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ABSTRACT

Recent work on systolic tree automata has given rise to a rather
natural subfamily of EOL languages, referred to as systolic EOL Tanguages
in this paper. Systolic EOL languages possess some remarkable properties.
While their family caootains (because of its closure under Boolean opera-
tions) intuitively quite complicated languages, it still has decidable
equivalence problem. Especially interesting is the fact that similar
decision problems for slightly more general families Tead to the celebrated

open problems concerning Z-rational power series.



1. Introduction

Various types of systolic automata were recently introduced,

[2] - [4], basically as a model for VLSI. However, it was also observed
that these new models gave rise to a number of new problems and problem
areas which are interesting also from the point of view of classical
language theory.

The purpose of this paper is to study a family of L Tlanguages,
[6], arising quite naturally from the consideration of systolic tree auto-
mata, [2], [4]. More specifically, this family is a subfamily of the
family of EOL languages, [6]. In this paper we refer to the languages in
this subfamily as systolic EOL languages. The family of systolic EOL
languages is Targe enough to contain all regular languages and, in addition,
also quite complicated languages. Because the family is closed under
Boolean operations, we obtain a subfamily of EOL Tanguages such that the
complements of the languages in this subfamily are still EOL. (Observe
that none of the most common L families is closed under complementation.)
On the other hand, the family of systolic EOL languages is small enough to
possess a number of important decidability properties.

The paper is divided as follows. After a discussion on pre-
liminaries in Section-2, the above mentioned facts about systolic EOL
languages, as well as some modifications, will be discussed in Section 3.
We also obtain a natural characterization of systolic EOL languages.
Finally, Section 4 deals with the problem of whether or not the decid-

ability results can be extended to concern a somewhat larger class.



While the problem itself remains open, we obtain the surprising
result that if indeed the decidability can be established for the larger
family then this solves also two celebrated open problems from the theory
of formal power series, [7]: The decidability of the existence of 0
and of the existence of negative numbers in a given Z-rational sequence.
Because no reduction results are known for the latter two problems, this
shows that the decidability of the problem considered in Section 4 might
be even harder to establish.

While this paper is largely self-contained, we refer the reader
to [6] (resp. {7]) for definitions and facts concerning L systems (resp.
formal power series). Reference [2] may be consulted for more detailed

definitions and background material as regards systolic tree automata.



2.  Preliminaries

A binary systolic tree automaton works basically as follows.

Corsider an infinite binary tree without leaves. We may define the
ylevels" of the tree in the natural way. Consider then an input word w
over I with length t . We choose the first level in the tree with
n=1t vertices. The word w #n-t (where # 1is a special symbol not

in z) is now ,fed", letter by letter, to the level in question. This is
formatized as follows. We consider also another alphabet ZO (referred

to as the operating alphabet) and a function
g:zU{#} =+ I -

The nodes in the Tevel in question are labeled (in the correct order!)
with the g-values of the letters in the word w #"'t .

Information now flows bottom-up and in parallel. MWe consider
also another function h : Zg > ZO . If the sons of a node have already
been assigned (from left to right) the values a and b , their father
gets the value h{a,b) . The word w is accepted by our binary systolic
tree automaton (in short, BT-VLSI) if the root of the tree gets in this
way a value from 26 s where 26 is a designated subset of 20 . Thus,
we may speak of the accepted language, as well as of BT-VLSI acceptable
languages.

Formally, a BT-VLST is determined by the three alphabets Z,

o and 26 . and the two functions g and h. The reader is referred

to [2] for further details and examples.



A (general) systolic tree automaton (in short, T-VLSI) differs

from the binary one in that, instead of the infinite binary tree, we
consider an arbitrary infinite tree without leaves, having only finitely
many infinite subtrees. (The latter condition assures that the tree is
reasonably regular. Of course, the tree is given in some effective
manner.) The definition of acceptance remains the same as before except
that now, instead of one binary function h , we have several functions
hi where i stands for the arity (i.e., number of sons) of the node in
question.

In fact, the definition of T-VLSI given in [2] is somewhat more
general: the tree is labeled (still preserving the regularity condition
of finitely many labeled subtrees), and the functions hi and g depend
also on the label of the node in question. However, according to a normal
form result established in [2], every language acceptable by this more
general model is also acceptable by the restricted model considered above.
This holds true for BT-VLSI's as well.

The T-VLSI's and B7-VLSI's considered above are deterministic.
Formally this means that the range of -the functions g and h is I,. The

0
corresponding nondeterministic automata are defined in the natural way.

Formally, in connection with g and h we consider subsets of EO‘ For
details, the reader is referred to [4].
We now summarize some results from [2] and [4] that will be

needed in the next section.



Theorem 1. The family of BT-VLSI acceptable languages contains all
-regular languages and is closed under Boolean operations. It is decid-
able whether or not the language accepted by a given BT-VLSI is empty
and also whether or not the languages accepted by two given BT-VLSI's

are equal. Every language accepted by a nondeterministic BT-VLSI is

accepted by a deterministic one.



3. Systelic EQOL Languages

We begin with a result establishing the interconnection between
systolic tree automata and EQL systems, [6]. We make use of the different
characterizations of the family of EOL languages, in particular, the fin-
ite macro OL systems (FMOL systems) due originally to [5]. (See also
Theorem II.2.2 in [6].)

Theorem 2. Every language acceptable by a binary systolic tree automaton

is also an EOL language.
Proof. Consider a language L , accepted by a BT-VLSI
= 1
G (2! ZO’ 20’ g’ h)

where the different items are the ones defined in the previous section.
For each letter A in I! , we define a OL system M(A) as follows.
The alphabet of M{A) consists of the letters gt , B, 8%,
where B ranges over the alphabet Iy s @s well as of the letter A .
(Intuitively, t , m, e stand for ,terminal", ,mixed", ,ending" ,
respectively.) The axiom of M(A) is A .
Consider now the function h . Whenever h(B, C) = D , the

system M(A) has the productions
ot » bct 0" - BhC" , 0" - gtc®

p™ -+ BMc® R p® » BSc® .



Moreover, whenever h(B, C) = A , then M(A} has the productions
A -kt A - gtc™

M(A) has no further productions and, thus, we have completed the defini-
tion of the system M(A).

We define, finally, a homomorphism o mapping a subalphabet
of M(A) into % U {e} where ¢ denotes the empty word. Assume that
g(#) =B . Then «(B®) =& . Assume, further, that a s in I and
that g(a) = C . Then u(Ct] =a .

It is now easy to verify that the language L equals the
union of the languages ofL(M{(A})) where A ranges over 26 . Indeed,
the productions of M{A)- simulate in a top-down manner the bottom-up
behaviour of our BT-VLSI G. It is also taken care of, by the definition
of “a and by the three types t, m, e of the letters, that the role of
the end marker # 1is correct: it appears always at the end only and
always at the right half of the tree. Moreover, there is at least one
terminal symbol in the right half of the tree.

Because L equals the union of the languages o{L({M(A})), it
is clear that 1L is EOL. Instead of the union, we can also consider a
single basic OL system, by introducing a new initial letter. Observe
also that it causes no difficulties that o 1s not defined in the whole
alphabet of M(A): we can let the remaining letters go into a garbage

symbol and intersect the entire morphic image with a regular set. a



In view of Theorem 2, we refer in this paper the languages

accepted by binary systolic tree automata as binary systolic EOL

Tanguages or, briefly, systolic EOL Tanguages. It is clear that systolic

EOL languagdes form a proper subfamily of the whole family of EOL languages.
Ihdeed, systolic EOL Tanguages are FMOL languages of a special kind. The
underlying OL system is binary and backward deterministic (invertible) in
the sense that the right side BC of a production uniquely determines its
left side. (Instead of binary trees, we could consider any balanced
trees.) Moreover, for each letter B of the OL system, its macro
substitution either consists of a single letter or of the empty word,
or else is empty. Invertibility holds also for the macro substitutions.
An explicit characterization for systolic EQL Tanguages is given in
Theorem 5.

As an example, consider the BT-VLSI & = ({a,b}, {A,B,C,D},

"{C}, g, h) where g and h are defined by

gla) = A, g(b) =B, g(#)=0D;

h{A,A) = A,
h{B,8) =B ,
h(A,B) = h(A,C) = h(C,B) = C ,

h(x,y} =D in all other cases .

It is easy to verify that the language accepted by G equals
+ + . n
L={weéeab |w isof length 2, for some nz 1}

The same Tanguage L can also be expressed in the form d(L(M)) where the

homomorphism o and the OL system M are defined as follows.



The axiom of M is € , and the productions are:

c-atBt ,  caat" . coatt , ¢

c-cht ¢+ chp"
ct > atst ¢ oafp c"
¢ - ATE ¢® > A%
¢t »atct ¢ s At ¢
c™ > ATc® € » aSc®
¢t »ctet | (o L "
c™ > ¢"g® c® + c®p®
gt » gt B" - ptE" B"
g™ ~ B"B® | B¢ -~ B®B®
At > atat AT At A"
AT > ATAS A® - p®ac

The homomorphism o 1is defined by

a(Aty = a alB®) = b

for  x # AL, Bt

n
=

a(x)
Then the systolic EOL language L can be expressed as

L = o{L(K) A fa,b}

- AcM

> ptp®

> Atc®

> ctp®

» gtg®

> Atp®

0.
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We have presented the construction along the lines of the proof
of Theorem 2 (except that we did not introduce the unnecessary symbol D

at all). It is obvious that in this example the productions can be sim-

plified considerably.

Below is depicted the acceptance of the word a3h5

BT-VLSI G:
/

é&ék

+ T

by the

a a a b b b b b

The OL system M generates the word (At)3 (Bt}5 as follows:

/C\
N\
AL\, /\ 7

From this word the word a3b5 is immediately obtained by the morphism "o .
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Theorem 1 now yields the following two corollaries.

Theorem 3. The family of systolic EOL Tanguages contains all regular

Tanguages and is closed under Boolean operations.

Theorem 4. The equivalence problem is decidable for systolic EOL lan-

guages.

Theorem 3 shows that, for instance, the complements of the

Tanguages

n n
@ nz1y, @27 nz1y

{aznbznazn ! .. %% ab | nz 0} ,

as well as all languages obtainable from those and regular languages by
Boolean operations are, in fact, systolic EOL languages. The EOL nature
of these languages seems far from being clear, for instance, in view of
the results presented in [6]. This indicates that systolic tree automata
might give some really new insight also as regards the theory of L
systems.

Apart from Theorem 4, a number of other decidability results
can be obtained for the family of systolic EOL languages. For instance,
the emptiness is decidable, either by Theorem 1 or by Theorem 2 and the
fact that it is decidable for EOL languages. Intuitively, the decidability
results mean that systolic EOL languages constitute a fairly ,small" family
whereas the other facts (closure properties, the regular languages as well
as complicated exponential Tanguages being included) seem to indicate that

we are dealing with a ,large" family!
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We now give a characterization of systolic EOL Tanguages. The
characterization is especially pleasing because an analogous character-
ization can be obtained for the whole family of EOL languages. We begin
with two definitions.

A Tanguage L c 2* is called a semibinary EOL language if L

can be written as
L = H(L(G)) ,

where (i) G = (2 U {#}, P, S) dis a. OL system such that the axiom S
is a letter and the right side of every production in P 1is of length

2 and (ii) H 1is the horomorphism defined by
H(a) =a for a ¢z , H{# =¢.

3 *
if, in addition, L(G) consists of words w#' where w €3 and

iz 0 we refer to L as aAsemibinary suffix EOL Janguage.

Clearly, every semibinary EOL language is an EOL language. We

are now ready for the characterization results.

Theorem 5. A language is an EOL language if and only if it is a coding
{i.e., a homomorphic image under a letter-to-letter homomorphism) of a
semibinary EOL Tanguage. A tanguage is a systolic EOL language if and

only if it is a coding of a semibinary suffix EOL Tanguage.

Proof. Consider the first sentence. The ,if" - part follows by

the closure property of EOL languages. The ,only if" - part is a reformu-

lation of Lemma 2.3 in [1].



Consider then the second sentence. The ,only if" - part is a
direct consequence of the proof of Theorem 2. {Observe, in particular,
that L being the union of the languages a{L(M{A))) implies that L is
a coding of a semibinary suffix EOL language.)

To prove the ,if" - part, consider a semibinary suffix EOL
language L ¢ Z* . Thus, L = H(L{G)), where the OL system
G=(2U {#}, P, S) and the homomorphism H satisfy the conditions of
the definition above. Consider, further, a language L1 c A* such that
L1 =¢ (L) , where c¢ : Z* a-A* is a coding.

Consider now a nondeterministic BT-VLSI K, defined as follows.
The terminal alphabet of K is A . The operating alphabet consists of
all letters a in 2 U {#} and their ,barred versions" a , as well as
of an additional letter § . The>1etter § is the only designated one
(i.e., 26 = {g}). The input and transition functions g and h are
defined as follows.

Whenever c(x) =a , for some a € o, then x ds in g(a) .
Moreover, g(#) = {#} .

Whenever A - BC 1is a production in P , then
(1) A is in h(B,C), (i1} A s in h{B,C), and (iii} A is in
h(B,C). Moreover, whenever A -~ BC 1is in P and the axiom S of 6
derives according to G a word AD} i Dn such that a word in #* is
derivabile according to G from Dy -.. D, » then g is both in H{B,C)
and in h{B,T) . (A special case of our conditions 1is that the produc-

tion S -~ BC is in P .)
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The reader should have no difficulties to verify that
L(K) = L1 . Observe, in particular, that if § is introduced too early
in a computation according to K then this computation cannot continue
because h 1is undefined.

Consequently, by Theorem 1 {last sentence), a deterministic
BT-VLSI K' can be found such that Ly = L(K'}. Hence, L isa

systolic EOL Tanguage, which completes the proof of Theorem 5. il
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4. Interconnections with Decidability in Z-rational Formal Power Series

The two most celebrated open decision problems in the theory of
formal power series can be stated as follows.

(M Is it decidable whether or not a negative number appears in a
given Z-rational sequence of integers?

(2) Is it decidable whether or not the number @ appears in a given
Z-rational sequence of integers?

Since every Z-rational sequence a; > i=1,2, ..., can-be
obtained from the upper right-hand corners of the powers Mi s Where
M is a square matrix with integer entries, problems (1) and (2} are
at the moment perhaps the most simply stated open decision problems.
Moreover, a number of important language-theoretic problems have been
reduced to problems (1) and (2). The reader is referred to [6] and [7]
for further details.

We consider now the problem of whether or not the decidability
results expressed in Theorems 1 and 4 can be extended to concern arbi-
trary T-VLSI acceptable Tanguages (instead of BT-VLSI acceptable
tanguages or, equivalently, systolic EOL languages.) More explicitly,
we consider the following problem:

(3) Is it decidable whether or not the language accepted by a given
T-VLSI is empty?

We observe first that the decidabitity of (3) immediately implies

the decidability of the equivalence problem for T-VLSI's because, by [2],

also languages acceptable by T-VLSI's are closed under Boolean operations.
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Hereby, we always consider families obtainable from the same underlying
infinite tree, i.e., we do not compare languages resulting from different
trees. (So the equivalence problem concerns only languages resulting
from the same infinite tree.)

While we conjecture that (3) is decidable, the proof will be

extremely difficult because of the following result.

Theorem 6. The decidability of (3) implies the decidability of both
(1) and (2).

Before starting the proof of Theorem 6, we would Tike to point
out that, inspite of numerous efforts, no reduction results are known
between the problems (1) and (2) (i.e., that the decidability of one of
them would imply the decidability of the other). Intuitively, this in-
dicates that the proof of the decidability of (3) will be more difficult
than that of (1) and {2).

We need the following auxiliary result.

Lemma 7. (i) To establish the decidability of (1) (resp. (2)),

it suffices to construct an algorithm for deciding of two given PDOL
length sequences a_  and b, (n=0,1,2, ...) whether or not

a, = bn holds for all n ({resp. whether or not there exists an n such
that a, = bn). (11) The PDOL systems defining the length sequences a, and
b, in {i) may be assumed without loss of generality to have the property
that, for any fixed integer k, the right side of every production is of
length zk . (iii} As regards the decidability of {2), we may assume

without loss of generality that we consider only PDOL length sequences

a, and bn of which it is known that a, = bn holds for every n .
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Proof. (i) This is a direct consequence of Corollary III.7.3 in [7].
(11) Assume that aé and bﬁ are arbitrary PDOL Tength sequences,
whereas the decidability for the length sequences satisfying the special
property stated in (ii) has been established. We now modify the PDOL
systems generating aﬁ and bA as follows. On the right side of every
production every occurrence of every letter ¢ 1is replaced by ck . This
implies that the length sequences aé and bﬁ are transformed into the
Tength sequences a, = K" aa and bn = K" bﬁ s where a, and bn sat-
isfy the special property stated in (ii). The assertion now follows by
the fact that ay - bﬁ >0 (resp. = 0) if and only if a, - b, >0
(resp. = 0).

Finally, to establish (iii) we assume that the decidability of
the existence of an n such that a, = b, has been established for PDOL
length sequences a, and bn of which it is known that a, = bn holds
for every n . Let z, be an arbitrary Z-rational sequence and let

Yq be the Hadamard square of z_ . By Corollary III.7.3 in [7], there

n

are PDOL length sequences a, and bn such that Yp =8, - bn holds

for every n-, Clearly, we must have a_=z= b

0 n for every n and, con-

sequently, we can decide whether or not Yy = 0 holds for some n .
But it is obvious that Yy = ¢ holds for some n if and only if

z, = 0 holds for some n . 0

We are now in the position to establish Theorem 6. Assume that
we know an algorithm for deciding the emptiness of the language accepted

by a given T-VLSI. We show first the decidability of (1). By Lemma 7.(ii},
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it suffices to consider PDOL length sequences a, and bn where the
right side of every production in the defining systems is of .length =z=2.
We have to decide whether or not a, = bn hotds for all n . let A
and B be the axioms, and o and B the morphisms defining the PDOL
systems in guestion.

A T-VLSI G 1is now constructed as follows. We first define
the underlying labeled tree T . The root is labeled by S and the
nodes in the first Tevel are labeled by the letters of BA. (Thus,
there are a; + b] nodes in the first level.) The morphisms B and
o are now simulated on the left and right part of the tree as follows.
Assume that B(u) = V] eee Vs

i
letters u and v . By our assumption, we know that iz 2 . The be-

(resp. afu) = VH . V}), for some

ginning of the subtree starting from the node labeled by u (resp. u)

in the left (resp. right) part of T Tooks as follows:

Clearly, the tree T thus obtained satisfies the regularity condition.

From the Tength point of view it Tooks as follows:
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1
/ \

b] a1

2b] 2

by 3

2b2 a,

The terminal alphabet of our T-VLSI G consists of only one
letter ¢ . A word is accepted if and only if it comes from an even
level (i.e., 2b; - a; - level) and does not reach the right part of the
tree. This acceptance condition is easy to define formally in terms of
the g and h functions: we keep track of the leftmost node N@ of
the right part of the tree. In even levels, the input # to N£ sends
an accepting signal (letter of the operating alphabet). This is the only
possibility for acceptance.

We now claim that the language L{G) 1is empty if and only if
a, = bn holds for every n . Indeed, assume that there is an m such

that bm >ap . Consider the word w=1c¢ " . Clearly, there is not
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enough space for w in the bm -y - level, whereas on the next level

(i.e., 2b_ - a_ - Tevel} w becomés acceptable: it does not reach the

m - “m
right part of the tree. Hence L{G} 1is not empty.

Conversely, assume that L bn holds for all n . We show

that L(G) is empty. Consider an arbitrary terminal word ¢ . If

i=s b} + 2 then ¢' s clearly not accepted. Otherwise, there is a

i

unique J such that bj +a.<isbh + a. Now ¢ is fed in

J 3+ j+1

either on the ij - aj - Tevel or on the bj+1 - aj+1

cases it will be rejected because in the former case it reaches the right

- level. In both

part of the tree.

Having shown that {1) is decidable, we now prove that also (2}
is decidable (under our assumption that (3} is decidable).

By Lemma 7.(ii)-(iii), we assume that we are given the PDOL
length sequences a, and bn of which we know that a, = bn holds for
all n and that the right side of every production of the PDOL system
generating bn is of length =3 . We have to decide whether or not
a, = b, holds for some n .

We now construct a T-VLSI G' slightly different from G con-
sidered above. From the length point of view, the underlying tree is

now
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1 1
2ba+1 2,
) a5
2by+1 4,
b3 a3

(Observe that we can realize the Teft part because we applied Lemma 7.(i1)
for k = 3 .) The acceptance condition is now: . a word is accepted if
and only if it comes from the (Zbi + 1) - a; - Tevel, for some i, and
exactly fills the 1eft part of the tree on this level. (Thus, we have to
keep track also of the rightmost node in the left part.)

The reader should have no difficulties in verifying that L(G')
is nonempty if and only if there is an n such that a, = bn . This com-
pietes the proof of Theorem 6.

We mention, finally, that it is an open problem whether or not
every T-VLSI acceptable language is an EQL language. To establish effect-

ively a positive answer to this problem seems extremely difficult. The
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construction of Theorem 2 does not work because of reasons similar to the
. ones exhibited in the proof of Theorem 6. Indeed, if we can effectively
construct an EQL system accepting a given T-VLSI language, we can also

decide problems (1) and (2).
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