - T ,7,. Since |z | =1 and
s>r +1=2(#M)>1, it follows that z, @, zyet = z,u. Hence

U Op rsuuw andzu =2, - - - T TU T Xy 0 Ty TLUY T TUL.

It remains to consider the case [u | = 2. If (z,») is a run partition
(ie. xty #uf,) then by Lemma 22 there exists a run partition
(2,4'2p) of z and a run prefix u' of w such that y; 8, y', u 0, u'zg,
and zu' B, vz,y,. Thus
Zu = Tu'zy = UZ Yi2Zp = W2 Y,e2p T ZUeZp = 2y 2pU'ezy = Z Y ez u'eZ)
and

Zuw = vru = vru'z, = vrw'ezs = Zuw'ezs = (2.y ez ez ulezs .
Because zpu' € M, and eM,e is idempotent, we have

gzpu'ezsu'e = ezou'e. Thus zu = zua.

Otherwise zt)=uf,;. Let 2 =Ly Ty and let
W = TgUp - Uy Clearlyy,isarunprefixof z. Sincek,s > 1,y =
(zu)?l and =z, = (-u:c}?l. Then zu @, vz implies 2w =
TUp U B vz - x; = vz and uy B x;. Also notice that

|| = 8. {This is because either k > 2or k =2 and ;& = W # v ya.)

The argument in the previous paragraph is now applicable with z and
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w replacing # and u, respectively. Therefore 2w = zuay and zu

WL, = Zunvu, = T Uy Uy Tty o Uy Uy =
LUy Uy W Uy -yl = zuu ]

The converse is also true and holds for arbitrary alphabets Z.

Theorem 24 . Let L C I’ and let M be its syntactic monoid. If L isa
Eﬁ,,‘ language for some 7.,k = 1 then ¥ is finite and eM; e is idempo-

tent and commutative foralle® = e € H.

Proof: Suppose L is a 5‘”, language. From Theorem 6 and Proposi-
tion 19 it follows that %, is a congruence of finite index. Hence the

syntactic monoid M is finite.

Let e be an idempotent element of # and let f.g € M. Since M is
& syntactic monoid, there exist w € Z° and u,u € (wa)® such that

e=au, f =u,andg =u.

¥ |w|| =0 then w=u=v=1 and e=f =g =1 so that
efe = {efe)’and (efe)(ege) = (ege}(efe).

I jw|=1thenw =a!, u =af, andv =a* for some e €%, 121
and 7,k =0. Let z = w" so that = = (w)* = e* = e. It follows that
zur = a®* @, a¥*¥ = (zur)® which implies zuz &, (zux)® Thus
efe = (efe)®. Also note that zuzzuz = zvrrur and hence

(efe)(ege) = {ege)(efe).

Finally, suppose {w| >1. Letz =w" sothatz = () =" = g
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and |z | >r. Since z(ux) = (ru)z, it follows from Definition 11 that
zur 8, surur. Also zurvr &, zvrur. Thus efe = zuzr = Tuzuzr =
efefe = (efe){efe) and {efe)(ege) = efege = zuzuzr = zurur =

egefe = (ege)(efe). []
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5. Conclusions

The congruence :',.’h of Definition 3 can be viewed as a "testing”
congruence in the sense that, given £ and y. it is easy to determine
whether = ., v by testing Fr. T,. and #,. On the other hand, the
congruence S, is a "substitution" congruence in the sense that any
word can be obtained from a congruent word by a series of suitable
substitutions. However, it is not al all clear how to test whether

z 8.,y forgivenz y €3°.

For the case #Z > 2, the problem of characterizing the languages
whose syntactic monoids M satisfy the condition that eM; e is idempo-
tent and commutative for all idempotents e € M, is still open in the
sense that no testing congruence is known. However, we have suc-
ceeded in generalizing %, to obtain a substitution congruence that

corresponds to the monoid property.

As a final remark, we point out that run length is a generalization
of length. It is a suitable generalization for #£ < 2, but not otherwise.
This problem of generalizing length appears to be of fundamental im-
portance not only in finding a testing congruence as mentioned above,

but alse in the general study of star-free languages.



LOCALLY TESTABLE LANGUAGES 27

References

[B] Brzozowski, J.A, A Generolization of PFiniteness, Semigroup
Feorum 13 (1977). pages 239-251.

[BF] Brzozowski, J.A., and Fich, F.E., Languages of R-Trivial Monoids,
J. Computer and System Sciences, 20 (1980), pages 32-48.

{BS] Brzozowski, J.A., and Simon, 1., Characterizations of Lacally Te-
stable Fuents, Discrete Mathematics 14 (1973), pages 243-271.

{E] CEilenberg, 5. Automata, Languages, and Mackines, Vol, B,
Academic Press, New York, 1876.

[F]  Fich, Faith E., Languages of R-Trivial end Related Monoids, M.
Math. thesis, University of Waterloo, Canada, 1979.

[FB] Fich, Faith E., and Brzozowski, J.A., A Cheracferization of a
Dot-depth Two Analogue of Generalized Definite Languages,
Proc. 6th ICAIP, Lecture Notes in Computer Science, Vol. 71,
Springer-Verlag, Berlin, 1979, pages 230-244.

[M] McNaughton, R., dlgebraic Decision Pracedures for Local Testa-
bility, Math. Systems Theory B (1974), pages §0-76.

[8] Simon, 1., Hierarchies of Events with Dot-depth One, Ph.D.

thesis, University of Waterloo, Canada, 1972.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

