IMPLEMENTING NESTED DISSECTION

By

W. Morven Gentleman
Department of Computer Science
University of Waterloo
Waterloo, Ontario

Research Report CS-82-03
March, 1982

Implementing Nested Dissection

W. Morven Gentleman
University of Waterloo
Computer Science Department
Waterloc, Ontario, Canada
I. THE PROBLEM

When solving sparse linear systems by Gaussian elimina-
tion, the ©principal <concern 1is to minimize fillin, the
occurrence of nonzeros in the matrix factors where the
original matrix had =zeros. More fillin requires more
storage, as sparse matrix codes explicitly represent only
nonzeros, and more fillin is also strongly correlated with
requiring more arithmetic, since operations on elements
known te be zero can often be avoided. The amount of fillin
in a particular linear system depends on the order in which
the unknowns are eliminated when solving the system. For a
positive definite symmetric system, if symmetry is preserved
throughout the elimination, only half the nonzeros need be
represented, and numerical stability 1is assured £for any
ordering.

A particularly important class of sparse linear systems
arise from finite element problems in two dimensions. 1In
such a problem, a region of the plane 1is subdivided by a

mesh into subregions called finite elements. Corresponding

to each vertex of the mesh 1is a value, and an equation
relating this value to the values at other nodes on the
edges of elements which this node is on the edge of.
Typically the values on the boundary of the original region
are known, and the values in the interior of the original
region are unknown, giving the linear system to be solved.

For this «class of problem, it has been shown that the
ordering known as nested dissection (1,5,%6,7,8,) is asymp-
totically optimal, both with respect to £illin and with
respect to the amount of arithmetic to be performed, in the
sense that both these are of the same order of N, the number
of unknowns, as lower bounds which have been proved to hold
for any ordering.

In general terms, a nested dissection ordering 1is ob-
tained by £finding a small set of nodes C, called a
separator, such that the remaining nodes are divided into
two disjoint sets A and B, where there are no nonzero coef-
ficients coupling the values corresponding to nodes in set A
with wvalues corresponding to nodes in set B, Ideally, the
number of ncdes in the separator is as small as possible,
and the number of nodes in each of the sets A and B are
roughly equal. The ordering sought numbers the nodes of the
separator after the nodes of sets A and B. Recursively,
separators are then found that partition each of the sets A
and B, and these separators are numbered after the cther

nodes in the sets A and B, etc.

II. THE ALGORITHM

At this point we will restrict our attention to regions
which are rectangles, and meshes which are rectangular
grids. Ultimately we want to consider a grid with 2m+1
nodes on each side, so the nodes with unknown values form a
Zm—l by Zm—l array, but the presentation is somewhat simpler
if we initially consider the less efficient situation where
there are unknowns at all nodes, so the nodes with unknown
values form a 2m+1 by 2m+1 array. We will order the
perimeter nodes last, so the nested dissection only applies
to the ordering of the interior nodes. The separators used
will effectively be the "+" separators of George, but con-
sidered as two parts: part V, which is the vertical column
of nodes that separates the square array of nodes with
unknowns into two identical arrays, each roughly twice as
high as wide, and part H, which is the horizontal row of
nodes that separates one of these rectangular arrays of

nodes with unknowns into two identical square arrays.

Figure 1 illustrates these separators for m=3.

.
.
.
.
.
.
.
.
.

«perimeter nodes, ordered later

V separator

~

Wk H separators

o S e e e)

Figure 1 H and V separators

The V separator must be ordered after the H separators.
Notice that the nodes not in the perimeter, V separator, or
H separators form four arrays, each Zm-l—l by 2m_l-l, for
which H and V separators can be found. The perimeters of
these smaller square arrays are made up of parts of the
original perimeter, and H separators or V separator of
larger arrays which, by definition, are ordered later, so
the situation is exactly as existed for the 2m—1 and by 2m—1
array. The procedure can thus be repeated recursively, sub-
dividing each array down until m=1, where the interior set
is a single node. The complete set of separators for m=4 is
shown in Figure 2: all isolated nodes are ordered first,
all V separators before any H separator of the same length,

a1l shorter separators before any longer separator, and

finally the perimeter last.

0
I
. (3 .
...'):
. CD .
o
. (3 .
. . .\
. () .
o
. () .
)
.@.
)
. 9

D
D
@
!

-

.

Y
.
.

C U
B
g

o -
C 2D
NEORE
. o -
DD
g0 -
N ONE
(ORI
ONE
o
EEORE
< D
N ONE

e -
>
ORE
T
- 0O
O
- 0O
T
.0 -
)
NORE
D] b
Q-

O
@
@
o

)

. .

«/

0]

-

-@.
>
- 0
o
O
.@.
D
ol
G- -
-6.
R
o -

- - . . - . - . - -

Figure 2 All separators for m=4

The foregoing description has been top down, describing
how the set of nodes is partitioned to obtain the desired
ordering. An equivalent bottom up déscription can be given
describing how adjacent ™"generalized" elements (starting
with the original finite elements) can be merged into larger
"generalized" elements by eliminating the unknowns cor-
responding to the H or V separators which form their common

edge. These generalized elements have nodes along their

edges as well as at the corners, and indeed at intermediate
stages of the merge have interior nodes along the separator
being eliminated.

This bottom up description performs the elimination for
a 2m+1 by 2m+l grid in m stages (the first of which is
degenerate) , followed by the elimination for the 2m by 2m
generalized element which is the original region with nodes
only on the perimeter. For s=2,3,...,m, stage s consists of
forming a 2S by 2S generalized element from four 25—1 by
25_l generalized elements by first eliminsting the H
separator which forms the common edge between two of the
smaller elements juxtaposed vertically, and then eliminating
the V separator which forms the common edge between two of
thr newly formed rectangular elements. Figures 3 and 4 i1~
lustrate the H separator elimination phase and the V
separator elimination phase for stage s=3.

Stage s=1 1is slightly different from the subsequent
stages, because although it consists of forming a 2 by 2
generalized element from four 1 by 1 elements, there are not

distinct H and V separator phases, as there is only one nede

whose unknown is eliminated at this stage.

Figure 3 H separator elimination phase

.
.
.
.

) -

NN

NN

. - . - . - . . -

Figure 4 V separator elimination phase

m m
Notice that for the 2 +1 by 2 +1 grid, at stage s the

elimination of the H separator must be done for each pair of

s-1 s-1 (m-s) (m-5s) 2(m-s}+1
2 by 2 elements, a total of 2x2 x2 =2
replications. Similarly the elimination of the V separator

(m-s) (m-s) 2 (m-8)

at stage s must be done for 2 x2 = 2 replica-

tions. Clearly the operaticns performed for each replica-
tion are identical, and we shall show below that they can be
made independent. They thus can be done in parallel, indeed
by an SIMD parallel computer.

In the foregoing discussion, we have frequently used the
phrase "eliminating an unknown" from the system of equa-
tions. It is time to look closer at this. The basic iden-
tity that is referred to, since the system is assumed to be

positive definite and symmetric, is equation (1).

. r _
LiDL; U,
T =
LUi— By
- _ T -1 -1
Ly ol [p, o Ly Dy Ly U
T T -1 T -T -1 -1
L,UiLi b I |o B,-U;L; D; L Ul fo T (1)

This identity vyields an important interpretation when con-
sidered in the context of a system of linear equations like

equation (2).

T
L; D3 Ly Xy b;
= (2)
T
Ui Yi Ci

A little manipulation yields the equations (3) and (4).

T)

DyLix;= Ly (by-Usy.) (3}
T o7 -1 -1 T oo -1 -1

(Bj=Uj Ly D; Iy Uj)y;= (c;-UsLy Dy Ly b;) (4)

The interpretation of equation (4) is that a factoriza-
tion of the leading submatrix can be used to update the rest
of the matrix so that the unknowns not involved in the
leading submatrix can be solved without reference to the
unknowns involved in the leading submatrix. In this sense,
the unknowns involved in the leading submatrix have been
"eliminated". The factorization is the familiar square root
free variant of Cholesky factorization, into a lower unit
triangular matrix times a diagonal matrix times the tran-
spose of the triangular matrix. Of course once the other
unknowns have been found, the factorization can readily be
used, as in equation (3), to find the unknowns involved in
the leading submatrix. Usually the factors are saved until
the end of the computation in order to do this, but Sherman
(4) has observed that in sparse matrix computations it is
often practical merely to rederive them when needed. The
index 1 appears on all the symbols in equations (1) to (4)
to remind us that the process is iterated, for the new equa-
tion (4} often has a submatrix whose factorization can be
similarly exploited. Care must be taken in forming egua-
tions (3} and (4), that the matrix products and inverses be
formed in the most economical way (5).

In our context, the interpretation lets us look quite

10

directly at the arithmetic which must be performed, the £il-
1in which occurs, and storage representations which are
desirable at each stage in the elimination. By definition,
each node on the original grid had an equation which had
nonzero coefficients only for unknowns corresponding to
other nodes on the same elements that this node is on. Con-
sideration of Fi§ures 3 and 4 show this remains true at each
stage s=1,2,...,m where at each stage we are interested only
in nodes (and their corresponding unknowns and equations) on
the generalized elements relevant te this stage. The equa-
tions corresponding to nodes on a separator to be eliminated
at thisz stage contain nonzero coefficients only for unknowns
corresponding to nodes on the two generalized elements being
merged. Neglecting for the moment the nodes just beyond
either end of the separator, the remaining nodes have equa-
tions with nonzero coefficients corresponding te nodes on
the generalized element they currently are on, but zero
coefficients corresponding to the other nodes on the
generalized element their generalized element is merging
with. The elimination process adds a linear combination of
the equations corresponding to each node in the separator to
the equations corresponding to each node in the resulting
generalized element, with the result that the zero coef-
ficients referred to above become nonzero. Of course the
equations at nodes on the perimeter of the new generalized

element may have had other nonzero coefficients, <cor-

11

responding to other generalized elements which these nodes
are in, but these nonzeros are not affected by the elimina-
tions for this separator.

Unfortunately, when we try to do all replications of
stage s 1in parallel, we discover that adjacent generalized
elements which are not being merged at this stage both need
to update the coefficients in equations at nodes along their
common edge corresponding to other nodes on their common
edge. Most parallel machines cannot apply two or more up-
dates simultaneously to a single stored quantity. A related
problem occurs when we try to find a compact and regular
storage structure, without pointers, for the eguations: what
is right for one generalized element is awkward for its ad-
jacent neighbour. To address these problems, we consider

equation (5) which is an elaborated version of eguation (1}.

12

— T -
L,D)Ly) u,
T
0 L,D,L, u, =
P
fl U2 B i
L 7
1
o L
2
T -7 -1 T -T -1
UL, D u,L, D, T
D
1
D
2
T -7 -1 -1 T -7 -1 -1
B-U.L D L U-UL D L U
L 171 71 1 1 272 2 2 2
T -1 -1 |
L1 0 D L U
T -1 -1
Ly B Ly U
B T (5)

The interpretation of this identity is that when two sets of
unknowns are being eliminated, and they are coupled only in

that each set is coupled te the unknowns not being

eliminated, then the updates U'L "D 1L 1y and uTL-Tp-lrk
11 1 1 1 22 2 22
can be computed simultaneously, and the actual serial up-

dating of B can be done subsequently. If the computation of

13

the updates is sufficiently expensive, this serial step will
be insignificant. During the computation of the wupdates,
the elements of B effectively have a multiple representa-
tion.

In our context, we use this observation by storing for
each generalized element the coefficients of the equation at
each node in the generazlized element that relate to unknowns
at nodes in that generalized element. This means that the
complete equation for any node will be stored in pieces, one
piece with each generalized element which this node 1is in.
It also means that the coefficients relating this node to
other nodes on a commen edge between two generalized ele-
ments will be the sum of two parts, one stored with each
generalized element. These parts must be summed at the
stage s when the node becomes part of the current separator
and must be eliminated.

Another thing which must be done at each stage is
reordering. As mentioned previously, the regularity of the
nonzeros in the partial equations associated with each
generalized element makes it possible, indeed advantageous,
to store these coefficients compactly, without pointers or
row or column indices. For example, Figure 5 is the same as
Figure 3, but the arrow indicates an imposed ordering on the
nodes, and the numbers indicate segments of edges of
generalized elements. Figure 6 shows the nonzero elements

at the start of the H separator elimination phase of that

14

stage. Figures 7 and 8 show the same for the V separator

elimination phase of that stage.

6

Figure 5 An ordering of the nodes at stage s=3,
H separator elimination phase

15

\

\
N

\\\\\\

27
70

|\

NN
NN\

Figure 6 The 27 by 27 array of coefficients
corresponding to Figure 5

Figure 7 An ordering of the nodes at stage s=3,
V separation elimination phase

16

\\\\\\\\\ w
&\\\ :
W

NG
\\\ w

N\
N
N

Z]

77
I

T)
R L

Figure 8 The 29 by 39 array of coefficients
corresponding to Figure 7

\
SVSSUNNRNNINNE

7

DI

NNy

Only the hatched regions are nonzero at the beginning of
an elimination phase, except that the first row and column
of the segments numbered 2 and 5 are nonzero across the en-
tire array. The result of the elimination phase is to zero
the segments numbered 1, which corresponds to the separator,
and to £i11 in the rest of the array.

The implication of Figures 5 and 7, however, is that ad-

jacent generalized elements number the nodes on their common

edge in opposite orders. Thus at the start of a phase, when
summing the two partial representations of the equations at
the nodes in the separator, the coefficients in each equa-
tion must be rearranged in order, and the equations them-
selves may need to be rearranged in order. Beyond this, it
may be convenient to shift segments of coefficients or seg-
ments of equations to form coefficient arrays as in Figure 6
and 8, even though the order within the segment is correct.
It is possible that instead of the ordering of Figures &
and 7, there might exist an ordering such that no rearrange-
ment 1is redquired between phases. Such an ordering would
have to be different for each generalized element, depending
on the coordinates of the nodes in the original grid in
something like the "bit reversed ordering" that is used with
the Fast Fourier Transform. No such ordering has yet been

found though, so this reordering is still necessary.

ITI. EXPLOITING PARALLELISM

We have already observed that one source of parallelism
available to be exploited is that at any stage s and phase H
or V all replications can be done simultaneocusly. The other
source of parallelism available is the elimination procedure
itself. For each generalized element, the elimination
procedure is effectively a sequence of outer product updates
to the arrays of Figure 6 or 8, one update for each node in
the separator. Such outer product updates c¢an readily be

done in parallel, simultaneously updating each element of

18

.he array. 1In general this requires one processing element
per element of the array (although we shall show how this
may be reduced) so our crudest estimate of the parallelism
available at stage s is simply the number of replications
times the number of elements in the array which is

for the H separator elimination phase

2{m-s)+1 s-1 2
P = 2 {7x2 -1}
H crude

2m 2m-s 2m-2s
24.5%2 -14x2 +2x2 (6)

for the V separator elimination phase

2{m-s) 51 2
P =2 {10x2 -1}
v crude
2m 2m-s 2m-2s
25x%x2 -10x2 +2 (7)

]

for the special case s=1

2({m-1) 2
P =2 {9}
1 crude
2m
20.25%2 (8}

The first thing we observe from equations (6}, (7), and (8)
is that the two sources of parallelism play off against each
other so that, to leading order, the total amount of paral-
lelism available is about the same at all stages of the com-
putation. This is even true for solving the system cor-
responding to the final generalized element, with nodes on
the perimeter of the original region, as that system is of

m 2m
order 4x2 and so has potential parallelism of 16x2 . One

19

consequence of this is that if a parallel computer was able
to take advantage of both kinds of parallelism, there would
be little advantage in considering incomplete nested dissec-
tion (4), where the dissection process is stopped before the
separators becomes toc small, band elimination being used
below that level. We shall come back later to the problem
of how to reallocate processing elements between stages.

A related observation is that the active storage re-
quirement, that 1is all the replications of the arrays of
Figure 6 or 8, is roughly constant over the computation, and
is less than 3 times the storage required for the original
system of equations, 9 coefficients at each of 2m+1 by 2m+1
nodes. (These storage requirements do not assume symmetry,
which will be discussed later). The partial factorization
up to the end of stage s is inactive after stage s except
for the backsolve. The number of coefficients in the par-
tial factor up to the end of stage s, exploiting symmetry

fully, is:

Size of partial factor

2(m-1)
=2 X9
s 2m-2t+1 -1 -1 t-1 t-1
2 x2 x(2 -1) (7x2 -1+6%2 +1)
2
S 2m-2t -1 t t-1 t-1
3, 2 x2 x(2 -1)(10x2 -1+8x2 +1)

20

) 2m 2m 2m-s
= 7.75xsx2 -11lx2 +11x2 {2)
For typical values of m, this is sufficiently large that it
would probably have to be written to backing store, or as
mentioned earlier it might be discarded and recalculated as
needed, depending primarily on the relative cost of recom-
putation versus transfer to and from backing store.

Ancther thing we can observe from equations (6), (7},
and (8) is what the cost of the multiple representation has
been. For each adjacent pair of generalized elements, the
equation at each node on their common edge doubly represent

the coefficients corresponding to nodes on the common edge.

Excess store at start of H separator elimination

m-s+1 m-s s-1 2
=2 (2 -1} (2 +1}

m-s m-s+1 S 2
+2 (2 -1) (2 +1)

2m 2m-5 2m-2s
=2.5%2 +6x2 +4x2

m+s m m-s
-1.5x2 -2.5x2 -3x2 (10)

Excess store at start of V separator elimination

m-s m-S] 2
=2x2 (2 =-1) (2 +1)

2m 2m-s 2m-2s
=2%x2 +4x2 +2x2

m+s m m-s
-2x2 -4x2 -2%2 (11)

Excess store at start of special case s=1

m-1 m~1
=2x2 (2

2
-1 (3)

2m m
=4,5%x2 ~9x2

So6 although the multiple r

about 23% to the storage requ

decreases to about 10% of the

cheap investment for the inc

parallelism.

Returning to issue of ex

effect on the number of sequen

solution, but does affect

equivalently, the size of the

Figure & and 8 are positive

only the lower triangle, say,

on. The requirements of. e

readily recalculated, and are,
Unfortunately, this is not qui
most SIMD parallel computers,

date can be performed in a si

venient to operate on symmetri

triangle 1is represented, the

by symmetry. Broadcasts along

systolic data movements,

representation of the outer

saving that seems possible

phase H and phase V, that ther
coefficients

correspending t

21

{12)

epresentation initially adds

irements, in later stages this

storage requirement. It is a

reased regularity and improved

ploiting symmetry, this has no

tial steps in the parallel

the amount of parallelism, or

active store. The arrays of

definite and symmetric, and so

need be stored and operated
quations (6), (7) and (8) are
of course, roughly halved.

te the appropriate story. For
even when an outer product up-
ngle operation, it is not con-
c arrays where only the lower

other elements being obtained

row and column highways, or
require a true rectangular
product. The only general

to exploit is to note, both in

e is no peint in representing

o nodes in the separator in

22

those equations at nodes not being eliminated. Such compo-
nents are only used in determining what multiple of the
equation being eliminated to subtract, and from the symmetry
of the system this information can be obtained from the
coefficient in the equation at the node in the separator
corresponding to the node not being eliminated. In other
words, in Figures 6 and 8, it may be feasible to dispense
with the portion of those columns in the segment 1labeled 1
below the rows labeled 1. From Fiqures 6 and 8, it is
readily seen that this saving is between 10% and 156%. It
hardly seems worth the trouble teo exploit.

Let us turn to the number of sequential steps taken to
solve the system. Fach stage s requires Zs“l—l outer
product updates for eliminating the nodes of the H
separator, and 2S—1 outer product updates for eliminating
the nodes of the V separator. The special stage s=1 re-

quires 1 outer product update. Thus the number of sequen-

tial outer product update steps to the end of stage s is

Sequential outer product update steps to end of stage s

s t-1 s t
=1+ 3 (2 -+ 3 (2 -1
2z]
5
=3x2 -2s-3 (13)

Notice that the total number of sequential outer product
update steps to reach the final generalized element is only
3 times the length of a side of the original grid, that Iis,

3/2 the number of steps it would take to propagate a signal

23

from one corner of the original grid to the diagonally op-
posite corner by nearest neighbour connections. Notice also
that half the outer product update steps to the end of stage
s are performed during stage s itself. Sherman's idea of
recalculating the partial factorization instead of saving it
means the total number of sequential outer product steps Iis

equation (13) summed from s=1 to m.
Total sequential outer product update steps if partial

factors recalculated

m s
=3, (3x2 -2s-3)
1
m

=6%2 -m{m+4)-6 (14)
That is, it doubles the computation time. The ratio
changes when the 4x2m outer product update steps required to
solve the final generalized element are considered, but the
result remains roughly true. Thus from equations (9) and
(14), the tradeoff of whether it is better to save the par-
tial factor on backing store or to recompute it comes down
to whether +transferring the original system to and from
backing store (which is order 22m) is m times cheaper than
all the arithmetic to solve the system (which is order 2m),

and it seems certain that for large encugh problems, recom-

putation is better.

IVv. FITTING THE ALGORITHM TC MACHINES
Although the algorithm we have constructed solves an

important c¢lass of problems, and has enormous parallelism

24

available to exploit, it does not fit well with current
parallel machines. There are three reasons for this. The
first is that the basic parallel operation of this al-
gorithm, the ability to do many disjoint outer product up-
dates as a single operation, is not available. The second
is that the data routing and processcr reallocation between
stages cannot be done easily. The third is that typical
problems have more parallelism, or a larger active storage
requirement, than current ﬁachines can provide. We will
consider these in turn.

The outer product of two vectors Is an operation
fundamental to many linear algebra computations. Even when
other formulations are possible, the outer product formula-
tion is often superior. It is therefore surprising that
none of the wvector computers have provided an outer product
operation (much less the ability to do many outer products
simultaneously in a single operation), even though it would
seem straightforward to implement and would help keep "vec-
tors" 1long, i.e. pipelines full. The operation is readily
provided on more flexible machines, such as the Floating
Point Systems "add-on" array processcrs, but these rarely
have enough memory to directly exploit the available paral-
lelism. True parallel machines, with a large number of
processing elements, can simultanecusly do the multiplica-
tions and then simultaneously do all the additions if each

combination of one element from either vector in the outer

25

product is routed to a different processing element. A two
dimensional array of processing elements, such as the ICL
Distributed Array Processor, can do this routing for a
single outer product effectively as a single operation but
the obvious way to do more than one outer product at a time
by concatenating the sets of vectors is extremely wasteful
of processing elements. More general data routing internal
to the implementation of the outer product seems to be re-
quired. This is particularly true since the size of the
outer products and the number of replications change over
the course of our algorithm. It is not obvious that a
parallel machine with any fixed set of data paths can cope
with this variation, unless the data routing is treated as a
multistep general permutation through the connection
network.

The second reason why the algorithm does not fit well is
a more obvious data routing problem. If the data structure
and processor allocation at the beginning of a stage and
phase is a set of replications of arrays as in Figures 6 and
8, it is not at all obvious how, at the end of the stage and
phase, to rearrande processors and data so the next stage
and phase can begin. The results 0; equations (A}, (7), and
(8) show that given, say, 25x24m processors (or storage
cells) there will be enough at each stage. However, hot
only must processors or storage associated with equations or

variables eliminated in the stage or phase be reallocated to

26

accept the fillin of the next stage or phase, but a rear-
rangement may be required as the arrays get bigger and there
are fewer of them. This is in addition to any rearrangement
regquired in how the blocks of the arrays at one phase fit
into the blocks of the array at the next phase and, of
course, to the rearrangement required for the reversal of
order and summing to unify the multiple representation of
the separator. It is also in addition to any rearrangement
required to conform with physical layout required by the
machine to perform the outer products of the next phase
simultaneously, as discussed above. Mapping the arrays of
Figures 6 and 8 onto precessors which form a one or two
dimensional address space, it appears that again the data
routing will have to be treated as a multistep general per-
mutation through the connection network.

The third reason why the algorithm does not fit current
machines well seems obvious to remedy: 1if the machine does
not provide enough parallelism for the algocrithm, the com-
putation could be done serially in chunks, where a chunk is
as large as the available parallelism will permit. For many
algorithms, this is inordinately expensive, due to difficul-
ty patching the chunks together. For nested dissection this
is not a problem, if chunks are chosen appropriately, as
part of an outey product can still be an outer product, and
replications can obviously be done serially. However severe

performance 1loss can still occur because of bandwidth

.27

limitations, moving data between processors and backing
store. We have organized the algorithm by stages to max-
imize parallelism, but if the cost of transfers to and from
backing store is sufficiently high, it may be desirable to
reorganize the algorithm so once part of the data is in the
processing elements, several stages are done with this part
of the data before going back to do those stages again with
the next part of the data. Particularly for the early
stages of the algorithm, this will improve the ratio of com-
putation to transfer cost.

Despite the aforementioned difficulties, nested dissec-
tion must be fitted to today's machines, especially serial
or vector machines. Although other implementations are
possible, one way to do this is by simulating the paral-
lelism in the algorithm as described above.

For a serial machine, the outer products pose no problem
and the rearrangements, since they do not need to be done in
place nor with vector or array operations, amount simply to
a pass over the data, moving each value to its new location.
For a serial machine, there is no need to use the mnultiple
representation technique to avoid the multiple simul taneous
update problem, of course. However since it 1is so cheap,
and makes the data structures more regular, it is worth
keeping anyway. For a serial machine there is no reason not
to exploit symmetry fully in the arrays of Figures & and 8,

both in storage representation and in the arithmetic of

28

outer product updates. This roughly halves the storage re-
guirements expressed by equations (&), (7) and (8) to give
instead

H separator elimination phase symmetric storage

(2m-2s+1) -1 s-1 s-1
=2 %2 x{7x2 -1)x(7x2 -1+1)
2m 2m-s
=12.,25%2 -3.5x2 (15)

V separator elimination phase symmetric storage

(2m-2s} -1 s—1 s-1
= 2 X2 x(10x2 -1)x{10x2 -1+1)

2m 2m-—s
12.5x2 -2.5%2 (16)

Special stage s=1 symmetric storage

2m~-2 -1
=2 x2 x(9)x(9+1)

2m
=11,25x2 (17)

The total arithmetic {multiply and add operation) count to
the end of stage m is readily calculated
Serial arithmetic count to end of stage m

3m 2m 2m m
=371/12x2 -17xmx2 -145/4x2 +16/3x2 (18)

To this must be added the cost of solving the final
generalized element corresponding to the perimeter. The
complete cost (neglecting the backsolve and the possibility
of Sherman's technique) is thus

Serial arithmetic count for complete factorization

3m 2m 2m m
=499/12x2 -17xmx2 -145/4x2 +14/3x2 {19)

Comparison with the arithmetic operation count in (3) shows

29

this implementation is just over four times as expensive as
the one given there. The principal difference is that the
separators here go up to, but do not include, the perimeter
as they do there, and consequently the final <¢lique is
larger and there are no special case boundary elements as
described there. We will return to this point. No twith-
standing, if we compare this implemention with band methods,
which is appropriate as both use dense matrix representz—
tions without pecinters, the band methods take about 1/2x2 "
operations, sc the crossover should occur before m=7, 1i.e.
2m:128.

For a vector machine, this implementation could again be
used and all the major operations are vectorizable, provided
nc constraint in what the machine can do interferes. Even
the rearrangements can be done by block moves, although the
reversal and summing of the separator requires the ability
to step backward through a vector. Again, as with serial
machines, multiple representation is not essential but |is
cheap for the regularity it provides (keeping average vector
lengths up), and symmetry can be fully exploited. The space
requirement and‘ per-result operation counts for vector
machines are thus as for serial machines. The crucial ques-—
tion for wvector machines, however, is the number of vector
operation startups.

The basic operation of this implementation, multiple

outer product updates, can be expressed serially as three

30

nested loops: across replications, and across the compo-
nents of each of the vectors whose outer product 1is being
formed. The order in which these loops are nested is im-
material, and for any order of loops the representation of
the multiple arrays like Figure 6 and 8 can readily have the
innermost stride unity; but current vector computers can
only vectorize the innermost loop. Because most of the com-
putation occurs in the later stages of the algorithm, it is
readily shown that the loop across replications should be
outermost, i.e. not vectorized. (This would not be true if
we were willing to use different code and data structures
for the early stages, where replications obviously provide
the longest vectors.) The number of startups for arithmetic
operations through to the end of stage m, assuming a single
startup to suﬁtract a scaled vector from another, is
Startups to end of stage m

2m 2m
=31/4xmx2 -11/3x2 +11/3 {20)

To this must be added the startups for arithmetic operations
in solving the final generalized element corresponding to
the perimeter. The complete cost is thus

Startups for complete factorization

2m 2m m
=31/4xmx2 +13/3x2 +2x2 +11/3 (21)

From equations (19) and (21), the average vector length for
arithmetic operations, to leading order, is

m
ave vector length = 499/93x2 /m (22)

37

for ﬁ=7, i.e. 2m=128, this average length is 98, so on a
100-1 vector machine approximately as much time would be
spent in startups as in per-result arithmetic.
V. CONCLUSIONS AND GENERALIZATIONS

We have demonstrated that nested dissection is an al-
gorithm with considerable parallelism to be exploited, and
though deficiencies in current parallel machines make it
difficult to take advantage of the parallelism, an implemen-—
tation designed to exploit the parallelism is still quite
effective for serial or vecter machines. However in
deriving our implementation we have limited ourselves to
square grids with 2m+1 nodes on each side, and to separators
which stop short of the perimeter. Neither of these are
intrinsic to nested dissection, which works even with ir-
regqular regions. Instead, they are restrictions we imposed
in order that all replications at each stage be identical,
so SIMD parallelism could be used. If, as in the serial or
vector machine realization of our implementation, no such
parallelism across replications is being used, then special
cases for boundary elements are easily introduced. Serial
arithmetic, wvector startups, and storage requirements are
all improved by using a 2m—1 by Zm—l grid of unknowns with
the separators as before, except that now the separators go
right onto the boundary. The special boundary elements re-

quired are discussed in (1), and, of course, exploiting them

gives space requirement and operation count quoted there.

32

For a fully parallel implementation, however, it probably is
most effective to define the 1initial equations so the
desired problem is simply embedded within the grid that this
implementation solves.
REFERENCES
1. George, J.A., "Nested Dissection of A Regular Finite
£lement Mesh", SINUM, Vol. 10, No. 2, PP. 345-363, 1973.

2. Lambiotte, J.J., The Solution of Linear Systems of Equa-

tions on a Vector Computer, Ph.D. dissertation, Depart-

ment of Applied Mathematics and Computer Science,
University of Virginia, 1975.

3. Calahan, D.A., "Complexity of vectorized solution of
two-dimensional finite element grids®”, Technical Report
No. 91, Systems Engineering Laboratory, The University
of Michigan, 1975.

4, Sherman, A.H., On the Efficient Solution of BSparse

Systems of Linear and Nonlinear Equations, Ph.D. thesis,

Computer Science Department, Yale University, New Haven,
Connecticut, 1975.

5. George, J.A.; Poole, W.G.; and Voigt, R.G., "Analysis of
Dissection Algorithms for Vector Computers", Journal of
Computers and Mathematics, Vol. 4, pp. 287-304, 1978.

6. George, J.A,; Poole, W.G.; and Voigt, R.G., "Incomplete
Nested Dissection for Solving n by n Grid Problems,
SINUM, Vol. 15, No. 4, pp. A62-673, 1978.

7. Lipton, R.J.; Rose, D.J.; and Tarjan, R.E., "Generalized

33

Nested Dissection™, SINUM, Vol. 16, No. 2, pp. 346-358,
1979.

George, J.A. and Liu, J.W., Computer Solution of Large

Sparse Positive Definite Systems, Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey, 1981.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

