An Operational View of Lucid
by
Brian Finch
Department of Computer Scilence
University of Waterloo

Waterloo, Ontario, Canada

Research Report CS-81-37
December 1981

ABSTRACT

We examine a number of Lucid programs,
and ccnsider their semantics from an
operational view which permits multiple
simultaneous or concurrent processes to
mutually communicate, as well as create

new processes,

INTRODUCTION

Computer science has always suffered from a certain
amount of factionalism which has, more c¢ften than not,
served to impede progress rather than to encourage it. For
example, perhaps the most damaging gap occurs between the
fields of hardware design and software design. In par-
ticular, the discipline of programming language design 1is
one which stands to benefit greatly from a more intimate
relationship here than it has enjoyed in the past. This is
not to be taken as advocating a return to assembler-language
programming, quite the contrary, rather it should be wunder=~
stcod as a plea for increased dialogue, a symbiosis of

sorts, between these specialists.

Cf course, there has always been a certain amount of
interaction at this level; for instance the introduction of
tasks and events in PL/1 [14], or of coroutines in SIMULAG7
[14] clearly indicate that language designers were indeed
aware of hardware developments. Going back even further, it
is easy to see where the first GOTO statement originated.
Similarly, in the other direction, we see that most com-
puters now have indivisible hardware 1instructions allowing
the implementation of semaphores for synchronizing concur-
rent processes running on a single processor. This 1is an
example of software systems considerations influencing hard-

ware design.

-2- Introduction

The above examples notwithstanding, the gaps between
languages and hardware which remain are significant. Al-
though multi-processor architectures have been extant since
at least 1962 [13], it is remarkable that it has been only
recently that serious efforts have been made to develop
languages for controlling these machines in a rational and
well-structured manner. Similarly, the message-passing ap-
proach, which 1is particularly appropriate in computer
network environments, is just now coming into its own [15].
Less optimistically, computers based on asscciative networks
can likely be expected to remain in obscurity for some time

yet [13].

At first glance, these machine considerations might
seem unnecessary from the point of view of a language
designer: after all, we know that any "reasonable" computer
that we might deal with can be considered as equivalent to a
Turing machine, so if our language is only capable of ex-
pressing computations executable by a Turing machine, then
there will be a total recursive function ("compiler")
mapping our programming language onto our "reasonable" com-

puter.

In the case of Lucid, the subject of this paper, the
above observation is not immediately applicable: the basic
data objects in Lucid are infinite, so our computations will

likely never terminate, and thinking in terms of Turing

-3~ Introduction

machines is not strictly correct. In many implementations
of Lucid, however, values of infinite objects are calculated
one component at a time on a demand basis only, so the

Turing relationship is approximately correct.

Unfortunately, the types of computations which
result at the machine level under this kind of interpretive
écheme are often utterly unlike those which the programmer
envisioned when writing the program. 1In and of itself, this
is perfectly acceptable, except that in making the necessary
transformations, a compiler might well have to take a
conceptually simple and elegant description of a com-
putational process, and hammer it into an awkward and un-
natural one. It might be argued that this is what compilers
are for, Dbut a more convincing argument would point out
that, on the contrary, the reason for having available
unusual computer architectures, 1is to save compilers the

bother.

In this paper, therefore, we will try to view
several Lucid programs in operational terms which are sig-
nificantly different from what existing compilers and inter-
preters produce, which use an uncommon architecture, and
which are arguably more natural expressions of the com-

putational process.

-4~ Introduction

MOTIVATION

It has been pointed out [7] that in corder to cor-
rectly execute Lucid programs, some sort of (real or
simulated) @parallel activity 1is needed. In a single-
processor environment, this is, of course, quite difficult
to implement, since it involves "dove-tailing" multiple com-
putations to occur concurrently. In a multi-processor en-
vironment, assuming the presence of an amenable operating
system, it should be no problem at all. (Most multi-
programmed, single CPU operating systems are also quite
capable of this sort of task, but the overhead invelved can
slow things down significantly. Besides, wusing multiple
processors for performing parallel activities is S0

sensible.)

In a theoretic description of the operational seman-
tics of Lucid, Farah [12] describes a tree-manipulation
system in which the parse tree of a program is transformed
non-deterministically into an “answer". Here there is an al-
lowance for slightly more parallelism than is reguired by

the semantics.

In what follows, we will take for granted the
"necessary" parallelism (essentially, in evaluating the
logical *AND" and "OR" operations), and add to that any

finite amount of parallelism that is deemed reasconable or

-5- ' Motivation

appropriate to the program at hand, when examining the

multi-processor approach.

-6-) Motivation

OPERATIONAL INTERPRETATIONS OF LUCID
GCD

No paper on programming language techniques would be
complete without an example of a program for calculating the
greatest common divisor of two integers. <Consider the fol-
lowing Lucid program, where A and B can be thought of as

constant sequences global to the valof phrase:

valof

X

A fby if X > ¥ then X =~ Y else X

Y

B fby if ¥ > X then ¥ - X else ¥
result = X asa X eq Y

end.

An appealing model for this computation can be got with the
help of data-flow networks. The obvious translation of the

above program would give a net something like this:

~7- GCD

There are two problems with this representaticn. The
first is that, in general, the i1f-then-else nodes cannot be
expected to perform as reguired. They must consume all
three of their arguments at the same rate, so if the input
which 1is not selected is a non-terminating computation, for

instance, subsequent computations will likely be wrong.

The second preoblem is an aesthetic one. The original
program described the computation as a set of three egqua-
tions which defined three objects (X, Y, result), while the

data-flow net does the same thing, by way of a dozen nodes

—g- ' GCD

and 1lines all over the place. <Clearly, a program of
reasonable size could generate an impossibly large network,

which would be incomprehensible.

The reason for this explosion in size of the data-
flow model is that every single operation in the original
program must now be represented by its own node, with its
own input and output paths as well. What would be useful at
this stage would be a mechanism for hiding all the low-level
detail, without obscuring the intent. 1In this case, a

diagram like this would be appropriate:

A

®sult producec

“ 2

resv l!f

This expresses the nature of the computation very broadly,
without including too much detail. A more succinct and com-
plete representation of the details of the computation could

be given as follows*:

module producer
while true do
(I,Jd) := receive(parent);

if I > J then send(parent, I - J);

*For a description of the language used here, see the Appen-
dix.

9~ GCD

else send(parent, I);
f£i
end while

end module

main(A, B)
X _Prod := instantiate producer;
send (X_Prod, (A&, B}};
X := recelve(X_Prod);
Y Prod := instantiate producer;
Y := recelve(Y Prod);
send (¥ _Prod, (B, A));
while true do
if X = Y then print("result=", X)
else send(X_Prod, (X,¥));
X := receive{X_Prod);
send(Y¥_Prod, (X,Y});
Y := receive(¥_Prod};
£i;
end while

end.

Since the definitions of X and Y in the Lucid
program are symmetric, they can be ccalesced and represented
as a single module in an environment which supports dynamic

process creaticon and message passing.

What is 1interesting abcut this latter approach is

-10- GCD

that, in a sense, it is a data-flow representatiocn of the
computation, but on more of a macroscopic level than pure

data-flow.

-11- GCD

Recursive Factorial

This is a program which was presented in [1] as

being anomalous:

valof

N

7 fby N - 1
result = if N <= 1 then 1
else N * next result

end.

It was pointed out in [1] that this program can be readily
translated into neither a set of simple loops nor a data-
flow network. The reason for this is that the program cal-
culated its answer, <7!, 6!y eeo, 2!, 1!, 1, 1, 1, ...> from
the 1inside out - the ones can be found first, and then the
first seven elements are got by recursing backwards to the

head of the list.

Consider the following translation of the above

program:

module N _Prod (N}
while true do
send (parent, N}
N := N - 1;
end while

end

-12- Factorial

module result prod(Y)
instantiate N_Prod(Y);
M := receive(N_Prod);
if M <= 1 then send{parent, 1)
else Y := recelive(N_Prod);
instantiate result prod(Y);

send(parent, M*receive(result prod});

fi;
end
main()
instantiate N_Prod(7);
while true do
X 3= receive(N_Pred);
instantiate result prod(X);
print{("result=", receive(result prod));
end while
end.

The interesting aspect of this interpretation is the
way 1in which the module "result prod”, when at time t; will
make a copy of itself and its environment (N_Prod), if it
needs the value of itself at time t+l. This is, in fact, a
thinly disguised version of a demand-driven calculation, but

one which leaves the hierarchy of requests implicit.

As such, this sclution suffers from the same problem

-13- ' Factorial

as would any "unintelligent” demand-driven scheme: it ends
up re-calculating several values more often than necessary.
In order to evaluate "result" at time 0, it must first find
"result" at time 1 and so on, but as it stands here, this
program, having successfully determined the first "result",
would than start from scratch to find "result" at time 1,

and again at time 2, and sc on.

It 1is —conceivable that in the appropriate enviro-
ment, a compiler could be capableof making the necessary op-

timizations to avoid this kind of redundant computation.

-14- Factorial

A Simple Luswim Program: Sum of Powers.

Here 1is an example from [3] which is a pure Luswim
program, as all of the wvariables are elementary. This
program calculates the sequence which is everywhere "the sum

from i=1 to 6 {i**i)"

valof
I=1¢fbyI+1
S =1 fby S + next M
M = valof
K =1 fby K + 1
P=1+fbyI*P

result = P asa K eq I
end
result = S asa I eq 6

end.

This program is operationally very simple, since 1its main
mechanism is so familiar. The mechanism 1is that of the
subroutine call, which corresponds to what one expects of
the wvalof phrase defining the value of M. Since the glocbal
of the inner phrase (I) is elementary, the 1locals of the
phrase (X, P, result) are constrained to "restart" whenever
"time" in the outer environment advances. Thus, we would

expect the computation to proceed like this:

-15- Luswim

function prod_m(A);

K :

1;

P :

1

Aj

while K ne A do
P := P * A;
K := K + 1;

end while

return(P};

end.
main{)
I :=1;
S = 1;

M := prod_m(I};
while true do
if I eg 6 then print{("result=", S);
else M := prod m(I);
S =8 + M;
I :=1 + 1;
£i;
end while

end

This demonstrates the simple relationship between Luswim
and ordinary imperative programming languages, recursion
notwithstanding, which should make the compiling of Luswim

programs a very easy and straightforward task.

-16- Luswim

A ULU PROGRAM: VARIANCES

In ULU, things are not quite as easy for us as in
Luswim. Consider this program from [3], which calculates the

variance of the first 10 elements of the free variable S:

valof
Avg (X) = valof
L dad
s = X fby S + next X
N=1fby}N+1
result = S / N
L ~
end
M = ggg(g) asa 5 eq 19
5 = 1 fby ; + 1
result = éxg((ﬁ - g)**Z) asa I eq 10
end.

The easiest way to see the basic problem here is to loock at
the skeleton of a data-flow network for this program.
Without going intoe unnecessary detail, we would find a

network that looks something like this:

S

Fvg

g

Viresolt |

-17- ULU

The difficulty is that the "S" node is required to pump its
first ten values into the "Avg" box on the right before the
first "M" is produced, and thus before the first (S5 - M)**2
can be calculated. This clearly is a buffering problem,

something that data~flow networks cannct readily handle.

A discussion of this program in terms of coroutines
appears in [3]1, although the aspect of buffering is not con-
sidered., Often one can finesse this sort of problem by as~
suming one's compiler to be smart enough, but in this case

it is instructive to do otherwise.

The basic structure of the computation defined by

this program can be viewed thus:

S

mome n"S

We assume that we will have one sequential source
for our "S" values, i.e. that, having accessed S at time t,
the values of S at times 0 through t-1 are gone forever. A
much more important assumption, however, is that in im-

plementing the communications between processes, "unblocked

-18- ULU

sends" be permitted. In practice, this is not an unusual

feature [15].

These unblocked sends show up in the movement of 8§
values from "main" through "buffer" to "diffsqg" (Actually,
the situation is totally symmetric, so it would be perfectly
correct to send the S's directly to "diffsq" and divert the
M's wvia "buffer" instead). This mechanism allows the
production of S values to become arbitrarily "out of step"

with their consumption.

(In fact, the entire module "buffer" is really not
necessary here; the message buffering takes place (concep-
tually} in transmission, rather than in any routine's data
space. "buffer® is 1included here mainly for clarity -
without it "diffsg” would have to read two types of data
(M's and S's) which are unsynchronized, and which originate
in the same module {(main). In such a case, care would have
to be taken to ensure that the value received is indeed from
the 1intended wvariable. This would depend to a great extent
on the design of our message-passing language, which is not

our concern hare.)

Here is a program to implement the above process

structure.

~19-~ ULU

module average

S := 0;

N := 1;

while true do
S := receive(parent) + S;
send(parent, S/N);
N :=N + 1;

end while

end

module buffer
while true do
send (diffsq, receive(parent});
end while

end

module diffsq
MOM := instantiate average;
while true do
M := receive(parent);
S := receive(buffer);
send (MOM, (S - M)*%*2};
send{parent, receive(MOM));
end while

end

main()

RA := instantiate average;

20~ ULU

instantiate buffer;
instantiate diffsq;
I :=1;
while true do
S := receive(S_Prod);
if I < 10 then send(buffer, 8);
send (RA, S);
AV := receive(RA);
else if I = 10 then
AV := receive{RA};
send (diffsg,AvV);
answer := recelve(diffsq);
else
print{"result =", answer);
fi
fi
i:=1 + 1;
end while

end.

-21- ULU

Lucid - Merge Function

In the previous example, the degree to which modules
could become "out of step" with each other was determined
parametrically ("asa I eq 10"), and was a finite and bounded
amount. What should we do when this quahtity is essentially
unbounded? No computer system could allow an indefinite
number of unread messages sent unblocked - all the space in

the file system would £fill up, and the computation would

grind to a halt.

The Lucid operation which is most prone to this kind
of behaviour is the upen function, and by now a classic ex-
ample of wupon in action 1is the following program, which
determines the sequence of all numbers of the form

(2%*%1)* (3%*9), i>=0, j>=0, in ascending order:

valof
merge(i, E) = valof
U = § upon (U eq M)
vV = E upon (V eq M)
M = min(U, V)
result = M
end
S = 1 fby merge(2%*5, 3%*5)
result = S
end

~22- Merge

If we look at a diagram of the movement of data in

the outer environment, it is not very instructive:

245

3*

But, if we look at the "merge" function in more detail, we

can see more clearly what is going on:

When we have loops in these diagrams, which can be thought
of as showing result dependencies in calculations, we might
expect to have to worry about the possibility of deadlock
occurring. However, this situation arises only when the
semantics of Lucid tells us that something is not properly

defined, as in:
I = next I fby first I,

which defines a constant sequence which 1is everywhere
'anything'. We wouldn't expect programs with such statements

to be meaningful, so it is acceptable that our message-

~23- Merge

passing approach doesn't work here,

Here is a full program to implement the

program above:

module get
X := receive(main);
while true do
send (min, X);
M := receive(min);
if M = X then X := receive(main) £fi;
end while

end

module min
while true do

A := receive(get_U);

w

:= receive{get V);
Y := if A<B then A else B fi;
send{get U, get V, main, Y);

end while

get_UY := instantiate get;

get V := instantiate get;

while true do

—24-

"merge"

Merge

print("result=", Z);

send(get U, 2%Z);

send(get V, 3*Z);

Z := receive(min);
end while

end.

—25. Merge

Lucid - Running Averages of Square Root

In this example we will examine a program which uses
both elementary and non-elementary functions. Up until this
point, we have been careful to look at programs which exer-
cise only one of Lucid's "unusual" features at a time, so it
is worthwhile to see what happens when we combine several in
a single program. It is not unreasonable to expect that
such a combination would lead to an inpenetrable mess, but

as we shall see, this is not the case.

Here is the Lucid program in question:

valof
ﬂxg(ﬁ) = yalof
5 = A fby S + next A
I =1 fby I+ 1
result =8 / I
end
Sqrt (N} = valof
X =0 fby X + 1
¥ =0 fby ¥ + (2*%X) + 1
result = X - 1 asa ¥ > N

end
result = 5xg(Sqrt(Y))

end

Y is assumed to be a global variable, whose wvalues

-26— Averages

are first converted into their integer square roots (poin-
twise), with those latter then having their running averages

calculated.

A message-criented program could be as follows:

module Avg
I :=1;
S :=90;

while true do
S := receive(main) + S;
send (main, S/I)
I :=1 +1;

end while

end

module sqrt
while true do

X =

0; Y := 0;
N := receive(min);
while ¥ <= N do
Y := Y 4+ 2%X + 1;
X := X + 1;
end while
send (main, X - 1);
end while

"end

-27- Averages

main()

instantiate avg;

instantiate sqrt;

while true do
Y := receive(Y_Prod);
send{sqrt, ¥);
send (avg, receive(sqrt));
print("result=", receive{avg)):

end while

end

Notice the difference between "avg" and '"sgrt" -
since "sqgrt" must restart with each new value passed to it,
this causes the initializations in the module to be placed
within the 1infinite 1loop, whereas "avg", which calculates
running averages, and thus must "remember" its previous com-
putations, has its initializations outside the loop, so that
they are executed once only. This is a very simple descrip-
tion of the difference between elementary and non-elementary

functions, one to which any programmer can easily relate.

Again the structure of this computation is very

simple:

Avg overeges N Sgr u

—_— . -28- Averages

The fact that "avg" and "sgrt" "work differently" in some
sense, is irrelevant at this level of abstraction. We have
succeeded in effectively hiding the lower-level details,

without obscuring the real nature of the process.

-29- Averages

Lucid - Elementary and Non-elementary Parameters

For our final problem, we will consider a function
which has both elementary and non-elementary parameters. As
we will see, this leads to a message-passing program of
rather interesting structure. The program in question is
Mom2 (X,M), which <calculates, at time t, the value of the
second moment of the first t+l values of X about M at time

t:

Mom2 (5 , M) = valof

S =T fby S + next T
= - * %
T (5 M) 2
I =1 fby I + 1
result = S / I

end.

The facts that the first parameter to Mom2 is non-
elementary and that the second parameter is, basically tell
us that this function must, at time t,; be able to access the
first £+l values of the first parameter, but need only be
able to see the current value of the second. This is really
quite straightforward, except for one point which we have
not vyet encountered in any of the other programs in this
paper: we must be able to handle correctly the situation
where some of the values of the second argument to Mom2 are
undefined. We must be careful since M at time t being un-

defined deces not imply that result at time greater than t

-30~ Mom2

will be undefined, even though result at time t is.

(Note that we have nothing to worry about if some
value of X is undefined, since this would cause all subse-
quent values of the result to be undefined; it is no problem
simply because it is so easy to make a program produce no

result, as would be reguired.)

The message-passing solution that we propose for

this program is the following:

main()

i = 0;

while true do
a := receive(X_prod);
proc := instantiate calc[i];
send (proc,1i);
send(proc,a);
i = i+1;

end while;

end

calc()
count := receive(parent);
for i:= 1 to count do
a := receive(calclcount-1]1};
send(calcfcount],a);

send(calc[count+l],a);

-31- Mom2

end for;

a := receive(parent);
send (calc[count], a);
send (calc{count+l], a);

b := receive(M_prod);

for i := 0 to count do

sum := sum + (b - receive(calclcount])} ** 2;
end for;
print("result" ,count,"=", sum/(count+l});

end calc.

To make this a bit more clear, we can represent the

structure of the calculation thus:

. Ko X X Xs .
fesutt, fesully

If some calc, say calc[il, fails toc receive its re-

quested value of M, it will become blocked while waiting for

-32- Mom?2

the wvalue that 1is never sent. This doesn't disturb any
other part of the calculation, since calcf[i] has already
sent along to calcl{i+l] all of the values that it was re-
quired to. If main fails to receive some X, it will be
unable to obtain any subsequent value of X either, so that
calc[j]l, J>=1 will not receive their necessary inputs, and

hence will not calculate any results.

The solution presented here is clearly not an ideal
one. For instance, the trick that calc performs of reading
its input and then sending it to itsel is a rather awkward
way of reading its input twice. The most Iimportant point
being made here is that all of the Lucid programs considered
here have a reascnably concise and natural expression in
what seems to be a substantially different idiom, that of

message-oriented programming.

~33—~ Mom2

CONCLUSIONS

Although Lucid programs do not translate nicely into
many of our standard models of computation, such as itera-
tion, data-flow, recursion, or coroutines, it does seem that
they have a simple and natural expression in terms of
dynamic process creation and message passing. In fact, the
translations of programs presented here are so directly
related to the syntax of the original Lucid code that this
gives reason to hope that the task of generating such trans-
lations could be reasonably easily automated. This is cer-

tainly a possible direction for future work.

The greatest problem discovered 1in the course of
this work is representational. When dealing with "standard"
computational processes, we have a fairly flexible and well
established notation for helping us visualize such computa-
tions in the flowchart., We can represent graphically the
necessary control structures (iteration, alternation), in a
way that seems straightforward and natural. However, when we
want to talk about less usual concepts like dynamic process
creation, coroutines, and so on, we really don't have the
proper tools necessary for concisely describing these kinds
of activity. This is perhaps another direction in which more

work 1s needed.

-34- Conclusion

APPENDIX

The language wused in this paper for describing
message-passing, process—creating programs is basically an
extension of Pidgin Algol, with é few new primitives tacked
on. The additions consist of the concept of modules, and
three commands: instantiate, send and receive. The language

owes much to [1l5].

A module is taken to be a block of code which
remains dormant until it is referenced by an instantiate

command. The syntax for this command is:
[i@ :=] instantiate module name .

This command arranges, presumably through the host operating
system, for a processor to be allocated and run on the code
embodied in the module. This process is known by the name of
the module or optionally by the assigned identifier (in such
cases when the module has several instances, to avoid am-

biguity), and knows its creator by the name "parent".

The send and receive commands are self-evident from

their syntaxes:

send(to_process name {, to_process_namel* , value)

id := receive(from process_name)

or

receive{ from_process_name)

-35- Appendix

The latter wversion of receive allows the received value to

be used directly in an expression.

-36- Appendix

(11

£2]

[3]

[4]

(5]

(6]

(71

(el

REFERENCES

Ashcroft, E.A., and Wadge, W.W., Lucid, A Nonprocedural

Language with Iteration, CACM, June 1977, pp. 519-526.

Ashcroft, Ed, and Wadge, Bill, A Logical Programming

Language, Research Report C5-79-20, University of

Waterloo, June 1979,

Ashcroft, Ed, and Wadge, Bill, Structured Lucid,

Research Report CS-79-21, University of Waterloo, June

1979.

Ashcroft, E.A., and Wadge, W.W., Some Common Miscohcep—

tions about Lucid, Research Report CS-79-38, University

of Waterloo, Dec. 1979.

Ashcroft, E.A., and Wadge, W.W., Lucid, a Formal System

for Writing and Proving Programs, SIAM J. Comput.,

Sept. 1976 pp. 336~-354.

Wadge, W., Away from the Operational View of Computer

Science, unpublished notes, University of Warwick.

Cargiill, T.A., Deterministic Operational Semantics for

Lucid, unpublished report, University of Waterloo,

1977.

Ostrum, C.B., Luthid0.0 Preliminary Reference Manual

and Report, unpublished paper, University of Waterloo,
1980.

~37- References

[91

[10]

[11]

[123

[13]

[14]

[15]

Friedman, Daniel P., and Wise, David S., A Note on Con-

ditional Expressions, CACM, Nowv. 1978, pp. 931-933.

Vuillemin, Jean, Correct and Optimal Implementations of

Recursion in a Simple Programming Language, JCSS, 9,

1974, pp. 332-354.

Culik, Karel, and Farah, Mansour, Linked Forest

Manipulation Systems -- A Tocl for Computational Seman-

tics, Research Report CS-77-18, University of Waterloo,

1877.

Farah, Mansour, Correctness of a Lucid Interpreter

Based on Linked Forest Manipulation Systems, Intern. J.

Computer Math., Section &, 8, 1980, pp. 3-26.

Handler, W., ed., Computer Architecture, Springer-

Verlag, Berlin, 1976.

Pratt, T.W., Programming Language Design and Implemen-

tation, Prentice-Hall, Englewocod Cliffs, N.J., 1975.

Koch, Andres, MENYMA, Design and Implemantation f a

Message Oriented Language, Masters Essay, University of

Waterloo, Dec. 1980.

-38- References

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

