Systolic Trellis Automata: Stability,
Decidability and Complexity®

K. Culik II, dJ. Gruska1), A. SaTomaaz)
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
N2L 3G1
Research Report CS-82-04

January, 1982

* This work was supported by MNatural Science and Engineering Research
Council of Canada, Grant Nos. A 7403 & A 1617.

1) On a leave of absence from Computer Research Centre, Bratislava,
Czechoslovakia

2) On a leave of absence from the University of Turku, Turku, Finland

ABSTRACT

Systolic trellis automata are models of hexagonally connected
and triangularly shaped arrays of processors for VLSI circuits. This
paper studies the problems of stability, decidability and complexity for
them.

The original definition requires that an input string is fed
to a specific row of processors. Here, it is shown that given a homo-
geneous trellis automaton we can construct an equivalent one which allows
to feed the input string to any sufficiently long row of processors.

Moreover, some closure and decidability results for trellis auto-
mata are shown and the computational complexity of languages accepted by

trellis automata is investigated.

1. Introduction

Systolic trellis automata considered in this paper have been
introduced in (Culik and al., 198la).

A systolic trellis automaton is a model for VLSI circuits.

It is a triangularly shaped systolic system of hexagonally connected
processors (functional elements) with uni-directional flow of data and
with fixed delays in ail intercannections.

The notion of a systolic system captures such concepts as
pipelining, paralelism and a multiprocessor system. The importance of
systolic systems has been primarily connected with VLSI technology.

VLSI technology encourages building of multi-processor sys-
tems where the processors are uniform and simple, the interccnnections
are regular and the external connections are minimised. Several models
of systolic systems have been considered so far and it has been shown
how systolic systems can perform efficiently some important computations,
see (Conway and Mead, 1980) and (Kung, 1979). Some of the most important
and interesting applications of systolic systems deal with hexagonally
connected systems.

A formal investigation of systolic systems has started in
(Culik and al., 1981c}, where the so called systolic tree automata have
been introduced and investigated. In systolic tree automata the under-
1ying structures of processors and their interconnections form trees.
Some additional results concerning systolic tree automata are presented

in (Culik and al., 1981b and 1982).

In the present paper we deal only with trellis automata in the
so called normal form (Culik and al., 1981a). The underlying structure
(called also an infinite labeled trellis) of such a systolic trellis
automaton is shown in Fig. 1.1. The vertex labels represent the names

of the corresponding processors.

Fig. 1.1

SystolicAtre11is automata get their input data, i.e., an in-
put word w , on the external {inputs of processors on the Tevel with
|w| processors. On every level all processors receive their inputs at
the same time. Then they immediately do their computations and without
any delay they immediately output their results to the processor on the

next level. It akes one time unit to transmit data along an edge.

It is natural to consider systolic trellis automata as acceptors where
an accepting or a rejecting symbol is produced by the processor at the
root of the trellis. Similarly as in (Culik and al., 1981a} we consider
here only trellis automata the underlying trellises of which are regular.

In this paper we first introduce two special classes of trellis
automata which are much more flexible as far as their inputs are con-
cerned. The so called stable trellis automata allow that an input is
fed to the external inputs of the leftmost processors on any sufficiently
large level of processors. Superstable trellis automata allow to feed an
input word to the external inputs of any subsequence of processors on
any sufficiently large level of processors. That actually means that
in the case of stable or superstable trellis automata any sufficiently
large chip can be used to recognise a word.

It is shown in Section 3 that to any homogeneous trellis
automaton we can effectively construct an equivalent superstable (and
therefore also stable) trellis automaton.

This result is then used in Section 4 to show that the family
of Tanguages accepted by homogeneous trellis autemata is closed under
inverse morphisms. Moreover, this family of languages is shown to be
closed under injective length multiplying morphisms but not to be
closed under arbitrary length multiplying morphisms. A Tinear speed-

up theorem for homogeneous trellis automata is also derived in Section 4.

In Section 5 the emptiness problem for homogeneous trellis
automata is shown to be undecidable. From this result some other
undecidability results are derived. For example it is undecidabie
whether a homogeneous trellis automaton is supérstab?e.

Time and space complexity of trellis languages is investigated
in Section 6. It is shown here that the family of treilis languages is
contained in the family of deterministic context-sensitive Tanguages.

In the last section it is indicated that any Tinear bounded
automaton can be "simulated by a trellis automaton with a sufficiently
large auxiliary space®. For an illustration it is shown how trellis
automata car recognise the twin shuffle languages given some auxiliary

space.

2. Trellis Automata and Languages

In this section we present the basic definitions concerning
trellis automata and languages. For more motivation we refer the
reader to the original paper (Culik and al., 1981a}. The basic results
of the paper (Culik and al., 1981a) which are needed here are summar-

ised in the Theorem 1.

Definition 1. An infinite trellis is an infinite oriented graph {with

orientation of edges from sons to fathers) satisfying the following con-

ditions.
(m there is exactly one node {the root) with no father,
(2) every father N has three sons; the left one - N, , the

middle one - N and the right one - Nr and always

(N) =ty = () 0

Since only trellis automata in the normal form are considered
in this paper we shall not make use of (vertical) edges in the trellises
between fathers and their middie sons and we shall also omit these edges
in figures.

If T is an infinite trellis, then for j =1, 2, ...
LEVELT(j) derotes the set of all labeled nodes of T the maximal dis-
tance of which from the root is j -1 . Forany j =1 there is a
natural ordering of nodes in LEVELT(j) and the i-th node (from left
to right) din LEVELT(j) is denoted by NT(i,j) . The nodes NT(1,j)
and NT(j,j) , are called the left-leg and the right-leg nodes, res-

pectively. Al1 other nodes are called internal.

Fig. 2.1

Definition 2. An infinite labeled trellis T (see Fig. 2.1) is an in-
finite trellis with nodes labeled by symbols from a finite alphabet AT .
The label of the node NT(i,j) is denoted by AT(i,j] .

If T and T are infinite labeled trellises, then we say that
T is obtained from T by a coding c :-AT-+ ap if cOagling)) = AT(i,j)
for 1=49=7.

An infinite labeled trellis is said to be top-down deterministic
{strongly top-down deterministic} if the label of any node is uniquely
determined by the labels of its fathers (by the label of any of its

fathers). T is said to be a regular trellis (a semihomogeneous trellis)

if T =c{T) for some top-down deterministic trellis (for some strongly
top-down deterministic trellis) T and a coding ¢ . T is said to be

homogeneous if all nodes of T are labeled by the same label.

Definition 3. A systolic trellis automaton K is a construct

K= (P, 4, %, T, Tg, . 9)

where A, ¥ and T are finite alphabets referred to as the Tabeling,
terminal and operating alphabets, respectively and PO =T 1is the al-
phabet of accepting symbols. Moreover P = (%, c) where (we assume
£ A)

g (AU {#) x (AU {#}) >4 and ¢t a4

are referred to as the labeling function and coding, respectively.
Finally f : A x & » T is the input functionand g : Ax T x T »>T

is the transition function. 0

With every trellis automaton X = {{&, ¢}, A, E, T, Tos f, g)
we associate a regular trellis T (the so called underlying trellis of
K) where T =c(T') and T' 1is the trellis the Tabeling of which is
recursively defined by the rules: AT.(1, 1) = o{#, #) 3 AT.(1, i) =
2(#, AT.(ls 3=1)) if 1«3 lT.(j, i) = l(lT.(j-1, i-1), #) if
1<§ and Ap (i, 3) = 200, 0-1, 3-1), Aq(i-1,3)) 4F 1<i<g.

Quite often we shall refer to the underlying trellis of a
trellis atuomaton K but not to its labeling function or to its coding.

In such cases we shall assume that K dis given in the form
K= (T, 4, L, T, Ty, f, 9)

where T s a regular trellis with nodes labeled by elements from A .

A treilis automaton K is said to be semihomogeneous (homo-
geneous) if so is the underlying trellis of X .

Informally, we assume that every processor of K has one
external input {pin) - to receive a terminal alphabet symbol - and two
internal inputs - to receive operating alphabet symbols. An input word
wes . |wl =n, s reorganised by K as follows v : w is fed, symbol
by symbol, to the external input pins of processors on the level n .
(We may visualise it as if we are using a chip which has only proces-
sors at the first n 1levels of T .) ATl processors on the level n
compute in parallel the values of their input functions and send the
results to their fathers on the level n - 1 . The outputs reach fathers
in one time unit. On any level j < n all processors receive inputs
on their internal inputs at the same time. They compute in parallel the
values of the corresponding transition functions and again send results
along output edges. In time n - 1 the processor at the root is acti-
vated and w is accepted if and only if its output is in FO .

More formatly we can proceed as follows. Let w € z+ s

b =n, w=w Wy oW, s W €3, T<k=n. For T=i=j=n

n
let OUTPUT(K, w, i, j) be defined as follows:

OUTPUT(K, w, i, n) = fhp{i,d)s wy) T=i=n
and

OUTPUT(K, w, 1, §) = Q(AT(i,j), OUTPUT(K, w, i, 3 + 1) ,
OUTPUT(K, w, i+1, j+1))

for 1sj<n.

10.

The language accepted by a trellis automaton K 1is now defined

by
L(K) = {w | wez, OUTPUT(K, w, 1, 1) ¢ Ty

Denote by L{RT] and L(HT] the families of languages accepted
by trellis automata and by homogeneous trellis automata, respectively.

Two trellis automata are said to be equivalent if they accept
the same language. It was shown in (Culik and al., 1981a) that to any
semihomogeneous trellis automaton we can effectively construct an equi-
valent homogeneous trellis automaton such that its input function is the
"identity function" in the sense that f(v, £) = & for any label v
and any terminal symbol £ . We can therefore assume the following

normal form
K=(z, T, FQ, g)

for homogeneous trellis automata.

In the rest of this paper we shall often make use of the fact
that if a w € z+ is fed to a trellis automaton K , then for any
T=i=j=n=|w , the processors of K on the level n at the
leaves of the subtrellis with the node N(i,j) as the root receive on

their inputs the word w(i’J)= Wi Wy W

+1 70" Tn-jHioc .
We now summarise some results from (Cutik and al., 1987a) that

will be needed in the rest of the paper.

Theorem 1. The family of languages acceptable by trellis automata
(by homogeneous trellis automata)contains effectively all linear

context-free Tanguages and is effectively closed under boolean opera-

tions.

1.

12.

3. Stable and Superstable Trellis Automata

Trellis automata require that an input word is fed to external
input pins of processors on a specific level. In other words they re-
quire to use a chip of a specific size.

In this section we consider two special classes of trellis
automata which are much more flexible as far as inputs are concerned.
They allow to use any sufficiently large chip to recognise a word.

Trellis automata in the first class - called stable - require
only that an input is fed to the external input pins of the left most
processors on any sufficiently large level of processors.

Superstable trellis automata which are in the second class
allow to feed an input word to the external input pins of any subse-
quence of processors of any sufficiently large level of processors.

These intuitive notions are captured in the following formal

definition where the symbol # plays the role of blanks.

Definition 4. Let # € =z . A trellis automaton K with the terminal
alphabet © is said to be stable if for any u € (z - {#})7, u € L(K)
if and only if u #" ¢ L(K) foreach n=0; K is superstable if

v e L(K) if and only if 10, 4 (v) € L{K) for each v €3 (for

*
wez and arcz s HA(W) is the projection of w into A).

13.

Theorem 2. Given a homogeneous trellis automaton K with terminal
alphabet = we can effectively construct the homogeneous trellis auto-
maton K with the terminal alphabet = U {#} , # £ 2 , which is
superstable and L(K) = L(K) n 3t

Proof. In view of the remark at the end of the previous section
we can assume that K= (2, T, FO’ g} i.e., that the input function of
K 1is the identity function. For any x €T let X and X be two
new distinct symbols. Let # £ {x, X, X | x € T} .

is now defined as follows.

B = (&, id) where £ is the labeling function such that the
corresponding trellis is the roof (Culik and al., 198%1a), i.e., it has
the root labeled by t , the left-leg nodes by £ , the right-leg
nodes labeled by r and the remaining nodes labeled by a .

& ={t, &, r, a} and id is the identity function in A .

Moreover T =32 U {#}, T = {x, X, X | x € T} v {#},

r0={x,*>€,3<'|xer0}

14.

9 €A
Xoy €T

a £ r t
{xy) (4.5) g(%,y) g(x,y) g(x,y) g{x,¥)
(x,y) (%.¥)
(x,#) (%,5) > > N N
@ () * " * X
(#’X) ()ZX} e + + +
(5.0 (.0 " ” " ”
(#,%) # X # #
(X,#) # # X #
(%3 # % X X
Fig. 3.1

The input function of Rb is the identity function and the transition

function @ is

is # for all other arguments.

Informally (see Fig. 3.2) Rb

defined for some arguments in Fig. 3.1 and its value

works in such a way that it

always ignores the symbols # and tries to simulate K whenever

possible.

15.

If a processor of Kh receives # on one input and a symbol
from T ‘on the other input, then it outputs the symbol from T marked
by < or - to show the direction the symbol came from. If a proces-
sor receives on inputs two symbols from T , perhaps marked, and if they
are not of divergent directions (for example Y and B }, then this
processor computes the value of the function g for the given input
symbols ignoring their marks (if there are any). If a processor receives
on ane input and a symbol marked by <« (by -) on its right (left)
input, then this processor lets the input symbol pass through. towever
leg-processors behave - in this last case differently. They take care
that no result of previous computations can get lost if it maybe still
needed. A leg-node processor does not allow a symbol "to fall out of

the trellis", it sends such a symbol to its father.
w//’W\\\w
SN\
SNSNSN
/\/‘\/\/\

NN NN,
AVAVAVAVAVAN

Fig. 3.2

16.

Formally, we can proceed as follows. Llet w ¢ % . Using the
definition of g it is easy to prove by induction (in i and j) the
following assertion (A} where 1 =i <=<j = |w] and

2z = OUTPUT(K, wéi’j), 1, 1).

if w(i’j) €zUST 2

if (w(i’j) € # E'*Z) or (w{i’j) €# §*~Z
and 1 =1)

if (w(i’j) €3z E* #) or (w(i’j} € #
and i = j#1)

N

-
Z

Nt

#

T
Z p

N

(A) OUTPUT(Kb, W, i, 3} = z #

£

if (w(i’j) c#% #and 1<i<i) or

w3 ¢ " andi=1 ori=3)

(A) immediately implies that ?b is superstable and L(Rb) n 3= L{K) .
Now the theorem follows from the fact that to any semihomogeneous trellis
automaton we can effectively construct an equivalent homegeneous trellis
automaton.

Thecrem 2 implies that superstable homogeneous trellis automata
are as powerful as homogeneous trellis automata. Quite a different situ-
ation is in the case of systolic tree automata with balanced trees. Such
tree automata accept context-sensitive lanquages which are not context-free
but superstable systolic tree automata on balanced trees accept anly
regular languages. We conjecture that when all systolic trellis automata
are considered, not only homogeneous ones, then superstable trellis
automata are less powerful and they accept only homogeneous trellis

languages.

17.

It has also been shown that stable systolic tree automata on
balanced trees are more powerful than superstable ones. This is not the
case for homogeneous trellis automata but we don't know the relation

between stable and superstable regular trellis automata.

18.

4. Closure of Homogeneous Trellis Languages Under Morhpisms and
Inverse Morphisms

In this section we investigate the closure of homogeneous trel-
1is languages under morphisms and inverse morphisms. In doing so we shall
make use of Theorem 2.

The closure under inverse morphism will follow from Lemma 1. To
formulate and to prove this lemma we shall use the following notions.

Let Z be a finite alphabet, k =1 an integer. For any
w € E+ |w] =k , Tet [w] be a distinct symbol. Denote ‘

2 el s west, W=k,

If wesz', then the k-code of w is defined to be the

word [w1} . [wS] [ws+]] such that w =wy ... Wy Wq

lwil =k for 1<1i=s and tWo,.| = k.

s+1
*
A morphism h : zT + 3, 1is said to be length multiplying if

for any a; , a, €2, fh(ay)] = ih(ay}] >0 .

Lemma 1. Given a homogeneous trellis automaton K = {(z, T, FO’ g)
and a length multiplying morphism h : Zy > 2 we can effectiveiy.con»

struct a homogeneous trellis automaton K, such that L(K]} = h'](L(K)).

Proof. We first define KI = (T1, Ays Zys P1, F1’0, f1’ 91) as
follows. T] is the trellis with the root labeled by t and with alil
other nodes labeled by a , i.e., ;= {t,a}. TIy= {fw] ;

+ .+ , -
wez UT , |wl =k where k = |h(a)} if a ¢ 2} UTgs Ty 9= T -

19.

The input function f, is defined as follows: f1(a, £) = h(g)
if ez and filt, £) = OUTPUT(K, h(¥), 1, 1).

In order to define 9 the following notation will be useful.
For werT and T=1 < |wp Tet OUTPUT(K, w, i, |w|) = w; and for
1<i=j<lw let OOTPOT(K, w, i, j) = g{OUTPUT(K, w, 1+1, Jj},
OUTPUT(K, w, i+1, j+1}) . Moreover,
OUTPUT(K, w, j) = OUTPUT(K, w, 1, j) OUTPUT(K, w, 2, j} ... OUTPUT(K, w, J, J) .

Now we are ready to define the transition function 9 - If

Wy € rk and Wo 4 Pk , then

g](a, [w]], [wz]) = OUTPUT(X, Wy Wy, k) (1)
and

g](t, [w1], [wzj) = QUTPUT(K, Wy Wy 1) (2)

By induction it is easier to prove, using (1), that for 1 =i < [w]

and w € Z{ the following holds

>

ﬁUTFUT(K1

Finally, using {2), one can show that

. W, 1) is the k-code of DUTPUT(K, h(w), ki) .

OUTPUT(K;» w, 1, 1) = DUTPUT(Ky, w, 1) = OUTPUT(K, hlw), 1) =
OUTPUT{K, h(w), 1, 1),

and therefore
L(K) = b7 (LKD)

Since K] is semihomogeneous an equivalent homogeneous trellis
automaton can be effectively constructed.

Lemma 1 is now used to prove two theorems.

20.

Theorem 3. Given a homogeneous trellis automaton K = (z, T, Tgs. q)
- *
and morphism h : z] + % - we -can effectively construct a homogeneous

trellis automator which accepts the language h—T(L(K)) .

Proof. According to Theorem 2 we can effectively construct a
homogeneous trellis automaton K= (z U #, T, fb, g), # £2UT which
is superstable with respect to z and L{K} n z* =L(K) . Let

k =max {|h{a)| | a €2y} and let h, : 32y~ (z U #1)" be the mor-

phism defined for a € I, as h#(a) = h{a) #k-lh(a)l .

Clearly h#‘ is
the length multipiying morphism. According to Lemma 1 we can effect-
jvely construct a homogeneous trellis automaton which accepts the

Tanguage

h LR = w [woex] L hylw) €L} = v | wesy,
h(w) € L(K)} = h™1(L(K)) 0

Corollary. The family of languages L[HT} 1is closed under inverse

morphisms.

Theorem 4. (Linear speed-up for homogeneous trellis automata). Given
a homogeneous trellis automaton K = (Z, T, Ty» g) (which recognises a
Wzt oin time jw| - 1) and an integer k > 1 we can effectively con-
struct a homogeneous trellis automaton K' with z[k] as the terminal
alphabet which accepts a word W € {2[k1)+ if and only if w is the

k-code of a w € L{K) (and K' accepts w in time [L{Q% - 1).

21.

Proof. According to Theorem 2 we can construct a homogeneous
trellis automaton K with terminal alphabet 2 U {#} which is super-

stable and L{K) A ot = L(K) .

Let now h : 2[k] +{z U {#})* be the morphism defined by
h(fwl) = w #k-]w[. Since h 1is length multiplying we can construct,
according to Lemma 1, a homogeneous trellis automaton K0 which
accepts the Tanguage h'](L{K)) . Ky can be easily modified to get a
homogeneous trellis automaton which rejects all W, € (z[k]}+ that are
not k-codes of a word in z+ and which accepts all other words if and

only if K0 does. Hence K0 accepts a word W € (z[k])+ if and only

if w is the k-code of a w € L(K) . a

Now we proceed to study the closure of homogeneous trellis

languages under morphisms. First one positive result.

Theorem 5. Given a homogeneous trellis automaton K= (2, T, FO’ q)
and an injective Tength multiplying morphism h : Z -+ I, » we can
effectively construct a homogeneous trellis automaton ¥ which accepts

the language h(L{K}} .

Proof. Since h is a Tength multiplying morphism; there is an
integer k such that k = |k{a}| for any a € z . According to

Theérem 1 the family of homogeneous trellis languages contains effectively
all regular languages and it is effectively closed under 1nfersection.

It means that in order to pfove the theorem it is sufficient to show

22.

that one can construct a homogeneous trellis automaton £ with z]. as
the terminal alphabet which has the following property: if an input
word w is in (E$)+ , then K accepts w if and only if w € h({L(X)).
We don't give a formal specification of K here. HWe only
describe how R recognises words. From this description the formal
construction of R should be straightforward.
In order to show transparently how K works Qe assume that
all processors of K , with the exception of the root, output always
a pair of symbols., The first symbol is sent up along the left output
edge, the second along the right one. It is easy to see how to modify
¥ in order to satisfy formally our definition of a trellis automaton.
Let N be a symbol not in T . For any m € T U {N} the
internal alphabet of K will contain K mutually distinct symbols

PN CI B ()

n = n(1 , M . Moreover, the internal alphabet of K

will contain a special symbol [w] for any w € ng] .
)

Let now w € (z% and |w| = kn K will be constructed

in such a way that for 1 =1 =3 and (n-1)k+l =j = nk

(w37, wlTo39y i (ne1)k + 1 = 4 = nk
(h“1{w(i’j)), h-1(w(i’j)))

OUTPUT(K, w, 1, J)

OUTPUT(R, w, i, J)

where ho (w(523)) is defined to be N if wli*d) ¢ (na) | a €23
{See Fig. 4.1 for the case k = 2 .)

Moreover, if a processor P of k receives on its left input
a symbol n%j) and on its right input a symbol néj) then it preceeds as

follows.

23.

If 3<k, then P outputs néj+1) on its left output and
n§3+1) on its right output. If j = k , then P outputs g(n1 s nz)
on both inputs if n and n, are in T and P outputs N on both

outputs otherwise.

Using induction it is now easy to prove that the following as-
sertion {A) holds for any w € (z¥)+ such that w = h(w1) for some
¢ +
wp €2 .
(A) if 0=is<j<n, then OUTPUT(K, w, ik+1, jk+1) = OUTPUT(k, h'1(w),

i+1, j+1)

Moreover, if w € (2:'1()+ , Jw| = kn and there is no Wy € E+ such that
h(w]) = w , then at least one processor at the nodes N(ik+l, (n-1)k+1),

0 =i =n-1 produces N on both outputs and therefore

QUTPLUT(R, w, 1, 1) = N . Hence L(K) = h{L(X)). g
Corallary. The family of homogeneous trellis languages is closed

under injective length multiplying morphisms.

Now,‘we proceed to show that we can not omit the assumptions
of injectivity in Theorem 5 not even in the case of Tetter-to-letter
morphisms. To show that we shall make use of the following lemma

which is interesting by itself.

*
Lemma 2. For every recursively enumerable language L € 2 (given
by a grammar or a Turing machine) there effectively exists a homogeneous
*
trellis automaton A such that L = Hz_(L(A)) and L(A)} < & o ,

Anz=0.

24.

L y 6 3) p : 2 q e
N N NS NS N N S
/::\/ m%/ﬂ m\u /H m\ Wu 4 /: \/: u\/: m\uo
L1 [y [y [L 3 14 a]) Ip] P [2] 2 [q “1g ¥
R U U U U
\ 7\ / N\ VAN VAN / AN RN P
Lyl [uB] [ub] [B4] :rﬁ. [421 [42] [op1 [ep] (P21 [Po] [2d] [ou] [aqeE]
,.o\ /.o\ £ N/ N /o\ N
/ /
T A A W AN 4
\/ /o\ /O\ /o\ /o\ /o\
/
/Nc mﬂ /mc ?\ /mc mc\ /? 2, \ _c\

gy
O @4 @ @ @ @ @ @ @, @
NS \ Y \y/ N/ /ou

0 0 -
, /
/hc «c\/mc mc\ /mC 2, /F E\
(¢) O\E 5/\5 E/ \5 E/MS
0 0 0
/qc mc\ /mc Nc\ /Nc E\
(1= (= (L= (1= = (1
/OA N N
/
ST/\GT (2 \av
\ /
v L
€% (e
N/

0

25,

Proof. It is well known that for every recursively enumerable
language L g'z* there effectively exists two linear context-free
languages L1 and L2 such that Li c A* Lc A* 2* where
sNz=0, for i=1,2,and L =1 (L DL,) . Now the Temma

fotlows frcm Theorem 1.
Corollary. LIHT) is not closed under morphisms.
The following theorem strengthens this observation.

Theorém 5. The family of homogeneous trellis languzges is not closed

under letter-to-letter morphisms.

*
Proof. Consider arbitrary recursively enumerable language Lcz.

By Lemma 2 we can write L = HZ(L{A)) for more homogeneous trellis auto-

*
maton A where L{A) c A* Lc A* 2 ,20a=0 (see the proof of Lemma 2).
* *
Let b be a new symbol not in & and let h : (AU Z) ~ (z U {b}) be

the morphism defined by H{a) =b for a €A and h(a) =a for ac€z.

We show now that h{L(A)) c b z* is not a homogeneous trellis
Jarguage. '

Assume that there exists a homogeneous trellis automaton B such
that L{B)} = h({L(A)). Then every computation of B must be of the form

shown in Fig., 4.2.

26.

/ \
AY
// \
/ A
/ \
/ A\
’ \
‘ \
/ A\
/ \
4 \
/
/ \\
4 \
/ \
// +1 \s+'|
s
by /?1\ /‘21 /ag\ 92\
¢ S S
bs bS . bs s a / a,
.

{\b/\b/\/ \b/\b/\aa/\azf\az \a2
by ‘ibfib] Kb] 'vz\b'.'l'%b]/‘;l\a/;\z\a/'b3 n\a‘
100 S 16 A A A

Clearly, all information on each level is contained in the‘
last n + 1 symbols. Therefore we can construct & Tinear bounded auto- -
maton which simulates the "initial part of the trellis" and accepts
the language L . This is, however, a contradiction since L is an

arbitrary recursively enumerable language.

27.

5. Undecidability
In this section some undecidability results concerning homo-

geneous trellis automata are derived.

Theorem 7. The emptiness problem for homogeneous trellis automata is
undecidable.
Proof. By Lemma 2 since L =6 if and only if HZ(L) =49 .

Combining this result with Theorem 1 we get:

Corgllary 1. The equivalence prehlem for homogeneous trellis automata
is undecidable.
Corollary 2. It is undecidable if L(K) = st for a homogeneous trellis

automaton K with terminal alphabet 3z .

Theorem 8. It is undecidable whether a given homogéneoqs trellis

automaton is superstable {stable).

Proof. In order to show that superstability {stability) is un-
decidable it is sufficient to realise that to a given homogeneous trel-
1is automaton K = (3, T, FG, g} we can easily construct a homogeneous
trellis automaton K with the terminal aiphabet % U {#} where # is
not in Z such that L(K) = L(K) . Then ¥ is (stable) superstable
with respect to = if and only if L(K) =& . Now the undecidability
of (stablitj) superstability follows from the undecidability of the

emptiness problem.

28.

6. Time and Space Compléxity

The membership problem for trellis automata is clearly decidable.
This section deals with its deterministic Turing machine time and space
complexity.

First we introduce two special classes of trellis automata.

Definition 5. A labeled infinite trellis is said to be bottom-up deter-
ministic if the label of any leg-node uniquelly determines the label of
its father and the labels of any internal node and any of its fathers

uniquelly determines the label of the second father.

Definition 6. A trellis automaton is said to be internally homogenecus

if all its processes have the same transition function.

It was shown in (Culik and al., 1981a) that the language
{a2n | n= 1} is not accepted by any homogeneous trellis automaton
but it is accepted by a trellis automaton which is internally homogen-
eous and has a bottom-up deterministic trellis. Therefore the following

Temma holds.

Lemma 3. The family of homogeneous trellis languages is strictly
contained in the family of languages accepted by internally homogeneous

trellis automata with bottom-up deterministic trellises.

29.

On the other hand languages accepted by internally homogeneous
trellis ‘automata or by trellis automata with bottom-up deterministic
trellises do not seem to be harder to recognise than homogeneous trellis

languages.

Theorém 9. {1) Any trellis language can be recognised in O(nz)
time on a multitape Turing machine and in 0(n3) time on a one-tape
Turing machine.

(2) Any trellis language which is recognisable by an
internally homogeneous trellis automaton or by a trellis automaton
with a bottom-up deterministic trellis can be recognised in O(nz)

time on a one-tape Turing machine.

Preof. et K be a trellis automaton. We show how to design
a three tape Turing machine M which recognises the language L{K)
in O(nz) time.

M starts with the input word w on the first tape and with

the head of the first tape on the first symbol of w .

Second tape M $ ﬂz; ﬂgz § 37 32 33

Fig. 6.1

At first M generates on the second tape, using the labeling
function of ¥ , the labels of nodes of T, Tlevel by level (See Fig.

6.1). To do that M uses the third tape as the scratch tape. M starts

30.

this generation by printing 217 - the label of the root - on the
second tape. Each time a new level of labels {s generated in the second
tape, M moves the head on the first tape one symbol to the right to
check if encugh levels have been generated. If not, M first copies
the labels of the last generated level on the third tape and then, using
the third tape, it generates a new level of Tabels on the second tape;
In this way M generates labels of all |w| Tlevels in G(nz) time
where n = |w| .

Now M begins to simulate, in a bottom up way and level by
level, the recognition of w by K.

M first moves the head of the first tape on the rightmost -
symbol of w and the head of the second tape on the rightmost label
of the Tast level. Then, moving heads on the first two tapes from
right to left, symbol by symbol, M computes the outputs of proces-
sors in the leaves and M writes the results from right to left on the
third tape. After this ds done for the last level of labels, M copfes
the content of the third tape on the first tape, moves the head of the
first tape on the right most symbol of the rewritten word. Now M
is prepared to simulate the computation of processors on the Tast but
one level. Labels of processoers are on the second tape and their
input values on tke first tape. In this way M needs O(nz) time

to carry out the whole simulation of K.

31.

Then M starts to simulate recognition of w on K . Moving
from right to left M rewrites subsequently all labels by the output
values, the corresponding processors have when w is being recognised
by K . It can be done easily because, starting with Tevel n -1,
all necessary inputs symbols can be found in the squares which con-
tained originally labels of sons of the corresponding nodes. In this
way the whole simulation needs 0(n3) time.

Situation is simpler in the case of bottom-up deterministic
trellises. In such a case we can assume that M has one two-track
tape and an input word is written on the first track. M can now
generate on the second track, under the word w , level by level, Tabels
of K , always rewriting labels of the preceding level. That is, only
labels of the last generated level are kept. In this way M can generate
Tabels af the leaves in 0(n2) time. Then M starts to simulate K,
level by tevel. Simulation of processors of every level k starts with
input symbo1s on the first track and with labels on the second track.
During the simulation the outputs are computed and written on the first
track to replace input symbols which are not needed anymore. In parallel
M computes labels of processors on the level k - 1 and writes them
on the second track to replace labels which will not be needed anymore.
In this way the whole simulation can be done in O{nz) time.

The situation is even simpler in the case of internally homo-
geneous treilis automata. The generation of the labels on the leaves
is done as in the previous case. Simulation of the recognition pro-
cess is however simpler because it is not necessary to generate labels
on the other levels because all processors in these levels have the

same transition function.

32,

Corollary 1. Time complexity of languages accepted by internally homo-
geneous trellis automata or by trellis automata with bottom-up determin-

istic trellises is e(nz).

Proof. The upper bound follows from Theorem 9. The lower bound
follows from the fact that the recognition of the homogeneous trellis
tanguage {w $w | we 3%, $ € 3} (Cutik and al., 1981a) needs ﬂ(nz)

time on a one-tape Turing machine (Hennie, 1965).

Corollary 2. Time complexity of homogeneous trellis languages on one-

tape Turing machines is e(nz) .

We don't know whether the upper bound 0(n3} stated in
Theorem 9 for recognition of trellis languages on one-tape Turing
machines can be improved.

The followign theorem summarises results concerning space

complexity.

Theorem 8. {1) Any trellis language can be recognised in 0(n)
space and 0(n3) time on Turing machines.

(2) Any trellis Tanguage which is recognisable by an
internally homogenéous trellis automaton or by a trellis automaton with
a bottom-up deterministic trellis can be recognised in 0(n) space and

O(nz) time on Turing machines.

Proof. (1} It is enough to use a one-tape Turing machines with
two tracks on the tape. To begin with let an input word be written on

the first track. Simulation of a trellis automaton K proceeds, Tevel

33.

by level, as follows. For every level k M generates on the second
track, always from the scratch, level by level, all labels on Tevels
1, 2, ..., k . When that is done M simulates the computations of
all processors on the level k . The input symbols are on the first
track, the processors names on the second track. M writes the output
values of the processors on the level 'k, from right to left, on the
first track to replace the input symboI’which are not needed anymore.
In this way M needs only space n and time 0(n3) .

(2) This was actually shown when the part (2} of the

Theorem 9 was proven.

Corollary. The family of trellis languages is contained in the

family of deterministic context-sensitive Tanguages.

Observe, that it follows from Theorem 7 that there are trellis
languages which are not indexed languages. Indeed, the emptiness problem
is known to be decidable for induced languages.

We conclude this section with some additional observations con-
cerning computational complexity of trellis Tanguages.

1. Since any linear context-free language is also a homogeneous trellis
language we get immediately
(a) The family of homogeneous trellis languages contains languages
which are not recognisable in real time by any multitape
Turing machine (Hennie, 1965).
(b} There are homogéneous trellis languages which need 2(10g n)

space on deterministic Turing machines (Cobham, 1966).

34,

There is still a large gap between the upper bound for space com-
plexity given in Theorem 8 and the lower bound mentioned above.
We don't know whether the upper bound O(nz) for recognition of
trellis languages on multitape Turing machines can be improved.
Observe only that any improvement of this upper bound would im-
prove the best known upper bound for recognitioh of Tinear

context-free languages on multitape Turing machines.

35.

7. Simulation of Linearly Bounded Automata

Trellis automata are easily simulated by linearly bounded
automata. On the other hand trellis automata have problems to simulate
linearly bounded automata for two reasons: (i) trellis automata have
only time n and space n to recognise a word of the length n ,

(i1} in each parallel computation step they loose one processor or
\
}

On the other hznd, a given computation of any 1ineaf?y bounded

one "piece of memory".

automaton can be simulated by a trellis automaton given a sufficiently
large auxiliary space.

In order to indicate how this can be done we show in this
section that any twin shuffle can be recognised, in a sense, by a trellis
automaton given some auxiliary space.

Let = be a finite alphabet. For a € 2 let a be a distinct

symbol. Denote T ={a | a €32}, Fora w= Wy W, LW € z* with

Wy €z for 1=i=n let w= Wy Wy . W

The twin shuffle over = is now defined to be the Tanguage
TS(z) = fwiwe(zU nt, HZ(w) = H—Z~(w)}

It seems that for no 2 the language TS{z) can be recog-
nized by a trellis automaton. On the other hand we show now that the

language (¢ 1is a symbol not in 3T U 3):
L= {c?" w 2" |we(zU e, W) = (W)}

is a homogeneous trellis language.

36.

First observe that the language L, = {c2n w c&h lwelz U E)Z"
is a Tinear context free language and therefore a homogeneous trellis lan-
guage. Since homogeneous trellis languages are closed under intersection,
it implies that in order to show L < L(HT) it is sufficient to construct
a semihomogeneous trellis automaton K with terminal alphabet

s U E'U_{c}' which, given an input word Wy = c2n w‘czn with

we(zu E)Zn » accepts w, if and only if nz(w} ‘Hi(w) . Anin-
formal description of such a trellis automaton is now given.

X will have two types of processors. Z£-processors will be in
the left-leg nodes, a-processors in all other nodes.

Let # be a symbol not in = U Z U {c} . The oeprating alpha-
bet of K will contain the symbol ¢ and all pairs (a,b) ,
a€zU{#, beZUH}.

To give a more transparent description of K we will assume
that every processor of K produces two output symbols, one is sent up
along the teft output edge, the second along the right output edge.

If ¢ 1is received on an external input of a processor of K
then ¢ is produced on all output edges.

If aex (€3) ds received on the external input then the
symbol (a, #) ((#, a)) is produced on the left output edges and the
symbol (#, #) on the right output edge.

If a processors receives ¢ on the right input, then it
produces on the left (right) output the symbol it received on the left
(right) input.

37.

If a processor receives on its left input a pair (a, b) and
on its right input a pair {c, d}, then it outputs the pair (u{a, ¢) ,
ulb, d)) on its left input and the pair ({v(a, c), v(b, d)} as its

right input where the functions ﬂ and v are defined as follows.

I
-
—h

u(a, b) =
v(a, b} =

a=# then b élse a

l

i
-
y
=4

u
e

“then a ‘élse b

If an £-processor receives c¢ on its left {nput and a pair
{a, b) on its right input then it activates a finite state automaton
which runs along left-leg edges to the root and checks if the symbols
on right input edges of processors are all of the form {a, b)
a€zr,b=3a or a=#=5b. Ifyes the input word ts accepted, if
not,it is rejected.

Fig. 7.1a shows how K works. A1l processors in parts cq
and ¢, outputs on their left (right) outputs what they receive on their
left (right} inputs.

The processors in the part A do in parallel “stable sorting"
of two sequences. One is obtained frem w by replacing all symbols
from T by # , the second is obtained from w by replacing all symbols
from 3 by # . Sorting is done under the assumption that all symbols
from £ () are equal but less than # . This sorting is shown in
Fig. 7.1b . After 4n computation steps sorting is completed and all
processors in the part B except left-leg processes are stable in the
sense that they output on its left (right) output what they receive on
their left (right) input.

38.

B
4n <
C.I A C2
™ — 1L -~ it —~ i
2n 2n
c WO c
(a)
/.\\ /.\\ /.\\ N /.\\ ,

’ _ ’ \ ’ _ N / 4
(a,#) (b,a) (#.4) (c.#) (#,#) (#b) (#.4) (#,c) (£4) (.4 (4.8)
/ N\ /’ \ ’ \ / \ , \\ //
y \ p \\ // \\ // \\ // < s
N\ /.\ /'\ ; /.\ /.\

/N /o VAN VAN PN
(a,#) (b,#) (#,3) (#.4) (c.#) (#.#) (#.b) (#.#) {#.c) (#:.4) (#.#)
N /f \ / AN Vi N ; N s N
AN A\ 4 N 4 N / N / AN
N4 N/ ’ Ny N oz \
L RN ’.\ ’.\ oy o
’ N ’ N / A ’ N ’ N /
(a,#) (b#) (#.4) (#a) (F.4) (c#) (£.4) (#.b) (£.4) (#,c) (£.4)
/ AN / \ / \ ’ N / \ 7
y \ / N ’ \ 4 N ’ \ /
NS A4 NS \ 7 \ s
. ’ /.\\ N N sy

N ’ /A , AN
O R R B R U BT B O IR TR IR A BT O RO

N N N\ 7/ AN // N\ / AN
v e N N N .

S S S

39.

REFERENCES

1.

Cobham, A. (1966), Time and memory requirements for machines
which recognise squares and polyndrons. IBM Research
Report RC-1621, Yorktown Heights.

Conway, L. and Mead, C. (1980), Introduction to VLSI systems.
Addison-Wesley.

Culik, K. II, Gruska, J. and Salomaa, A. (1981a), Systolic
trellis automata (for VLSI). Research Report C5-81-34,
Dept. of Computer Science, University of Waterloo, Waterloo,
Ontario.

Culik, K. II, Gruska, J. and Salomaa, A. (1981b), On a family

of L Tlanguages resulting from systolic tree automata. Research
Report CS-81-36, Dept. of Computer Science, University of Waterloo,
Watertoo, Ontario.

Culik, K. II, Gruska, J. and Salomaa, A. (1982), Systolic automata
for VLSI on balanced trees. Research Report C$-82-01, Dept. of
Computer Science, University of Waterloo, Waterloo, Ontarioc.

Culik, K. II, Salomaa, A. and Wood, D. (1981c)}, VLSI systolic
trees as acceptors. Research Report (S-81-32, Dept. of Computer
Science, University of Waterloo, Waterloo, Ontario.

Hennie, F.C. (1965), One-tape, off-line Turing machine computa-
tions. Information and Control, V8, pp. 553-578.

Kung, H.T. (1979), Let's design algorithms for VLSI systems.
Proc. of the Caltech Conference on VLSI, CL.L Seifz Ed.,
Pasadena, California, pp. 65-90.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

