A Tool for Investigating Empirical
Data Structure Robustness

David J. Taylor
James P. Black
Research Report CS-82-02

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

January, 1982



ABSTRACT

Research in robust data structures can be done both by
theoretical analysis of properties of abstract
implementations and by empirical study of real
implementations. Empirical study requires a support
environment for the actual implementation. 1In particular,
if the response of the implementation to errors 1s being
studied, a mechanism must exist for artificially injecting
appropriate kinds of errors. This paper discusses
techniques used in empirical 1investigations of data
structure robustness, with particular reference to a tool

developed for this purpose at the University of Waterloo.



1. A INTRODUCTION

The study of robust representations of data structures
has been going on at the University of Waterloo for a number
of years. It is convenient to think of the activity as
having three main parts: general theoretical analysis,
theoretical analysis of particular structures, and empirical
studies, The empirical studies are intended to investigate
the response of a robust representation to "random" damage,
in contrast to the theoretical analyses, which consider
worst-case results.

The theoretical analyses can largely be performed using
only pencil and paper, but the empirical studies require
that actual update, detection, and possibly correction,
procedures be implemented. In principle, this
implementation could take place in any convenient
programming environment. There 1is, however, a practical
problem: it is necessary to be able to introduce random
damage into the structures being tested. This can be done
in a variety of ways, but it is clearly preferable to build
the "damaging" mechanisms only once and then make use of
them in a variety of environments. For this reason, a tool
(or rather, a small collection of inter-related tools) has
been built to aid in performing the empirical studies. This
tool has been used in obtaining previously reported

empirical results [2, 4, 6]. The purpose of this paper Iis



not to report results obtained using the tool, but to
describe the tool itself., The intention is to give a more
detailed description of how empirical results have been
obtained, and to provide information which may be useful to
others who are interested in investigating data structure
robustness.

This tool, called IOSYS, was originally constructed to
help answer such questions as: given a detection procedure
which can detect any one or two errors, what 1is the
probability that it will detect a set of three errors?
However, one can also use I0OSYS to increase confidence in
the correctness of the procedure's implementation by running
a number of one and two error cases. This is particularly
useful with some correction procedures, which are so complex
that extensive testing seems essential. Thus, IOSYS has
also proved useful for testing fault tolerant software.

In the following sections, we describe the facilities
provided by IOSYS and the underlying requirements of robust
data structure testing which led to the creation of those

facilities.

2. BASIC FACILITIES

I08Ys 1is, in a sense, an input/output system with
certain added facilities. Because the "added facilities"
were the whole purpose of the implementation, an effort was

made to keep the usual I/0 facilities as simple as possible.



Primarily as background for the following section, this
section provides a brief description of the facilities
provided by IOSYS when viewed as a standard input/output
system.

Only one kind of file is provided by I0SYS: a fixed-
length record, direct access file. Several files may be in
use simultaneously with a different record length for each,
but variable length records within a file are not permitted.
This 1is a fairly restrictive environment but matches the
requirements for our experimentation quite well.

Program access to files is provided by read and write
functions. Files are simply identified internally by
consecutive non-negative integers, so the read and write
routines have a file number, a record number, and a buffer
address as parameters. I

During the "setup" phase of running a program under
I0SYS, commands are entered from the terminal to attach the
program to existing files‘in the "real" file system or to
create new, empty files. Because many experiments are very
I/0-intensive, IOSYS will normally keep small files in main
storage rather than on disk. If desired, any file can be
kept on disk, no matter how small the file, by explicitly
requesting disk allocation. buring execution of the user
program there is no difference, except in timing, between a
file kept in main storage and one which is really on disk.

To aid in debugging and monitoring programs, commands



are provided to display records at the terminal and to
activate a trace of input/output requests made during
program execution.

The preceding is not a complete description of the
facilities available, but does provide sufficient background

for purposes of this paper.

3. MANGLING FACILITIES

In order to test the fault tolerance of software or
data structures, it is necessary to have a mechanism which
provides controlled simulation of the effects of faults,
When studying robust data structures, the faults of interest
are those which ultimately damage stored representations of
data structures. Thus, a reasonable approach to the
simulation of faults is to damage stored data.

In order to avoid building extensive knowledge of the
data structures being wused into the fault simulation
mechanism, update routines can be used to guide the
mechanism. Records (nodes) being accessed or updated seem
logical candidates for being damaged. This consideration is
the main reason that IO0SYS deals with data structures which
are (or at 1least, appear to be) on external storage:
accesses and updates are forced to go through read and write
function calls, thus making it easy for the fault simulation
mechanism to observe such activity.

Records could be damaged (erroneously modified) when



they are read or written, but since records which are being
modified by an update routine seem more likely in practice
to be modified erroneously, records are damaged only as they
are written. At present two basic forms of damage are
possible: modification of a single word in the record and
refusal to write the record.

This facility for introducing damage is referred to as
the "mangler." It exists as part of the TIO0SYS write
function and is driven by a random number generator and
parameters entered by the user. 8Since mangling is a central
feature of 1I08YS, a fairly detailed description of the
implementation is provided here. First, there is a global
control which allows the mangler to be turned on and off.
Second, there is a mangle probability associated with each
file. If the probability 1is zero, that file will not be
mangled. If the mangler 1is on, the probability value
specifies the chance of mangling on each write call.

When a mangle is to occur, the "mangle type" for the
file determines what happens. Three mangle types change a
single word, and two cause the record not to be written at
all. The first three mangle types differ in how the word to
be modified is selected: one uses a wuniform distribution
over all the words in the record, one uses a distribution
skewed toward the beginning of the record, and one «calls a
user exit routine to obtain a list of "mangleable" words,

from which a uniform random selection is made. Note that



the last mangle type may be used to implement any arbitrary
probability distribution, by selecting a single word
according to this distribution and then reporting it as the
only mangleable word. 1In each of these three cases, the
record is modified by adding a value to the selected word.
The value is selected uniformly from a user-specified range
symmetric around =zero. Adding a small quantity tends to
produce more "subtle" changes than making an arbitrary
replacement of the word.

The fourth mangle type simply refuses to write the
record, 1i1f the ©probability test is satisfied. The fifth
type ("crash" mangling) is intended to simulate a system
crash during updating. In this case, 1IO0OSYS makes a
transition from "up" to "crashed" with the specified
probability. Once in "crashed" state, all writes to the
file (and any other file with crash mangling specified) are
refused. It is simpler to simulate crashes in this way than
by attempting to abort the actual execution of an wupdate
routine. Naturally, an IOSYS call is provided to “"uncrash"
the system, in order to proceed to another experiment
iteration, once the effects of the simulated crash have been
analysed.

To allow mangling activity to be monitored, when a
mangle takes place a message may be displayed at the
terminal or a user exit routine may be called. The user

program may request any combination of these.



4, OPTIONAL FACILITIES

The facilities described in the two previous sections
are part of TI0SYS itself. Modifying or replacing any of
them must be done very carefully. There are other routines
which work in conjunction with IOSYS, which are supplied so
that code will not have to be duplicated in multiple
application programs. These routines are intended to be
used optionally, as required, and can be replaced by
similar, user-written routines or 1ignored altogether, as
desired.

There are presently three such packages of routines.
One package provides a simple-~-minded free space management
for IOSYS files. The other two are of greater interest.

The second package provides a "mangle table"
capability. Although, 1in some sense, the damage done to a
file must be kept secret from much of the program (for
example, error detection routines clearly must not make use
of such information), it is frequently important to keep a
record éf the mangles which have taken place. Because
keeping and using such a mangle table is a non-trivial task,
a package of routines is provided to do such things as: set
up a mangle table, record a new mangle, find out the "true"
(unmangled) value of a field, print the mangle table, and so
on,

We want to make the distribution of mangles over the

nodes of a structure realistic. One apprcach to this is to



use the set of records written by an update routine as
candidates for mangling rather than selecting records
completely at random. This means that mangles to individual
records are not 1independent, which seems desirable.
However, using an update routine with the mangler active
introduces a serious problem. If the update routine makes
use of a field which has already been mangled it could
propagate the damage in an unknown way, go into an infinite
loop, or cause an abort. Designing update routines which
will not do any of these things is an interesting problem,
but in order to avoid solving the problem before performing
any experiments, we wanted to use less robust update
routines,

This leads to a three-file cluster for each 1logical
file wused by the program. One file is an unchanging master
copy used to refresh the other two files. One of the other
files 1is the target of actual updates, but is not mangled.
The remaining file is mangled but not updated. Whenever the
update routine writes a record to the update file, the
corresponding record is read and rewritten in the mangle
file. Since the mangler is active on this file, the write
operation may result in a mangle. For efficiency, the
complete update file does not really exist: only the
modified records are kept in this file, a bit vector being
used to indicate which records have been modified. A small

set of routines is provided to handle this, so that the



facility can be made conveniently available to the various

different experiment programs.

5. EXPERIMENTS

While it is not the purpose of this paper to report the
results of specific experiments performed using IOS8YS, it is
appropriate to describe the kinds of experimentation and
testing which it has supported.

The first type of experiment for which I0OSYS has been
used is empirical detectability estimation. This 1is the
kind of experiment alluded to in the introduction:. 1if we
know that some sets of three errors cannot be detected we
would 1like to estimate the ©probability that such a set
cannot be detected. To perform such an experiment we need
to 1insert three errors, run a detection procedure, and
repeat a large number of times, For any robust data
structure with detectability greater than one, it appears
that the probability of introducing an undetectable set of
errors is essentially zero.

Errors could be inserted completely at random, but to
produce a more realistic distribution of errors, a delete
routine is used to select nodes to be written, and the
mangler is engaged so that some writes cause erroneous
modification of the record being written. To allow all of
this to be done safely and efficiently, the three-file

technique described in Section 4 is used.

- 10 -



A second type of experiment 1is a "connectedness
check." 1In this kind of experiment, the objective 1is to
determine empirically the probability of losing all access
paths to any node (thus disconnecting the structure
instance) for a given number of erroneous changes. As in
the first type of experiment, a delete routine 1is wused to
guide error insertion. Then a “connectedness checker" is
run which attempts to find an access path to each node.
This process is repeated some large number of times.

In practice, the first two kinds of experiments are run
in conjunction with each other. That is, some number of
errors is inserted then the resulting damaged instance is
checked for both apparent correctness and connectedness. A
typical example is an experiment of 3000 1iterations on a
double-linked 1list: 16341 deletes were used overall to
insert 3 mangles on each iteration, causing 1058
disconnections, but producing no undetectable errors.

A third type of experiment is intended to determine the
effects of error propagation. In this kind of experiment, a
script of insert and delete commands is executed with the
mangler engaged. Detection and correction routines are also
invoked periodically during the script execution. No
measures are taken to make mangles invisible to update
routines, so new errors may be introduced due to updates,
and update routines may be blocked from performing any

action because of encountering an error.



The objective in this kind of experiment is to
determine the percentage of errors detected, percentage
corrected, etc. To do this, a "mangle table"” must be
constructed containing data on mangles and corrections.
Because of error propagation, data in this table cannot
always be relied upon. Thérefere, a copy of the file as it
should be at the end of the script run (produced with the
mangler turned off) 1is compared with the file actually
obtained. Any differences not accounted for by the mangle
table are noted. If some inserts or deletes were blocked,
the number of differences noted can be very large, because a
record by record comparison is not appropriate unless all
updates were performed. In such cases, significant human
effort is required to determine the actual number of errors
detected and corrected. However, 1in many cases, the
comparison finds no unnacounted-for differences and error
detection and correction statistics produced by the program
can be used immediately.

I0OSYS has also been used for testing fault tolerant
software. Of course, the various detection and correction
routines used in the experiments described above are always
used in "trial runs" with the mangler active, in order to
remove implementation bugs. It is also possible to use
I0SYS for testing complicated routines, such as some
correction routines, whose behaviour cannot be characterised

theoretically. An example is the single error correction

- 12 -



algorithm for CTB-trees [3]. While it is known that any
single error to a CTB-tree can be corrected, this particular
algorithm is S0 complicated that proving anything
significant about it seems impossible. Therefore, it was
implemented and tested, first by hand insertion of
"interesting" errors. This resulted in finding a number of
bugs, and appropriate modifications were made to the
algorithm. When no more bugs were found by hand insertion
of errors, the mangler was used to create a large number of
single error test cases. These cases, even though produced
completely at random, made apparent a number of bugs not
previously encountered, which were then fixed. Although we
cannot guarantee that any single error will be corrected on
the basis of this test, we are now much more confident that

the correction routine will function properly.

6. SUMMARY AND HISTORY

Finally, a brief summary of its history and possible
future developments may help to put IOSYS in perspective.
EXS¥S [1] was the first 1instance of attempting to
investigate empirical robustness of data structures. To
perform EXSYS experiments, ad hoc mechanisms were added to
the code 1in order to produce the necessary random damage.
The result was a workable but not very convenient system.
Because of the effort which would be required te perform a

conversion, the current version of EXSYS still uses these ad

- 13 -



hoc mechanisms.

When othe; empirical testing was contemplated, it
seemed clear that a more general, flexible tool was
required. Therefore, the first wversion of TI0SYS was
implemented, on a Honeywell 6050, 1in a locally designed
language, Eh. The tool proved very useful, and has been
modified and extended, in order to make it more powerful and
useful. For various local reasons, including dropping of
support for Eh, the tool was alse moved to UNIX*, and
translated into C.

I0SYS has now been used to perform a large number of
experiments on different data structures. Although

creating, modifying, and maintaining IOSYS has taken a

significant effort, the benefit in simplifying
experimentation has easily compensated for this effort. It
is our intention to go on using IOSYS for further

experiments. We think IOSYS presently has a good set of
facilities for our purposes, but some extensions will likely
be required to meet future needs.

One direction in which work is presently proceeding is
the creation of "interchangeable" storage structure
implementations., These would not only have a standard
interface to lower-level routines (in IOSYS), but would also
have a standard interface with the higher-level routines

which use them. One benefit of this will be that a single

*UNIX is a trademark of Bell Telephone Laboratories.

- 14 -



interactive command interpreter could be wused with an
arbitrary storage structure. (At present, each storage
structure has its own slightly different command
interpreter.) More importantly, having a standard interface
to storage routines will allow them to be combined easily
into more complex storage structures, such as compound
structures [5].

It is hoped that the material presented here helps to
explain how we have performed robust data structure
experiments and will provide useful assistance to others who
are investigating data structure robustness or testing fault

tolerant software.

ACKNOWLEDGEMENTS

The development of IOSYS was possible only with the
able assistance of several programmers: Bert Bonkowski,
Mark Ingram, Ralph Hill, and Adrian Pepper. The design of
I0SYS was also influenced by helpful discussions with David

Morgan.

- 15 -



BIBLIOGRAPHY

Black, J. P., D, J, Taylor, and D, E. Morgan. A
case study in fault tolerant software. Software-—
Practice and Experience, wvol. 11, no. 2 (February

1981). ppld5-157.

Black, J. P,, D. J. Taylor, and D. E. Morgan. A
compendium of robust data structures. Digest of

Papers, The Eleventh Annual International Symposium on

Fault-Tolerant Computing, Portland, Maine, June 24-26,
1981. ppl29-131.

Black, J.P., D. J. Taylor, and D. E. Morgan. A
robust B-tree implementation. Proceedings of the 5th
International Conference on Software Engineering,
March 9-12, 1981, San Diego, California. pp63-70.

Taylor, D. J., J. P. Black, and D. E, Morgan.
Redundancy in data structures: Improving software
fault tolerance. IEEE Transactions on Software
Engineering, wvol. 6, no. 6 (November 1980).
pp585-594,

Taylor, D. J., J. P. Black, and D. E. Morgan.
Redundancy 1in data structures: Some theoretical
results. IEEE Transactions on Software Engineering,
vol. 6, no. 6 (November 1980). pp595-602.

Taylor, D. J. Robust Data Structure
Implementations for Software Reliability. Ph,D.
thesis, University of Waterloo, Waterloo, Ontario,
1977.

- 16 -



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

