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5. HOMOMORPHISMS AND
CHINESE REMAINDER ALGORITHMS

An important concept in algebraic ring theory is that of a homomorphism which maps one
ring into another. This concept has been found to be an indispensible tool in the development of
efficient algorithms for various problems in symbolic computation. The basic approach in these
algorithms is to map a given domain onto one or more simpler domains (called homomorphic
images), perform the desired computations in the simpler domains, and finally to reconstruct the
-result in the original domain from the results obtained in the simpler domains. In this chapter the
algebraic theory of homomorphisms is introduced and then integer and polynomial Chinese
remainder algorithms are developed for performing the above-mentioned ‘reconstruction’.

5.1. RING MORPHISMS

In this section we introduce the concept of mapping an algebraic system onto a simpler
‘model’ of itself and, alternatively, the concept of embedding an algebraic system inte a larger
algebraic system. A related concept is that of an isomorphism between two algebraic systems
which we have already encountered in chapter 2. It is convenient to adopt the terminology of
universal algebra when discussing these concepts.

Subalgebras

By an algebra (or algebraic syster) we understand a set S together with a collection of

operations defined on S. Specifically for our purposes, by an algebra we shall mean any one of the
following types of rings:

commutative ring
integral domain
unique factorization domain (UFD)

Euclidean domain
field .

Thus the operations in the algebras we are considering are the binary operations of addition and
multiplication, the unary operation of negation, and the nullary operations of ‘select 0" and ‘select
1. In addition, if the algebra is a field then there is also the unary operation of inversion which
maps each element (except 0) onto its multiplicative inverse. When the collection of operations is
implied by context, we often refer to the algebra S when what we mean is the algebra consisting of
the set S together with the operations defined on S.

6. A binary operation takes two operands and a unary operation takes one operand. Similarly, a rullary operation
takes no operands and is simply a sefection function — in our case, the operations of selecting the additive identity
0 and the multiplicative identity 1.



Definition §.1.

Let S be an algebra. A subset S of the set S is called a subalgebra if S' is closed under the
operations defined on S. O

We use the following terminology for subalgebras of the specific algebras listed above, If S
is a (commutative) ring then a subalgebra of S is called a subring. If S is an integral domain,
UFD, or a Euclidean domain then a subalgebra of S is called a subdomain. If S is a field then a
subalgebra of S is called a subfield. For any algebra S, it is clear that if a subset S’ is closed under
all of the operations defined on S then all of the axioms which hold in S are automatically
inherited by the subalgebra §’. In particular, a subring of a commutative ring is itself a commuta-
tive ring, a subdomain of an integral domain (UFD, Euclidean domain) is itself an integral domain
(UFD, Euclidean domain), and a subfield of a field is itself a field.

Example 5.1.

In Figure 2.2 of chapter 2, if two domains S and R are related by the notation S = R then S
is a subdomain of R. For example, D[x] and D[[x]] are subdomains of Fp{(x)). Also, D(x) and
D{((x)) are subfields of Fp((x)).

Morphisms

In discussing mappings between two rings R and R’ we will adopt the convention of using the
same notation to denote the operations in R and in R* Thus + will denote addition in R or in R’,
depending on context, multiplication in both R and R’ will be denoted by juxtaposition without
any operator symbol, and 0 and 1 will denote (respectively) the additive and multiplicative
identities in R or R', depending on context. This convention is particularly appropriate in the
common situation where one of R, R’ is a subring of the other.

Definition 5.2.
Let R and R’ be two rings. Then a mapping ¢ : R = R' is called a ring morphism if
) @ +5)=¢@)+ o) forallab € R;
(i) olab) = ¢(a) ¢(b) foralla,hb € R;
(iii}) ¢)=1. O

The general (universal algebra) concept of a morphism between two algebras is that of a
mapping which preserves afl of the operations defined on the algebras. In Definition 5.2, note that
properties (i) - (iii) ensure that three of the ring operations are preserved but that no mention has
been made of the unary operation of negation and the nullary operation ‘select 0°. This is because
the two additional properties:

#(0) = 0;
¢(—a) = —¢(@) foralla ER

are simple consequences of the ring axioms and properties (i) - (iii). Similarly, if R and R’ are
fields with the additional unary operation of inversion then the ring morphism of Definition 5.2 is
in fact a field morphism because the additional property:

#a~™h) = {¢(a)]~" for all a € R-{0}

is a consequence of the field axioms and properties (i) - (iii}. Therefore in the sequel when we refer
to a morphism it will be understood that we are referring to a ring morphism as defined in
Definition 5.2,



5-3

Morphisms are classified according to their properties as functions. If ¢ : R = R’ is a mor-
phism then it is called a monomorphism if the function ¢ is injective (i.e. one-to-one), an epimor-
phism if the function ¢ is surjective (i.e. onto), and an isomorphism if the function ¢ is bijective
(i.e. one-to-one and onto). The classical term komomorphism in its most general usage is simply a
synonym for the more modern term ‘morphism’ used in the context of universal algebra. However
in common usage the term ‘homomorphism® is most often identified with an epimorphism and in
particular if ¢ : R = R’ is an epimorphism then R’ is called a homomorphic image of R.

A monomorphism ¢ : R == R’ is called an embedding of R into R’ since clearly the mapping
¢ : R = ¢(R) onto the image set

Ry ={r'e R": ¢(r)=r"' forsomer ERJ

is an isomorphism — i.e. the ring R’ contains R (more correctly, an isomorphic copy of R) as a
subring. An epimorphism ¢ : R = R’ is called a projection of R onto the homomorphic image R'.
In this terminology, it is clear that for any morphism ¢ : R = R’ the image set ¢(R) is a
homomorphic image of R. An important property of morphisms is that a homomorphic image of
a {(commutative) ring is itself a (commutative) ring. However, a homomorphic image of an integral
domain is not necessarily an integral domain (see Example 5.4).

Example 5.2,

Several instances of isomorphic algebras were encountered in chapter 2. For any commuta-
tive ring R, the polynomial domains R[x,p], R[x][y], and R[y]ix] are isomorphic; for example, the
natural mapping

¢ Rixy] = Rix]ly]
defined by

¢(ﬁ f ayxiyh =
=0 j=o is

is an isomorphism. Similarly, for any integral domain D with quotient field Fp the fields of
rational functions D{(x) and Fp(x) are isomorphic with a natural mapping between them. Also, for
any field F the fields F((x)) and F<x> are isomorphic with a natural mapping from the canonical
form of a power series rational function in F({x)) onto an extended power series in F<x>. 0O

(
0=

aijx)y/
0

Example 5.3.
Let D be an integral domain and let Fp be its quotient field. The mapping

¢:D—Fp
defined by

¢@) =fa/l] foralla €D
is a monomorphism. Thus ¢ is an embedding of D into Fp and we call Fp an extension of D (the
smallest extension of the integral domain D into a field). 0O
Example 5.4.

Let Z be the integers and let Zg be the set of integers modulo 6. Let ¢ : Z — Zg be the
mapping defined by

¢(a) = rem{a,6) foralla € Z

where the remainder function ‘rem’ is as defined in chapter 2, Then ¢ is an epimorphism and thus
¢ is a projection of Z onto the homomorphic image Zg. Zg is 2 commutative ring because Z is a
commutative ring. Zg is not an integral domain (see Exercise 2-3) even though Z is an integral
domain. OO



Example 5.5.

Let R and R’ be commutative rings with R a subring of R'. Let R[x] be the commutative
ring of univariate polynomials over R and let

¢:Rxj—> R’
be the mapping defined by
#lalx)) = afo)

for some fixed element & € R’. (i.e. The image of a(x) is obtained by evaluating a(x) at the value
x = a). Then ¢ is a morphism of rings. O

Modular and Evaluation Homomorphisms

In the sequel the morphisms of interest to us will be projections of a ring R onto (simpler)
homomorphic images of R. In keeping with common usage we will use the term *homomorphism’
for such projections. We now consider two particular classes of homomorphisms which have many
practical applications in algorithms for symbolic computation,

The first homomorphism of interest is a generalization of the projection of the integers
considered in Exampte 5.4. Formally, a modwlar homomorphism

bm i Zlt . ] Zalon 3
is a homomorphism defined for a fixed integer m & Z by the rules:
bmix)=x;, forlgi v,

¢m{a) = rem(am), for all coeflicients a € Z.

In other words, a modular homomorphism ¢, is a projection of Z[x ..., xy] onto
Zylxy,....x,] obtained by simply replacing every coeflicient of a polynomial
a(x}) € Z[xy, . .., x,] by its ‘modulo m’ representation. Of course ¢,, remains well-defined in the

case v = 0 in which case it is simply a projection of Z onto Z,,.

Example 5.6.
In Z[x,y] let a(x,y) and b(x,y) be the polynomials
N alxy)= 3x2y2 - xzy +5x2 4 xy2 — 3xy;
(2) blxy) =2y +Tx +p2-12.

The modular homomorphism ¢s maps these two polynomials onto the following polynemials in the
domain Zslx,y 1:

¢s(alx,y)) = 3x2y2 + 4x2y + Jury2 + 2xy;
és(b(xp)) = 2y + 2x + y2 4 3.

Similarly, the modular homomorphism ¢7 maps (1) - {2) onto the following polynomials in the
domain Z7lx,y I:

¢alxy)) = x Wl 4+ 6xY + 5x2 + xp2 + dxp;
Sy =2xy +y2+5 O

The second homomorphism of interest is a special case of the ring morphism considered in
Example 5.5 applied in the context of a multivariate polynomial domain Dfx, ..., x,]. In the
notation of Example 5.5, we identify x with a particular indeterminate x; and we choose

R=R =Dx,...,X-1.Xi4+1,- - - Xy]



so that

Rix}=Dlxy, ..., x].
Formally, an evaluation homomorphism

bxj—a Dlxy,....x, ] Dlxp ... %=1 Xi41. ..., X}
is a homomorphism defined for a particular indeterminate x; and a fixed element @ € D such that
for any polynomial a(x,. .., x,) € D[x|, ..., x,),

Gx=afalcy, Lo X)) = A00n L X & XL, Xy
In other words, an evaluation homomorphism ¢, is a projection of D[x). ..., xy] onto
Dlxy, ..., Xi—1. Xi+1, .. .. X,] obtained by simply substituting the value @« € D for the i-th

indeterminate x;. Thus the notation ¢y, can be read ‘substitute a for x;*. (The particular choice
of notation bx;—a for an evaluation homomorphism is such that the subscript x;—a corresponds to

the subscript m in the notation ¢,, for a modular homomorphism. The reason for this correspon-
dence of notation will become clear in a later section).

Compositions of modular and evaluation homomorphisms will be used frequently in later
chapters for projecting the multivariate polynomial domain Z[x, ..., x,] onto simpler
homomorphic images of itself. In most such applications a modular homomorphism ¢,, where p
is a positive prime integer, will be chosen to project Z[xy, ..., x,] onto Zy[xy. ..., x,] where
the coefficient domain Z, is now a field. A sequence of evaluation homomorphisms (one for each
indeterminate) can then be applied to project the multivariate polynomial domain Zp[x 1, . . ., xy]
onto a homomorphic image of the form Zplx ] (a Euclidean domain) or, if desired, onto a
homomorphic image of the form Z, (a field). It will be seen in later chapters that for the problem
of GCD computation in Zfxy,. .., x,], and also for the problem of polynomial factorization in
Zfxy, ..., xy], very efficient algorithms can be cobtained by projecting to homomorphic images of
the form Z,[x |} where the ordinary Euclidean algorithm applies. The following example considers
the more elementary problem of polynomial multiplication in which case projections onto fields Z,
are appropriate.

Example 5.7.
In the domain Z[x] let

a(x)=Tx + 5;
bix) = 2x - 3.

Suppose we wish to determine the product polynomial
c(x) = a(x)b(x).

Rather than directly multiplying these polynomials in the domain Z[x] we could choose to project
Z[x] onto homomorphic images Z, and perform the (simpler) multiplications in the fields Z,. For
example, the composite homomorphism

Gx-0¢s5: Llx] > Zs

maps a(x) and b(x) as follows:

@5 ¢x —0
ax)=+2x — 0;
(2] $x -0

b{x)> 2 +2 -+ 2.

Thus the product in this particular homomorphic image Zs is 0 X 2 = 0. Using standard
congruence notation for ‘mod p’ arithmetic we represent this as follows:

¢(0) = 0(mod 5).
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Similarly, applying the composite homomorphism ¢y -y ¢5 yields:
5 $x—1
ax)—+2x - 2;

és x—1
bx)=+>2x +2 — 4,

This time the product in Zsis 2 X 4 = 3, Thus,
c(1) = 3(mod 5).

Similarly, we find
¢(2) = 4(mod 5)

by applying the composite homomorphism ¢, -3 ¢5. If in addition we apply the triple of compo-
site homomorphisms:

Sx-0¢7: Gx—1987; dx-297
each of which projects Z[x] onto Z7, we get

¢(0) = 6({mod 7);

c(l) = 2(mod 7);

¢(2) = 5(mod 7).

The above process is only useful if we can ‘invert’ the homomorphisms to reconstruct the
polynomial ¢(x) € Z[x], given information about the images of c(x) in fields Z;,. The inverse pro-
cess involves the concepts of interpolation and Chinese remaindering which will be discussed later
in this chapter. Briefly, since we know that deg[c{x)] = degla(x)] + deg[b(x)] = 2, the polynomial
¢(x) is completely specified by its values at 3 points. Using the above information, we obtain by
interpolation:

c(x) = 4x2 + 4x (mod )
cfx) = 3x + 6(mod 7).

Thus we know the images of o(x) in Zs[x]} and in Z7[x]. Finally, we can determine
cox) = cx? 4 cx +co€ Zfx]

by a process known as Chinese remaindering. For example, since we know that
¢y = 4(mod 5) and c3z = O{mod 7)

we can determine that
c2 = 14(mod 35)

(where 35 = § X 7). We eventually get:
c(x)=Mx?-1lx —15€Zx]. O

5.2, CHARACTERIZATION OF MORPHISMS

Ideals

A ring morphism ¢ : R = R’ can be conveniently characterized in terms of its action on par-
ticular subsets of R known as ideals.



Definition 5.3.
Let R be a commutative ring. A nonempty subset I of R is called an ideal if
M ae-b €1 foralla, b €1;
(i) ar€l foralla € landforallr € R. 0O
Two very special ideals in any commutative ring R are the subsets {0} and R since properties
(i) and (ii) of Definition 5.3 are clearly satisfied by these two subsets. We call [0} the zero ideal
and R the universal ideal. By a proper ideal we mean any ideal I such that I # {0} and I # R.
Note that the subset {0} is not a subring of R according to Definition 5.1 since it is not closed

under the nullary operation ‘select 1’ defined on R (i.e. [0] does not contain the multiplicative iden-
tity of R). This is a characteristic property of ideals which we formulate as the following theorem.

‘Theorem 5.1.

Every proper ideal I in a commutative ring R is closed under all of the ring operations
defined on R except that I is not closed under the nullary operation ‘select 1" (i.e. 1 & I).
Proof:

It is easy to verify that property (i} of Definition 5.3 guarantees that I is closed under the
operations + (binary), — (unary), and ‘select 0' (nuilary). (Indeed property (i} is used precisely
because it is sufficient to guarantee closure with respect to these three ‘group’ operations). It is
also trivial to see that property (i) guarantees that 1 is closed under multiplication. As for the nul-
lary operation ‘select 1°, if 1 € I then by property (i) rE 1forallr € R — j.e. ] = Rsothatlis
not a proper ideal. [

The crucial property of an ideal 1, apart from the closure properties of Theorem 5.1, is the °
‘extended closure’ property (ii) of Definition 5.3 which guarantees that I is closed under multiplica-
tion by any element of the ring R.

Example 5.8,

In the integral domain Z of integers, the subset

<m>=f(mr:r=0, %}, %2, -}

for some fixed integer m € Z is an ideal called the ideal generated by m. For example, the ideal
<4> is the set

<4> = {0, £4, £8 12, ---} 0O

Example 5.9.
In the polynomial domain Q[x], the subset
<p(x)> = {p(x) alx) : afx) € Q[x]}

for some fixed polynomial p(x) € Qfx] is an ideal called the ideal generated by p{x}). For exam-
ple, the ideal <x — a> for some fixed @ € Q is the set of all polynomials over Q which have
x — a as a factor (i.e. polynomials a(x) such that a(e) = 0). O

Example 5.10.
In the bivariate polynomial domain Z[x,y], the subset
<pifey). paey)> = Ipiley) a1ley) + palxy) afxy) : ayley). akxy) € Zoyli
for some fixed polynomials pi(x.»). pAx.»} € Z[x,y] is an ideal called the ideal generated by
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pi(x,y) and pa(x.y). For example, the ideal <x,p> is the set of all bivariate polynomials over Z
with constant term zero. Also note that <y — a> for some fixed &« € Z is an ideal in Z[x,y]
consisting of all bivariate polynomials over Z which have y — a as a factor (i.e. polynomials
a(x,y) such that a(x,a) = 0). Similarly <m> for some fixed integer m € Z is an ideal in Z[x,y]
consisting of all bivariate polynomials whose integer coefficients are multiples of m. 0

The fact that an ideal I in a commutative ring R is closed under addition and is closed under

multiplication by any element of R, implies that if I contains the n elements @, . . . , @, then it

must contain the set of all linear combinations of these elements, defined by:
<ap,...,ap>=fayr1+ -+ +aurp:ri €ER

On the other hand, it is easy to verify that for any given elements @1, ..., a, € R, the set

<@y ...,an> of all linear combinations of these elements is an ideal in R. The ideal

<aj, ..., an> is called the ideal with basis ay,. .., an

Definition 5.4.

An ideal I in a commutative ring R is called an ideal with finite basis if I can be expressed as
the set <ay,...,ay> of all linear combinations of a finite number » of elements 4y, .. ., 2, €
R. O

Definition 5.5.

An ideal I in a commutative ring R is called a principal ideal if 1 can be expressed as the set
<g> of all multiples of a single elementa € R. O

Domains with Special Ideals

Definition 5.6.

An integral domain D is called a Noetherian integral domain if every ideal in D is an ideal
with finite basis. O

Definition 5.7.

An integral domain D is called a principal ideal domain if every ideal in D is a principal
ideal. D3

It can be proved that every Euclidean domain is a principal ideal domain and therefore the
domains Z and Q[x] considered in Examples 5.8 and 5.9 are principal ideal domains. The polyno-
mial domain Z[x,y] considered in Example 5.10 is an example of an integral domain that is not a
principal ideal domain since it is not possible to generate the ideal <x,y >, for example, by a single
element. However it can be proved that if D is a Noetherian integral domain then so is the
domain D[x}, which implies by induction that Z[x,y] and indeed any multivariate polynomial
domain over Z or over a field is a2 Noetherian integral domain.

In the hierarchy of domains given in Table 2.3 of chapter 2, the principal ideal domain lies
between the unique factorization domain (UFD}) and the Euclidean domain (i.e. every Euclidean
domain is a principal ideal domain and every principal ideal domain is a UFD). However the mul-
tivariate polynomial domains considered in this book are Noetherian integral domains but are not
principal ideal domains. The abstract concept of a Noetherian integral domain, unlike a principal
ideal domain, is not simply a UFD which satisfies additional axioms. (For example, the integral
domain

S={a+bvV-5: ab el
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considered in Exercises 2-8 and 2-9 is a Noetherian integral domain but is not a UFD).

In the sequel we will require the concepts of the sum and product of two ideals and also the
concept of an integral power of an ideal. These concepts are defined in the following definition in
the context of an arbitrary Noetherian integral domain. Before proceeding to the definition let us
note the following generalization of our notation for specifying ideals in a Noetherian integral
domain D. If I and J are two ideals in D then by the notation <I, J> we understand the idea!
<ap...,anby1,...,bp> where a),...,8,€ D forms a basis for 1 and where
b1,...,bm € D forms a basis for J (i.e. ] = <ay,....,a,> and J = <by, ..., bpu>). The
notation <I, 5> or <b, I> where b € D and 1 is an ideal in D is similarly defined — i.e. <I, b>
=<1, <b>>.

Definition 5.8,

Let I and J be two ideals in a Noetherian integral domain D and suppose I =
<ap...,ap> J=<byp ..., by>forclementsg; €ED(1 i <n) b;ED(1 €j < m)

(i) The sum of the ideals I and J in D is the ideal <L, J> = <ay,...,a, by, ..., 0>
Note that the ideal <I, J> consists of all possible sums @ + & wherea € 1l and b € J.

(ii) The product T - J of the ideals I and J in D is the ideal generated by all elements a; b, such
that a; is a basis element for I and b; is a basis element for J. Thus the product can be
expressed as

1-J=<aybaby....a1hym.azb,a2ba, ...,a20;, ..., apb 1, a5ba, ..., ayb,>.

(iii) The i-th power of the ideal I in D (for i a positive integer) is defined recursively in terms of
products of ideals as follows:
=1,
F=1-F"1 forip»2 O

The application of Definition 5.8 to the case of principal ideals should be noted in particular.
For the product of two principal ideals <a> and <b> in D it follows from Definition 5.8 that

<a>- - <b> = <agh>.
Similarly for the i-th power of the ideal <a> in D we have
<a>'=<a®> fori » 1.

The sum of the ideals <a > and <&> in D is simply the ideal <a, b> which may not be a princi-
pal ideal. However if D is a principal ideal domain then the sum <a,b> must be a principal ideal.
It can be proved that in any principal ideal domain,

<g, b> = <GCD(q, b)>.

(Note that since D is a principal ideal domain it is also a UFD and therefore the GCD exists by
Theorem 2.1).

The Characterization Theorem

Definition 5.9.

Let R and R’ be commutative rings and let ¢: R = R’ be a morphism. The kernel K of the
morphism ¢ is the set defined by:

K=¢"'(0)={a:a€Rand ¢(a)=0. 0O
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Theorem 5.2.

Let R and R’ be commutative rings. The kernel K of a morphism ¢ : R = R’ is an ideal in
R.

Proof:
The set K is not empty since ¢(0) = 0. If a,b € K then
#a —b)=¢@ —¢b)y=0-0=0

so that @ — b € K, proving property (i) of Definition 5.3. Similarly property (i) holds because if
a € K and r € R then

dlar) = ¢pla)p(r)=0-¢(r)=0
sothatar € K. 0O

There is a direct connection between the homomorphic images of a commutative ring R and
the set of ideals in R. Recall that every morphism ¢ : R = R' determines a homomorphic image
¢(R) of the ring R. We see from Theorem 5.2 that to each morphism ¢ : R — R’ there
corresponds an ideal in R which is the kernel K of ¢. Conversely, we shall see in the next section
that to each ideal I in R there corresponds a homomorphic image R’ of R such that I is the kernel
of the corresponding morphism ¢: R — R'. We first prove that a homomorphic image of R is
completely determined (up to isomorphism} by the ideal of elements mapped onto zero.

Theorem 5.3. Characterization Theorem.

Let R be a commutative ring and let K be an ideal in R. If ¢;: R = R’ and ¢2: R+ R”
are two morphisms both having kernel K then the correspondence between the two homomorphic
images ¢1(R) and ¢{R) defined by

¢i{a) e ¢xfa)foralla ER

is an isomorphism.

Proof:

Suppose ¢; and ¢2 have kernel K. The correspondence mentioned above can be formally
specified as follows. For any element o € ¢(R) the set of pre-images of « is the set

¢7'(@) = [ €R: $i(a) = a}.
We define the mapping
¥:¢1(R) > ¢2(R)
by
3) Y@ = ¢(¢7 (@) for all & € $1(R)
where we claim that the image under ¢ of the set ¢ l(a:) is a single element in ¢ R). To see
t!n's. note that if a,b € R are two elements in the set ¢ l(cz) then a — b € K (the kernel of ¢)
since
dile —b)=¢il@) -~ gib)=a—-a=0.
Hence,
@@ — b) = daa) — ¢xfb) =0
(because K is also the kernel of ¢2) yielding
dxa) = ¢a(b).
Thus (3) defines a valid mapping of ¢1(R) into ¢(R) and clearly ¢ specifies the correspondence
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mentioned above. We may calculate (3) by letting a € ¢ '(e) be any particular pre-image of a
and setting ¥(a) = ¢xa).

We now claim that ¢ is an isomorphism. Properties (i) - (iii) of Definition 5.2 are satisfied
by ¢ because they are satisfied by the morphisms ¢; and ¢2. To see this, for any a,8 € ¢1(R) let
a€¢y ](a) and b € ¢ '(ﬁ) be particular pre-images of a and B, respectively. Then a particular
pre-image of @ + 8 € $(R) is the element a + & € R since

die +b)=¢1a)+ b)) =a +§
similarly, ab € R is a particular pre-image of af € ¢(R). Thus,
Vi +B) = 6o (o + B) = ¢2la + b) = ¢2a) + ¢2b) = Ya) + ¥B)
and
(B} = ¢2(67 (aB)) = ¢xab) = ¢xa) ¢2(b) = Y(a) ¥(6)
verifying properties (i) and (ii). To verify property (iii), note that 1 € R is a particular pre-image
of 1 € ¢1(R) because ¢1(1) = 1 (i.e. ¢ is a morphism) and therefore
Y1) = ¢2(7 (1)) = ¢2(1) = 1

(because ¢7 is a morphism). We have thus proved that ¢ is a morphism. It is easy to see that the
mapping y is surjective since the mappings

¢1: R— ¢i(R) and ¢3:R = ¢2(R)
are surjective. To see that ¢ is injective, let @, 8 € ¢1(R) have particular pre-images a,b6 € R (i.e.
a = ¢i(a)and B = ¢;(b)}) and suppose that Y{a) = Y{8). Then we have
e (@) = d2Aei B
= ¢2(a) = ¢Ab)
=g — b € K (the kernel of ¢2)
= ¢1{a) = ¢1(b) (because K is the kernel of ¢ 1)
= a = f.
Hence the mapping ¢ is injective and y defines an isomorphism between ¢3(R) and ¢xR). O

Corollary to Theorem 5.3.
Let ¢ : R — R’ be a morphism between commutative rings R and R'. If K denotes the ker-
nel of ¢ then:
(i) K = {0} if and only if ¢ is injective (i.e. ¢(R) = R in the sense of isomorphism);
(i) K =R ifandonlyif ¢(R) = [0].

Proof:
i) If ¢ is injective then K = {0} because ¢(0) = 0. In the other direction, suppose K
= [0}. Then since the identity mapping & : R — R is also a morphism with kernel
{0}, we have from Theorem 5.3 that the mapping ¢ : R ~» #(R) is an isomorphism;
i.e. ¢ is injective.
(if) By definition of the kernel K, if ¢(R) = {0} then K = R and if K = R then ¢(R) =
0. 0O

By Theorem 5.3, we can specify a homomorphic image of a commutative ring R by simply
specifying the ideal of elements which is mapped onto zero. The above corollary specifies the two
‘degenerate’ cases corresponding to the two choices of ideals which are not proper ideals. By a
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proper homomarphic image of a commutative ring R we mean a homomorphic image specified by
a morphism ¢ whose kerne! is a proper ideal in R.

5.3. HOMOMORPHIC IMAGES

Quotient Rings

If R is a commutative ring and if I is any ideal in R, we now show how to construct a
homomorphic image ¢(R) such that 1 is the kernel of the morphism ¢. Note that if ¢ : R = R’ is
to be a morphism with kernel I then we must have

¢a) = ¢(b)ifand only ifa —= b € 1.
We therefore define the following congruence relation on R:
(4) a=pifandonlyifa ~b €1

It is readily verified that the congruence relation ® is an equivalence relation on R and it therefore
divides R into equivalence classes, called residue classes. For any element @ € R, it is easy to
prove that every element in the set

a+l=la+c:c€I}

belongs to the same residue class with respect to the congruence relation =, that @ € a + 1, and
moreover that if & is in the same residue class as a (i.e. if b % a) then » &€ a + 1. Thus the resi-
due class containing & is precisely the set a + L.

The set of all residue classes with respect to the congruence relation = defined by (4) is called
a quotient set, denoted by

R/l={a+1: a €R

(read ‘R modulo the ideal I'). Note that if @ and b are in the same residue class (i.e. if @ = b)
then a + 1 and b + I are two representatives for the same element in the quotient set R/I. We
define the operations of addition and multiplication on the quotient set R/I, in terms of the
operations defined on R, as follows:

5) @+D+G+Dh=@+b)+1;
6 @+ +D=(@)+1L

Using the fact that I is an ideal, it can be verified that the operations of addition and multiplica-
tion on residue classes in R/I are well-defined by (5) - (6) in the sense that the definitions are
independent of the particular representatives used for the residue classes. (Note that the terminel-
ogy being used here is very similar to the terminology used in chapter 2 for defining the quotient
field of an integral domain). The following theorem proves that the quotient set R/I with the
operations (5) - (6) is a commutative ring, and R/I is called the quotient ring of R modulo the
ideal 1. Moveover, the theorem specifies a ‘natural’ homomorphism ¢ : R = R/I such that I is
the kernel of ¢ and the quotient ring R/I is the desired homomorphic image of R.

Theorem 5.4.

Let R be a commutative ring and let I be an ideal in R. The quotient set R/I is a commuta-
tive ring under the operations (5) - (6} and the mapping ¢ : R = R/I defined by

¢lay=a +1 foralla € R

is an epimorphism with kernel 1.
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Proof:

First note that the residue ctasses 0 + T and 1 + I act as the zero and identity (respectively)
in R/I since from (5) - (6) we have:

@+Dh+@O0©+N=a+1 foranya + 1€ R/L;
(@+D(1+l)=a+1 foranya + 1€ R/L
Now consider the mapping ¢ : R = R/I defined by
¢(@)=a +1 foralla € R.
It follows immediately from (5) - (6) that for any @, & € R,
gpla+b)=(@a+b)+1=@+D+{ +1)=da)+ o)
and .
dlab)=(@h)+1=(a + D@ + 1) = ¢a) $(d).
Also,
dy=1+1

by definition of ¢. Thus ¢ is a morphism according to Definition 5.2. But ¢ is surjective by the
definition of R/I, so ¢ is an epimorphism. The fact that R/I is a homomorphic image of R
implies that R/ is a commutative ring. Finally, we can prove that the kernel of ¢ is precisely I as
follows:

a€l = ¢a)=a+1=0+1
and

¢a)=0+1 = a+1=0+] = a—-0€I = a€l. O

Example 5.11.

In the integral domain Z of integers, we noted in Example 5.8 that <m > is an ideal, for
some fixed m € Z. Thus the quotient ring Z/<m > is a homomorphic image of Z and <m > is
the kernel of the natural homomorphism ¢ : Z -+ Z/<m>. Assuming that m is positive, the
elements of Z/<m> are given by:

Z/<m> = {0+<m>,14<m>,... , m—t + <m>}

We usually denote Z/<m> by Z, (the ring of integers modulo m) and we may denote its
elements simply by

f0,1,...,m~—1}.

The natural homomorphism is precisely the modular homomorphism ¢,,: Z - Z,, defined in sec-
tion5.1. DO

Example 5.12.

In the polynomial domain Q[x], we noted in Example 5.9 that <p(x)> is an ideal for a fixed
polynomial p(x) € Q[x]. Thus the quotient ring Q[x]/<p{x)> is a homomorphic image of
QIx] and <p{x)> is the kernel of the natural homomorphism ¢ : Q[x] = Q[x]/<p(x)>. Two
polynomials a(x), b{x} € Q[x} are in the same residue class if they have the same remainder after
division by p(x). In particular if p(x) = x — a for some constant &« € Q then

Qix}/<x ~a> ={r+ <x —a>: r e Q}.

In this case we may identify Q[x]/<x — a> with Q and the natural homomorphism is precisely
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the evaluation homomorphism ¢y -o: Q[x] = Q defined in section 5.1. (See Exercise 5-14). O

Example §.13.

In the bivariate polynomial domain Z[x,y}, we noted in Example 5.10 that <m > is an ideal
for some fixed integer m € Z. The quotient ring Z[x,y}/<m > can be identified with the ring
Z,[xy] and the natural homomorphism is precisely the modular homomorphism
&m: Z[x,y] = Zplx,y ] defined in section 5.1. We also noted in Example 5.10 that <y — a> is
an ideal in Z[x,y], for some fixed « € Z. The quotient ring Z[x,y]/<y — a> can be identified
with the ring Zfx] (see Example 5.12) and the natural homomorphism is the evaluation homomor-
phism ¢y —o: Z[x,y] = Z[x] defined in section 5.1. (See Exercise 3-15). O

Ideal Notation for Homomorphisms

The choice of notation used for the modular and evaluation homomorphisms defined in sec-
tion 5.1 and used in the above examples can now be justified. In general if R is a commutative
ring then any ideal I in R determines a homomorphic image R/l and we use the notation ¢; to
denote the corresponding natural homomorphism from R to R/I. Thusif R = Z[x, ..., x,] and
if 1 =<m> for some fixed integer m € Z then ¢<m> (or simply ¢;,) denotes the modular
homomorphism which projects Zfxy,. .., x,] onto Zfx,, ..., x,)/<m> =2Z,[xy....x]
Similarly for the evaluation homomorphism we have R = D[x,, ..., x,] for some coefficient
domain D (usually D will be a field Z;, in practical applications), and if I = <x; — @> for some
fixed @« € D then ¢y —a> (or simply ¢y, —o) denotes the evaluation homomorphism which
projects D[xy, ..., x,]Jonto Dlxy, ..., x,}/<xj—a> = Dlx;, ..., Xi=1, Xi41, . - . 2 Xy].

As we have noted previously, modular and evaluation homomorphisms will be used in prac-
tice to project the multivariate polynomial domain Z[x,,...,x,] onto a Euclidean domain
Z,{x1] or else onto a field Z,. For example the projection of a polynomial domain
D[x}. ..., x,] onto its coefficient domain D can be accomplished by a composite homomorphism
of the form

¢x|—a1 ¢x2—a2 e ¢xv—a‘,

where @; € D, 1 € i € v. It is convenient to express such a composite homomorphism as a single
“homomorphism ¢; but in order to do so we must specify the kernel I of the composite homomor-
phism. The following theorem proves that under special conditions (which are satisfied in the cases
of interest here) the kernel of a composite homomorphism is simply the sum of the individual
kernels, where the ‘sum’ of two ideals was defined in Definition 5.8.

Theorem 5.5.
Let Dfx), ..., x,) be a polynomial domain over a UFD D. Let ¢y, -4, be an evaluation
homomorphism defined on D[x1, . . ., x,] with kernel <x; —a;> and let ¢| be another homomor-

phism defined on Dfxy, ..., x,] with kernel I. Suppose that the homomorphism ¢; is indepen-
dent of the homomorphism ¢y, — o in the sense that the composite mappings x;—a; B1 and
#1 b, — o are valid homomorphisms defined on D(xy, . . ., xy} and moreover the composition of
these two homomorphisms is commutative (i.e. ¢x; —a; #1 = 1 $x; — ;). Then the kernel of the
composite homomorphism is the sum <x; — a;, [> of the two kernels. Notationally,

bx; - oy B1= b<x;—ay, I>
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Proof:

We must prove that for any polynomial a € D[x1, ..., X)), ¢x; —¢; ®1(2) =0 if and only
ifa € <x; — a;, 1>,
f-

Suppose @ € <x; — a;, I>. Then a = p + r for some polynomials p € <x; = a;> and
r € 1. Hence

bry— oy 91 (@) = 6z —a; 1 () + Py 91 ()
= ¢x; —o; ¢1 {p) because r € I
= @I ¢x; —a; (P) DY commutativity
=0 becausep € <x; — a;>.

‘only if

Suppose ¢y, —o; ¢1 (@) =0 for a polynomial @ € Dixy, ..., x,]. Consider the polynomial
domain Dix,...,x,] as the univariate domain Clx;] over the coefficient domain C =
Dlxy,....%—1.Xi+1. ..., Xxy]. Then since C[x;] is a UFD the pseudo-division property holds

and applying it to the polynomials @ and (x; — a;), we can write

(N a=k—aedg+r
for some polynomials g,r € Clx;] with either r = 0 or 8;[r] < &;[x; — ;] = 1. (Note that in
applying the pseudo-division property to obtain (7) we have used the fact that the leading
coefficient of the ‘divisor® x ;— @ ;is 1). Hence a can be expressed as the sum (7) where the first

term of the sum is clearly a member of the ideal <x; — a;> and it remains only to prove that r €
1. We will then have the desired result that ¢ € <x; — a;, I>.

To prove that r € 1, apply the composite homomorphism ¢x; — o, @1 to equation (7). Then
since by supposition ¢y, — o ¢1(a) = 0 we get

0= o¢x—a; 91 ((x; —a)g) + bx; — o ¢1(r)
= @1 by, —o; (r) by commutativity
= ¢1 (r) because eitherr =0 or 4;[r] =0

(where in the last step we have used the fact that the evaluation homomorphism ¢y, — g, clearly

acts as the identity mapping on any polynomial r which is independent of x;}. But ¢1(r) = 0
implies that r € 1. [

From Theorem 5.5 we see that if ¢y, —q and ¢,j_,,j (j # i) are two distinct evaluation
homomorphisms defined on a polynomial domain D{xy, . . . , xy] (where D is a UFD) then

¢x,- —ay ¢Xj —a; = ¢<x,“a,-,xj-—aj>'

By repeated application of Theorem 5.5 we have the more general result that for any » distinct

evaluation homomorphisms ¢x | —ap . - « . ®x, -, defined on D{x 3, ..., x,), where 1 < n € v,
xy—ap Pxgmay T Pxy—ay = @<xy—ap, ... xp —ag>
Thus the notation x| ~ay,..., xp —ay> €an be read ‘substitute a; forx; 1 €i < n' and we call

this a multivariate evaluation homorphism. (Note that the order in which the substitutions are
performed is irrelevant).
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It also follows from Theorem 5.5 that if ¢,: Z[xy, . .., xy] = Zplxy, . . ., xy] is a modular
homomorphism (with p a prime integer) and if

b —a;t Lpbxy, .. ., x> Lot o Xiop X412 Xy)

is an evaluation homomorphism (with a; € Zp) then
Oxi—a; Op = $<x; —aj. p>

Again by repeated application of Theorem 5.5 we can generalize this result to show that
P1¥p = d<ip>

if T is the kernel of a multivariate evaluation homomorphism. In practical applications the most
commonly used homomorphisms will be of the form

$<tp>i Ll ... xy] > ZLplxd]

where 1 = <xy—a3, ..., xy—ay> with a; €EZ, (2 < i € v). For implementation purposes a
composite homomorphism ¢<r,p> where p is a prime integer and 1 is the kernel of a multivariate
evaluation homomorphism will be viewed as the composition of precisely two mappings, namely a
modular homomoerphism

Sp: Zlx1, .. .. x] > Zplxy, . ... %]
followed by a multivariate evaluation homomorphism
o Lplx ..o 0] = Zplxy, ..o x]/L

The notation ¢<1,p> will be freely used for this pair of mappings but for computationél efficiency
it will be important that the order of application of the mappings is as specified above, namely
b<ip> = ¢1¢p.

Congruence Arithmetic

1t is useful to formally specify a congruence notation that is used when performing arithmetic
on residue classes in a homomorphic image R/I of a ring R. Recall that if I is an ideal in a com-
mutative ring R then the residue classes (i.e. equivalence classes) which form the quotient ring R/1
are determined by the congruence relation = defined on R by

amp ifandonlyif a —b €1.
We read this relation as ‘a is congruent to & modulo I’ and we write
a = b (mod I).

In the particular case where 1 is a principal ideal <g> for some fixed ¢lement ¢ € R, we write
(mod g) rather than (mod <g>). (This notation was already seen briefly in Example 5.7 for the
particular case of ‘modulo p’ arithmetic in the quotient ring Z/<p > = Z,).

We will have occasion to solve certain equations involving the congruence relation =, so let
us note some useful properties of ® in addition to the standard properties of an equivalence rela-
tion. For any commutative ring R and 1 an ideal in R we have the following relationships. For
any a,b,c,d € R, if @ = b (mod I) and ¢ = 4 (mod I) then

8) a+c=mb+d(medly
9 a-c=b—d(modl)
(10) ac = bd (mod I).
For (8)-and (9) it is easy to see that
@xe)~-(bxdy=(a—-b)yx(c -d)eEL
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The proof of (10} is only slightly less obvious, namely
ac —bd =cf@a -b)+b(c ~d)EL

We will need another property which will allow us to solve a congruence equation of the
form

ax = b (mod I)

for x if @ and b are given. Clearly if there is an element, say a ), such that aa "' = 1(mod 1)
then by (10) it follows that aa “lp mp (mod 1) so that choosing x = g ~1p yields a solution to the
given congruence equation. Since an element in an arbitrary commutative ring does not necessarily
have a multiplicative inverse, the property which will allow us to solve congruence equations in the
above sense will be less general than properties (8) - (10).

In order to obtain the desired property we will restrict attention to the case where the ring R
is a Euclidean domain D. As we noted in section 5.2, every ideal I in a Euclidean domain D is a
principal ideal so I = <g > for some fixed element ¢ € D. The following theorem states a condi-
tion under which an element @ € D has an inverse modulo <g>. The proof of the theorem is
constructive — i.e. it gives an algorithm for computing inverses modulo <g>.

Theorem 5.6.
Let <g> be an ideal in a Euclidean domain D and let a € D be relatively prime to g (i.e.
GCD{a.g) = 1). Then there exists an element a ~! € D such that
a ' = 1 (mod g).

This is equivalent to saying that in the homomorphic image D/<g > the element ¢,{(a) has a mul-
tiplicative inverse.

Proof:

Since D is a Euclidean domain we can apply the extended Euclidean algorithm (Algorithm
2.2)to a9 € D yielding elements 5t € D such that

sa+ig =1,

where we have used the fact that GCD{a,g) = 1. Thense — 1 € <g>, or s » 1(mod g). Thus
a~! = 5 is the desired inverse.

To show the equivalence of the last statement in the theorem, first suppose that
aa”!'= 1(mod q). Thenaa™! - 1€ <g>, so ¢q(aa'l— 1) = O which yields ¢q(a)¢q(a"’) =1
—ie. ¢q(a") is the multiplicative inverse of ¢4(a) in D/<g>. In the other direction, suppose
¢q4(a) has a multiplicative inverse b € D/<g>. Then there is an eclement & € D such that
¢q(b) = b. We have ¢q{a)dy(b) = 1 which implies that ¢g(ab —1) =0, 0rab — 1 € <g>, or
ab = I(modg). O

Finally we are able to state the property of congruence relations that we have been secking.
For any Euclidean domain D and <g > the ideal generated by a fixed element g € D the follow-
ing property holds:

{11) For any a.b € D with a relatively prime to g there is an element 2 ~! € D which is
the inverse (mod g ) of @ and any element x € D such that

x = g~ b (mod q)
is a solution of the congruence equation
ax ® b {mod g).
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5.4, THE INTEGER CHINESE REMAINDER ALGORITHM

We now turn to the development of algorithms for inverting homomorphisms. The basic
tenet of these ‘inversion’ algorithms is that under appropriate conditions an element a in a ring R
can be reconstructed if its images ¢1e), { = 1,2, - - - are known in an ‘appropriate number’ of
homomorphic images R/I; of R.

The Chinese Remainder Problem
Recall that for any fixed integer m € Z the modular homomorphism ¢, : Z— Z,, which
projects the ring Z of integers onto the finite ring Zp, of ‘integers modulo m’ is specified by
(12) ¢mla) = reml{a,m) foralla € Z. V
Using congruence notation, if a € Z and if ¢,»(2) = @ € Z,, then we write

a = g (mod m).

The classical mathematical problem known as the Chinese remainder problem can be stated
as follows:

Given moduli mo, m |, . . ., my € Z and given corresponding residues u; € Ly, 0 € i € 1,

find an integer u € Z such that

u =y (modm), 0Kighn

(This problem, in a less general form, was considered by the ancient Chinese and by the ancient
Greeks about 2000 years ago). Note that an algorithm for solving the Chinese remainder problem
will be an algorithm for ‘inverting’ the modular homomorphism, since if we know the images
(residues) u; = ¢y, (u) of an integer u, for several modular homomorphisms ¢, then such an
algorithm will reconstruct the integer u. (More correctly, the latter statement will be true once we
have determined conditions such that there exists-a unigue integer u which solves the problem).
The following theorem specifies conditions under which there exists a unique solution to the
Chinese remainder problem.

Theorem 5.7. Chinese Remainder Theorem.

Let the moduli mg, m\, ..., m, € Z be integers which are pairwise relatively prime — i.e.
GCD(m;, mj) =1 for i # j,
and let u; € Zpy, £ =0,1,...,nben+ | specified residues. For any fixed integer a € Z there

exists a unigue integer ¥ € Z which satisfies the following conditions:

(1) a<gu<a+m where m = In[m,;
i=0
(14) u muy;(modm;), 0P €n

Proof:
Unigueness:

Let u,v € Z be two integers satisfying conditions (13) and (14). Then using the fact that =
is an equivalence relation, it follows from condition (14) that

u = v(modmy), fori=0,1...,n

= u—-—velm>», fori =0,1,...,n

=> u—vE<Lm> wherem =ﬂm;
i=0
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where in the last step we have used the fact that since the moduli mg, my, . .., my, are pairwise
relatively prime, an integer which is a multiple of each m; must also be a multiple of the product
m. But from condition (13) it follows that

|u=—v| <m

and hence ¥ — v = 0 since 0 is the only element of the ideal <m > which has absolute value less
than m. Thusu = v.

Existence:

Let  run through the m distinct integer values in the range specified by condition (13) and
consider the corresponding (7 + 1)-tuples @mo(e) Sm (1), ..., ¢m,(u)), where ¢p; is the
modular homomorphism defined by (12). By the uniqueness proof above, no two of these
(n + 1)-tuples can be identical and hence the (n + 1)-tuples also take on m distinct values. But
since the finite ring Z; contains precisely m; elements there are exactly m = ﬁm; distinct {(n +

=0
1)-tuples (vq, vy, ..., vp) such that v; € Z,,.,.. Hence each possible (n + 1)-tuple occurs exactly
once and therefore there must be one value of » in the given range such that

(@mg), domy(t). ... Sy, ) = (wo. ..., uy). O

It is important to note the sense in which the solution to the Chinese remainder problem is
unique. If we are given n + 1 residues u; € Zy, (0 € i € n) corresponding to n + 1 moduli
m; (0 < i € n) (assumed to be pairwise relatively prime) then the Chinese remainder problem has
an infinite set of integer solutions, but by property (13) of Theorem 5.7 (choosing a = 0) we see
that the solution is unique if we restrict it to the range 0 € ¥ < m. Thus we say that the solution
is unique modulo m. In other words, given u; € Zp,; (0 < i <€ n) the system of congruences (14)
does not have a unique solution in the ring Z but it does have a unique solution in the ring Z,
wherem = Ixm.-.

=

Different choices of values for the arbitrary integer a in Theorem 5.7 correspond to different
representations for the ring Z,,,. The choice a = 0 corresponds to the familiar positive representa-
tion of Z,,, as .

Zy =10,1,..., m=1

(where we are assuming that m is positive). In practical applications all of the moduli
mo, M1, ..., my and m will be odd positive integers and another useful representation will be the
symmetric representation of L, as
_q_m=1 _ m=—1
Zp={="5— ... -LO0 L. ==}
The choice of value for the integer a in Theorem 5.7 which corresponds to the symmetric represen-
tation of Z,, is clearly

The proof given above for Theorem 5.7 is not a constructive proof since it would be highly
impractical to determine the solution u by simply trying each element of the ring Z,, when m is a
large integer. We will now proceed to develop an efficient algorithm for solving the Chinese
remainder problem.



Garner's Algorithm

The algorithm which is generally used to solve the Chinese remainder problem is named after
H. L. Garner who developed a version of the algorithm in the late 1950’s. Given positive moduli
m; €Z (0 i €n) which are pairwise relatively prime and given corresponding residues
;i € Zen; (0K i € n), we wish to compute the unique w € Z,, (where m = m;) which
i=0
satisfies the system of congruences (14). The key to Garner’s algorithm is to express the solution
u € Z,, in the mixed radix representation

(15) u=vo+ vi(mo)+ vimom) + -+ + Vn(’ﬁl:m;)

where vy € Z, fork =0,1,....n

The mixed radix representation (15) is not meaningful in the full generality stated above since
the addition and multiplication operations appearing in (15) are to be performed in the ring Z,,
but each mixed radix coefficient vy lies in a different 1ing Zp,,. In order to make (15) meaningful,
we will require that the rings Zy, (0 < k < n) and Zp, be represented in one of the following two
consistent representations: )
(i) Each ring Z,,;, (0 € k € n) and Zy, is tepresented in its positive representation; or
(ii)  Each ring Zpmp, (0 < k < n) and Z,, is represented in its symmetric representation
(where we assume that each my is odd).
Then the natural identification of elements in a ring Z,;, with elements in the larger ring Z,, gives
the desired interpretation of (15). It can be proved that any u € Z,, can be represented in the
form (15) and if one of the consistent representations (i) or (ii) is used then the coeflicients
v (0 € k < n) are uniquely determined. It should be noted that in the case when the positive
consistent representation (i) is used, (15) is a straightforward generalization of the familiar fact the
any integer u in the range 0 € ¥ < 8" *1 (ie. u € Zﬂn +1), for a positive integer § > 1, can be
uniquely represented in the radix B representation:

u=vo+vif+vafZ+ - 4yt
where 0 € vk < B (i.e. vk € Zp).
T

Example 5.14.

Let mo=3, m| = 5 and m = mgn| = 15. Using the positive consistent representation,
the integer 4 = 11 € Z5 has the unique mixed radix representation

11 = vog + vi(3)
with vo =2 € Zzand v; = 3 € Zs. Using the symmetric consistent representation, the integer
u = —4 € Zj5 has the unique mixed radix representation

—4 = vg + v1(3)

with vg= —1 € Zzand v| = —1 € Z5. Note that ¥ = 11 and 4 = —4 are simply two different
representations for the same element in Z)5 but that the corresponding coefficients v and v are
not simply two different representations for the same element inZs O

Writing the solution u of the system of congruences (14) in the mixed radix representation
(15), it is easy to determine formulas for the coeflicients vk (0 € k < n) appearing in (15). Itis
obvious from (15) that
u = vg(mod mp)

and therefore the case i = 0 of the system of congruences (14) will be satisfied if v¢ is chosen such
that



(16) vo = ug{mod my).

In general for & > 1, if coefficients vg, v1, .. ., vk —1 have been determined then noting from (15}
that

=1
umvotvimg+ - +w (nm)(mod my),
i =

we can satisfy the case i = k of the system of congruences {(14) by choosing v such that
vo+ vimg + -+ v 1 m;) = uy (mod my).
i=
Using properties (8) - (11) to solve this congruence equation for vy we get for k > 1

an we=

_ - -1
up = ot vima+ - - + v} rni)]] [‘rlom;} (mod my)

where the inverse appearing here is valid because mm ; is relatively prime to my. Finally we

i=l
note that once a consistent representation has been chosen, there is a wnigue integer vo € Ly
_ satisfying (16) (namely vp = ug € Zmg) and similarly for k = 1,2,...,n there is a unigue
integet vk € L, satisfying (17).

Implementation Details for Garner's Algorithm

Garner’s algorithm is presented formally as Algorithm 5.1. Some details about the
implementation of this algorithm need further discussion. It is important to note that in the usual
applications of Garner’s algorithm the moduli m; (0 € i € n) are single-precision integers
(typically, large single-precision integers) and therefore the residues u; (0 € i £ n) are also single-
precision integers. The integer u being computed will be a multiprecision integer and indeed the
list of residues (wg %y, ..., uy) can be viewed simply as a different representation for the mul-
tiprecision integer u (see chapter 4). Algorithm 5.1 is organized so that in this typical situation
operations on multiprecision integers are completely avoided until the last step. In particular we
use the notation ¢, in Algorithm 5.1 in a manner that is consistent with its mathematical mean-
ing as a modular homomorphism but we give it the following more precise algorithmic
specification:

®m, (expression) means ‘evaluate expression in the ring Zm, "

More specifically, it means that when expression is decomposed into a sequence of binary
operations, the intermediate result of each binary operation is to be reduced modulo m; before
proceeding with the evaluation of expression. In this way we are guaranteed that every variable
(except of course u) appearing in Algorithm 5.1 is a single-precision variable and moreover that
every operation appearing in step 1 and step 2 is an operation on single-precision integers. (Note
however that if @ and b are single-precision integers then the operation ¢, (a X b), for example, is
usually performed by an ordinary integer multiplication @ X b yielding a double-precision integer,
say ¢, followed by an integer division operation to compute rem(c, mg)).

Fork =1,2,...,n the integer vx satisfying (17) is computed in step 2 of Algorithm 5.1 by
evaluating the right hand side of (17) in the ring Z,,,. The inverses appearing in (17):

-1
Ye = (t[om,-)"'(mod mg), fork =1,2,...,n
1=

are all computed in step 1. Note that a method for implementing the procedure

reciprocal(a, g )
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l Algorithm 5.1. Garner’s Chinese Remainder Algorithm.

begin
comment Given positive moduli m; € Z (0 < i < n) which
are pairwise relatively prime and given corresponding
residues u; € Zp, (0 < i < n), compute the unique
integer u € Zmm (where m = r%mi) such that
ju
uwmy(modmy, i=0,1,,...,n
Consistent representations for Z.-,.i 0gi<n
and Z, are assumed;

comment Step 1: Compute the required inverses
using a procedure reciprocal(a,q) which computes
a~!(mod q). Note that this step of the algorithm
should be separately precomputed if the algorithm is
to be used repeatedly with same set {m;} of moduli;

for k < 1 until n do
begin
product < ém, (mo);
for i « 1 until k—1 do
product « ¢, (product X m);
vk + reciprocal{product,mg)
end;

comment Step 2: Compute the mixed radix
coeflicients {vi;

V) U
for k « 1 until n do
begin
temp - vk—|;

for j < k—2 step —1 until 0 do
temp < ¢my (temp X m; + vi%

vk * dmy ((uk — temp) X i)
end;

comment Step 3: Convert from mixed radix
representation to standard representation;

u < Vg,

for k < n—1 step —1 until 0 do
u<uXmg+ vg
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to compute @ ~Y{mod g} for relatively prime @ and g, is given in the proof of Theorem 5.6;
namely, apply the extended Euclidean algorithm (Algorithm 2.2) to a,g € Z yielding integers
s and ¢ such that :

sa +1g =1

and then ¢,(s) = rem(s, ¢) is the desired inverse in the ring Z,. The computation of the inverses
{vk) was purposely separated from the rest of the computation in Algorithm 5.1 because {yi}
depend only on the moduli {m;}. For typical applications of Garner’s algorithm in a system using
the modular representation for multiprecision integers, the moduli fm;} would be fixed so that step
1 would be removed from Algorithm 5.1 and the inverses fyx} would be given to the algorithm as
precomputed constants. It is also worth noting that there are situations when both step 1 and step
3 would be removed from Algorithm 5.1. For example, in the above-mentioned setting if it is
desired to compare two multiprecision integers & and b represented in their modular
representations then it is sufficient to compute their (single-precision) mixed radix coefficients and
compare them: (cf. [Knu69]).

Finally, step 3 needs some justification. We have stated that if consistent representations are
used for Z,, 0<k <n) and Z, then the mixed radix representation (15) for u € Z,, is
unique. However we have not shown that if the operations in (15) are performed in the ring Z
rather than in the ring Z,,, we will still obtain the unique u € Z,, as desired -~ i.e. in step 3 of
Algorithm 5.1 there is no need to write the for-loop statement as

U = Pp{u Xmyp + v).

my — 1
To justify this, note from (15) that if | vz | € —kz— fork =0,1,..., n(ie. if the symmetric
consistent representation is used) then
mo—1 mp—-1 my =1 4=
jul € ——+ (moy + -+ + — (’n]rm)
2 2 2 120

<T@ qmo - 1
i=0

proving that u lies in the correct range. Similarly if 0  vg K mp~1fork =0,1,...,n (i.e. if
the positive consistent representation is used) then clearly ¥ > 0 and, proceeding as above,

u<(]fm)—1
=
proving again that u lies in the correct range. Finally, step 3 performs the evaluation of (15) using

the method of nested multiplication:
u=votmolvitmlvat - +myolve—) + ma_y(vy)) - )

Example 5.15.

Suppose that the single-precision integers on a particular computer are restricted to the range
—100 < a < 100 (ie. two-digit integers). Consider as moduli the three largest single-precision
integers which are odd and pairwise relatively prime:

mo =99, m; =97, mp =95
Then m = momym g = 912285. Using the symmetric consistent representation, the range of
integers in Z 912285 is

—456142 € u < 456142

Now consider the problem of determining u given that:
u = 49(mod 99);
u m —21(mod 97);
u = —30(mod 95).
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Applying Algorithm 5.1, we compute in step 1 the following inverses:
v =mg ! (mod m ) = 99" (mod 97) = 2"} (mod 97) = —48;
¥2 = (mom 1) (mod m3) = 8"} (mod 95) = 12.

Carrying out the computation of step 2, we get the following mixed radix coefficients for u:
vo = 49; v = —35; v; = —28.

At this point we have the following mixed radix representation for u:
u = 49 — 35(99) — 28(99){97).

Finally, carrying out the conversion of step 3 using ‘multiprecision’ arithmetic we find
u=-272300. O

5.5. THE POLYNOMIAL INTERPOLATION ALGORITHM

We now consider the corresponding inversion process for evaluation homomorphisms. Recall
that we are primarily interested in homomorphisms ¢ <y p> which project the multivariate polyno-
mial domain Z[x|, ..., xy] onto the Euclidean domain Zp{x 1] (or perhaps onto the field Zy). In
the notation ¢ <1,p>, p denotes a prime integer, 1 denotes the kernel of a multivariate evaluation
homomorphism, and ¢<1p,> denotes the composite homomorphism ¢14, with domains of
definition indicated by:

(18) ¢p: 2y, ... 5] > Zpxy .. .. 2]
and
(19) ¢1:Zylx1 ... %] > Zylx1)

(or the homomorphic image in (19) could as well be Zp,). The inversion process for
homomorphisms of the form (18) is the Chinese remainder algorithm of the preceding section.
(Note that Garner’s Chinese remainder algorithm can be applied coefficient-by-coefficient in the
polynomial case, with the polynomials expressed in expanded canonical form). . The inversion pro-
cess for homomorphisms of the form (19) is the problem of polynomial interpolation.

The Polynomial Interpolation Problem

The inversion of multivariate evalvation homomorphisms of the form (19) will be
accomplished one indeterminate at a time, viewing ¢ in the natural way as a composition of
univariate evaluation homomorphisms. Therefore it is sufficient to consider the inversion of univari-
ate evaluation homomorphisms of the form

Ox - : Dix]—+D

where D is (in general) a multivariate polynomial domain over a field Z, and where a; € Zp. It
will be important computationally that «; lies in the field Zp.

The development of an algorithm for polynomial interpolation will directly parallel the
development of Garner’s algorithm for the integer Chinese remainder problem. Indeed it should
become clear that the twoe processes are identical if one takes an appropriately abstract (ring-
theoretic) point of view. In particular, by paraphrasing the statement of the integer Chinese
remainder problem we get the following statement of the polynomial interpolation problem:
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Let D be a domain of polynomials (in zero or more indeterminates other than x) over a
coefTicient field Z,. Given moduli x —apXx —ajp ..., X —ap where
a;€Zy, 0 i € n and given corresponding residues u; E D, 0 € f < n, find a polynomial
u(x) € D[x] such that

(20) u(x)m y;(modx —a;), 0K <N
Note that in this case the congruences (20) are usually stated in the following equivalent form:
21) uwl@)=u;, 0<i €n

and the elements o; € Zp (0 € [ § n) are usually called evaluation points or interpolation points.
As in the case of the integer Chinese remainder problem, in order to guarantee that a solution
exists we must impose the additional condition that the moduli fx — a;} be pairwise relatively
prime. But clearly

GCD(x — aj;, x —aj)=1 ifand only if a; # a;

so the additional condition reduces to the rather obvious condition that the moduli {x — e} must

be distinct (i.e. the evaluation points {a;} must be distinct). Also as in the integer Chinese

remainder problem, the solution to the polynomial interpolation problem is only unique modulo
(x = a;), which is to say that the solution is unique if we restrict it to be of degree less than

j=

n+l.

The following theorem proves the above existence and uniqueness results in a more general
setting where the domain D is an arbitrary integral domain and the evaluation points {a;] are arbi-
trary distinct points in D. However this theorem allows the solution u(x) to lie in F pix ] rather
than in D[x], where Fp denotes the quotient field of the integral domain D. We will then proceed
to develop an efficient algorithm for solving the polynomial interpolation problem and it will be
obvious that in the particular setting presented above, the solution u(x) will lie in D[x] because the
only divisions required will be divisions in the coeflicient field Zp.

Theorem 5.8,
Let D be an arbitrary integral domain, let o; €D,i =0,1,...,n be n+l distinct
elements in D, and let w; €D, i =0,1,...,n be n+1 specified values in D. There exists a

unique polynomial u(x) € Fp[x] (where Fp s the quotient field of D) which satisfies the following
conditions:

() deglu(x)] < n;

(i) wae)=u; 0 ign

Proof:
By condition (i) we may write u(x) in the form

ux)=ap+apx + - +ax”
where the coefficients a; € Fp (0 € i € n) are to be determined. Condition (ii) then becomes the
following linear system of order (n+1):

Va=u
where V is the Vandermonde matrix with (i,j)-th entry al(ij =0,1,..., n)uis the vector with
ith entry u;(i =0,1,...,n), and a is the vector of unknowns with i-th entry
a; (i =0,1,...,n). From elementary linear algebra, this linear system can be solved in the field

Fp and the solution is unigue if det(V) # 0. Employing the classical formula for the Vandermonde
determinant:

detVy = JI (ax —ap

0gi<kg<n
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we see that det(V) # 0 because the elements ag, 1, . . . , &, € D are distinct. O

The Newton Interpolation Algorithm

The proof of Theorem 5.8 is a constructive proof since we can solve linear equations over the
quotient field of an integral domain (see chapter 9). However the solution to the interpolation
problem can be computed by an algorithm requiring much less work than solving a system of
linear equations. {cf Exercise 5-22). The algorithm we will develop for polynomial interpolation
dates back to Newton in the 17th century. As with Garner’s algorithm, the key to the development
is to express the solution u(x) € Fpfx] in the following mixed radix representation (sometimes
called the Newton form or the divided-difference form):

=1
(22) ux)=vo+vilx —a@p +vax —agx —a)+ -+ +vJl (x —a)
i=0

where the Newton coefficients vy € Fp{0<k €nt) are to be determined. The justification for this
mixed radix representation is the fact from elementary linear algebra that any set of polynomials
m(x)E Fplx], k =0, 1,...,n with deglmi(x)l=k forms a valid basis for gllynomials of

degree n in x over the field Fp; in this case we are choosing mqlx) = 1, mg(x) = (x = a;) for
i=0

k=12...,n

The Newton interpolation algorithm can be developed for the general setting of Theorem 5.8
in which case the Newton coeflicients {vx} in (22) will be quotients of elements in D (called
divided-differences ). However we will develop the algorithm for the case of practical interest to us,
namely the setting indicated in the preamble to (20). In this case no quotients of elements
(polynomials) in D will arise since the only divisions which arise will be divisions (i.e.
multiplications by inverses) in the coefficient field Z, of the polynomial domain D.

Writing the solution u(x) in the Newton form (22) we apply the conditions (21) to obtain
formulas for the Newton coefficients v (0<k <r). It is obvious from (22) that

u(ag) = vo
and therefore the case i =0 of the conditions (21) will be satisfied if v g is chosen to be
(23) vo=ugp
In general for k > 1, if the Newton coefficients vo V1, .. ., Vg -1 have been determined then not-

ing from (22) that
=1
wag) = vot vilar —agpt+ -0 + vkﬁo(ak - aj),
i=
the case i =k of the conditions (21) will be satisfied if v is chosen such that
=1
vo+ vilaxy —ag+ - + vkho(ak - ap) = ug.
i=

Now sinc]e a; € Z, (0 €i € n) we can compute in the field Z, the inverse of the nonzero ele-
ment (g = a;) € Zp, using once again the extended Euctidean algorithm since any nonzero

integer in Zp is relatively prime (in Z) to the prime integer p. Solving for v, wegetfork 3 1

—~2 —1 -1
@9 w= [uk = ot vilak—ap+ - + ”k—lho(ak - a.')]l Ii;[o(ak - m)} .
i= =
1t is important to note that uy (0Kk<n) and vy (0<k<n) will be, in general, multivariate
polynomials in a domain D with coeflicients lying in a field Z and all coefficient arithmetic aris-
ing in equation (24) will be performed in the field Zp.
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The Newton interpolation algorithm is presented formally as Algorithm 5.2. Comparing with
Algorithm 5.1 it can be seen that the two algorithms are statement-by-statement identical except
for computational details, As with Garner's algorithm, the Newton interpolation algorithm is
divided into three steps. Step 1 again could be removed and precomputed if the evaluation points
{a;} are fixed, although in the multivariate case the computational cost of step 1 will be
insignificant compared with step 2 (because step 1 involves only operations on integers in Z, while
step 2 involves operations on polynomials in Zp[y)). The notation ¢, has an algorithmic
specification as before:

¢plexpression) means ‘evaluate expression with all operations on integers being performed
modulo p’.

Note that in Algorithm 5.2 all coefficient arithmetic is to be performed modulo p (i.e. in the field
Zy).

Example 5.16.

Let us determine the polynomial u(x,y) € Zgy[x.y ] of maximum degree 2 in x and maximum
degree 1 in y specified by the following values in the field Zgz

u(©0,0) = =21;  w0,1) = —30;
u(1,0) = 20; u(l,1) =17,
u(2,0) = ~36; u(2,1) = =31
Let us first reconstruct the image of u(x.y) in Zgsx,y]/<x ~0> (i.e. the case x = 0). In
the notation of Algorithm 5.2 we have D = Zg7, ap= 0,1 = L,ug= —21,u = —30, and we are

computing a polynomial u(0,y) € Zo7[y] (i.e. the indeterminate x in Algorithm 5.2 is y for now).
Step 1 is in this case trivial:

¥1 = (a; — ag)"'(mod 97) = 1 " {mod 97) = L.
Step 2 computes the following Newton coefficients for u(0,y ):
vo= -2y wvi=-9
and therefore in step 3 we find
w0, )= =21 —Hy - 0) = =9y — 21
Similarly, reconstructing the images of u(x,y) in Zg7[x,y}/<x — 1> and Zgfx,y }/<x — 2> we find
u(l,p) = =3y + 20;
u(2,y) = 5y — 36.
Now for the muliivariate step, we apply Algorithm 52 with D = Zgly]

ag=0,a; =1 a2=2, ug=u0,p)uy=u(l,y)u2=u(2,y), and we compute the pelynomial
u(x,p)} € D[x] = Zosly lIx]. Step 1 in this case computes the following inverses:

v1 = {ay — ag)" ' (mod 97) = 17 (mod 97) = 1;
v2 = [(az — agiaz — ap)] "H(mod 97) = 27! (mod 97) = —48.
Step 2 computes the following Newton coefficients:

vo = -9y = 2I;
vi= 6y +41;
va=y.

Finally in step 3 we find
ulx, )= (9% ~ 210+ (6y +41)(x —0) + y(x —O0}x = 1)



Algorithm 5,2. Newton Interpolation Algorithm.

begin

comment Let D = Zly] denote a domain of polynomials
inv » 0 indeterminates y = (y3, ..., ¥y Overa
finite field Zp (D = Zpin case v = 0). Given distinct
evaluation points a; € Zp (0 < i € n) and given
corresponding values u; € D (0 € i € n), compute the
unique polynomial u(x) € D[x] such that deg[u(x)] € n and

ua)=u;,i=0,1,...,n

comment Step 1: Compute the required inverses using a
procedure reciprocal(a,q) which computes a "(mod Q)

for k < 1 until n do
begin
product <« ¢ (ay— ag);
for i < 1 until k—1 do
product < ¢p(product X (ay — a));

¥ < reciprocal(product,p)
end;

comment Step 2: Compute the Newton coefficients {v};

Vo + ug
for k « 1 until n do
begin
temp <= vi—j;
for j < k—2 step —1 until 0 do
temp <+ ¢p(temp X (ayx — ap + v

vk *+ ¢p({uk — temp) X yQ
end;

comment Step 3: Convert from Newton form to standard form;
u - vp
for k « n—1 step —1 until 0 do
U gp(u X (x — ap + vi)

end.

=x2y + Sxy +4lx — 9y — 21

which is the desired polynomial in the domain Zgj[x,p]. O

5.6. FURTHER DISCUSSION OF THE TWO ALGORITHMS



Integer and Polynomial Representations

1t is important in some circumstances to recognize that in each of Algorithms 5.1 and 5.2,
three different representations arise for the same object. In the polynomial case (Algorithm 5.2),
the polynomial u(x) & D[x] is initially represented uniquely by its n + 1 values (residues)

{uoguy, ..., us} corresponding to the n + 1 distinct evaluation points {ao @), ..., @] At the
end of step 2, the polynomial u(x) is represented uniquely in Newton form by its n + 1 Newton
coefficients fvg, vy, .. ., vy} with respect to the basis polynomials

L(x —ag, (x —ax —ap. ... ,ﬁc:(x - aj).

In step 3 the Newton form of u(x) is converted to standard polynomial form, which can be
characterized as uniquely representing u(xlby its n + 1 coefficients {ag @1, ..., a,} with respect
to the standard basis polynomials 1, x, x* ..., x" Similarly in the integer Chinese remainder
case (Algorithm 5.1), the initial representation for the integer w is by its n + 1 residues
fugus ..., up} with respect to the n + 1 moduli {mo m 1, ..., my). The second representation
is the mixed radix representation fvq vy . . ., v, with respect to the mixed radices

=1
I, mgpmomy, .. ..hm,-.
i=0

‘The final step converts the mixed radix representation to the more familiar radix 8 representation
where the base § depends on the representation being used for multiprecision integers (see chapter
3.

Residue representations of integers and of polynomials arise (by the application of
homomorphisms) because some operations are easier to perform in this representation. For exam-
ple, multiplication of integers or of polynomials is a simpler operation when residue representations
are used than when standard representations are used. The conversion processes of Algorithms 5.1
and 5.2 are required not only because the human computer user will generally want to sec his
answers presented in the more standard representations of objects but also because some required
operations cannot be performed directly on the residue representations. For example, the result of
the comparison ‘Is u < vT where u and v are integers cannot be determined directly from
knowledge of the residue representations of u and v, but as previously noted the result of such a
comparison can be directly determined by comparing the mixed radix coefficients of u and v. As
another example, if a polynomial u(x) is to be evaluated for arbitrary values of x then the residue
representation of u(x) is not appropriate, but u(x) can be evaluated in the Newton form as well as
in standard polynomial form. These two examples indicate circumstances where conversions from
residue representations are required but where step 3 of the algorithms may be considered to be
unnecessary ¢xtra computations. However in the context of applying Algorithms 5.1 and 5.2 to the
inversion of composite modular/evaluation homomorphisms on the polynomial domain
Z[x1. ... .xy] (which is the context of primary interest in this book), step 3 of the algorithms will
always be applied. The reason for this in the polynomial case (i.e. Algorithm 5.2) will be explained
shortly. In the integer case (i.e. Algorithm 5.1) the reason is simply that subsequent operations on
the integer coefficients (whether output operations or arithmetic operations) will require the stan-
dard integer tepresentation. For output this is a user requirement, while for arithmetic operations
there is no practical advantage in requiring a system to support arithmetic operations on integers in
more than one representation. {Of course it is conceivable to have a system in which the *standard’
integer representation is not a radix 8 representation but all of the present-day systems of interest
to us use a radix 8 representation for integers).

Another issue which arises in the practical application of modular and evaluation
homomorphisms and their corresponding inversion algorithms is to determine the number of
moduli (evaluation points) needed to uniquely represent an unknown integer (polynomial). In the
polynomial case, the information needed is an upper bound D for the degree of the result since
then D+1 moduli (evaluation points) are sufficient to uniquely represent the polynomial result.
Similarly in the integer case, if an upper bound M for the magnitude of the integer result is known
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then by choosing enough moduli {m;] such that
m = ﬂ m;>2M,
i=0

we are guaranteed that the ring Z, is large enough to represent the integer result. In other words,
the result determined by Algorithm 5.1 lies in the ring Z,, and this result will be the same (when
expressed in the symmetric representation) as the desired result in Z, since

z,,,={w"~‘~2'—1,...,—|,o,1,....—"1—2—'—l}

m =1

with > M. Such polynomial degree bounds and integer magnitude bounds can usually be
calculated with little effort for practical problems, although it is quite common for easily-calculated
bounds to be very pessimistic (i.e. much larger than necessary). An alternate computational
approach is available in situations where it is easy to verify the correctness of the result. This alter-
nate approach is based on the observation that the mixed radix coeflicients (or Newton coefficients)
fvi} will be zero for ¥ > K if the moduli mo my, ... , mg(orx —agx —ay....x —ag
are sufficient to uniquely represent the result. The computation therefore can be halted once
vik+) = 0 for some K (on the assumption that vx = 0 for all ¥ > K) as long as the result is later
verified to be correct.

A Generalization of Garner's Algorithm

There is a slight generalization of Garner’s Chinese remainder algorithm which is useful in
the applications of interest to us. Recall that we wish to invert composite homomorphisms

G<lyjpi> = G1;8p; Where
(25) ¢pi:Z[xl,...,x‘,]-bzp,.[xl,...,xv], i=01...,n

is a sequence of modular homomorphisms for some chosen prime moduli pg p 1. . .., pa, and for
each i there is a corresponding sequence of some N multivariate evaluation homomorphisms

(26) ¢1l.j T Zplx x> Z,[x1.j=12....N
with kernels of the form Ij; = <xz2— azj...., xy — ay;>. In this notation, for a fixed i the

evaluation points ey, . . . , @y all lie in the field Zp‘ and the number N of different kernels 7y is

determined by the degree of the solution in each indeterminate. Now suppose that Algorithm 5.2 is
applied (as in Example 5.16) to invert the evaluation homomorphisms (26) and suppose that the
n + 1 polynomials which arise are ufx}€ Zpfx1 ..., xy] for i =0,1,...,n If the

polynomials u(x) are all expressed in expanded canonical form then Algorithm 5.1 can be applied
coefficient by coefficient to reconstruct the coefficients of the desired solution
u(x) € Z[x1,. .., xy] (i.e. 1o invert the modular homomorphisms (25)).

The desired generalization of Garner’s algorithm is obtained by simply noting that Algorithm
5.1 can be applied directly to the polynomials u;(x) to reconstruct u(x), rather than being applied
many times separately for each coefficient of the polynomial u(x). To see this, suppose u(x) is the
polynomial

u(X) = Y, uex® € Z[x]

with images
ui(x) =Z Ue Xt E Z,x)i=01...,n
e

where ue; = ¢pfue). If Algorithm 5.1 is applied separately for each coefficient u , it calculates {in
step 2) each integer uin its mixed radix representation



=1
Ue = i Vek [ﬁ Pj]
k=0 =0
where vex€ Zp,. 0 < k € n. But since the same mixed radices appear in the mixed radix
representations for each different coefficient u 4 we may express the polynomial u(x) as follows:

ux) =3 {éo‘“-“ [,-:1”1 ]xe

- ki;o e v,,kx°] lﬁ:f’"]

The latter expression for the polynomial u(x) is callcc} a polynomial mixed radix representation
with respect to the mixed radices 1, po pop + . . . . J1 pj» and its general form is
=0

=1
u(x) = vo(x)} + viixipo) + vaxipopn + -0 ¥ vn(x)[hopj]
=

where vi(x) € Zp, Ix] for k=0, 1,....n It can be seen that step 2 of Algerithm 5.1 will directly
generate the polynomial u(x) in its polynomial mixed radix representation if we simply change the
specification of Algorithm 5.1 to allow the residues to be polynomials u,(X) € Zp X} (0 <1 < n)
Note that step 3 of Algorithm 5.1 also remains valid to convert the polynomial to its standard
representation as a polynomial with integer coefficients. The validity of this generalized Garner's
algorithm follows immediately from the fact that the operations of multiplying a polynomial by a
constant and of adding two polynomials are by definition coefficient-by-coefficient operations. This
generalization can be viewed simply as a method for computing ‘in paraliel’ the separate Chinese
remainder processes for each coefficient of the polynomial solution u(x).

The generalized Garner's algorithm is only valid if all of the polynomial residues
ui(x), 0 € i < n are expressed in expanded canonical form for only then can we be assured that
the operations in the algorithm are the correct coefficient-by-coefTicient operations. Since the given
polynomial residues u{x) € Z,[x] will usually result from a previous interpolation step, it is worth

noting in particular why the polynomials cannot be left in Newton form. The reason is that the
basis polynomials for the Newton form of one polynomial residue u{x} € Zp/[x] involve evalua-

tion points lying in the field Zp, while the basis polynemials for the Newton form of a different
polynomial residue u;(x) € Z, j[x] involve evaluation points lying in the different field Zp ; There
is in general no consistent interpretation of these various polynomial residues as images of the solu-
tion u(x) unless each polynomial residue u;(x) € Zp,[x] is first converted to expanded cancnical
form in its own domain Zp[x]. The basis polynomials for the expanded canonical form are

independent of the evaluation points. This explains why step 3 of Algorithm 5.2 is an essential step
of the Newton interpolation algorithm in the context of inverting composite modular/evaluation
homomorphisms.

Example 5.17.

Let us complete the details of the process of inverting the homomorphisms used in Example
5.7 at the end of section 5.1. The problem was to determine the product polynomial

c(x) = a(x)b(x) = (7x + 5}2x — 3} € Z[x].

To determine the number of evaluation homomorphisms to use, note that deglc(x)] = degla(x)} +
deg[b{x)] = 2 so that three evaluation points will be sufficient. For a bound on the magnitudes of
the integers in the product c(x), it is easy to see that the product of two linear polynomials a(x)
and b{x) will have coeflicients bounded in magnitude by

M = 24 qax b max
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where @ max and b max are the magnitudes of the largest coefficients in a(x) and b(x) respectively.
Thus M = 42 in this example so it will be sufficient to use moduli such that

m =ﬂm,->84.

i=0
In example 5.7 it was seen that the three composite homomorphisms
Ox —a;#s: LIx] > Zs whereag=0, a1 =1, ap = 2
yield the following images in the field Z s (when converted to the symmetric representation):
c0) =0, c(1) = -2, c(2) = -1
Applying Algorithm 5.2 to this interpolation problem yields
ox) = —x2 = x € Zs[x].
Next the three composite homomorphisms
bx — o087 Z(x]—=+Z7 where ag=0, a1 =1, a2=2
fed to the following images in the field Z7.
0)==1; c(1)=2; c(2)=—2.
Applying Algorithm 5.2 to this interpolation problem yields
cox)=3x — | € Z7lx].

Now since the moduli po=5 and p| = 7 do not satisfy pop > 84, let us choose also p2 = 3.
Then pgo 1p2 = 105 > 84 so these moduli will be sufficient. The three composite homomorphisms

6x —ob3: Zlx] > Z3, whereap=0, a; = 1, az = —1
yield the following images in the fieid Z3:
c(0)=0; ¢(1)=0; c(—1)=1.
Applying Algorithm 5.2 to this interpolation problem yields
o(x) = —x2 4 x € Z3[x).

Now let us apply the generalized Garner’s algorithm to invert the three modular
homomorphisms:

¢p; Zix]—~> Zpl.[x], wherepo=5, p1=7 p2=3.
The given residues are

uglx) = —x?=x;ux)=3x - Luix) = 2+ x
The inverses computed in step 1 are:

yi1=p¢ ' (modpyy=5Kmod 7) = 3;

v2=(pop 0~ (mod p2) = (~1)(mod 3) = —1.
In step 2 the following polynomial mixed radix coefficients are computed:

vex) = —x2—x;vix) =32 =2 — 3 vox) = 0.
Finally in step 3 we find

u(x) = (=x2 = x) + Gx? ~ 2x — 3)(5) + OE7)

= 4x2 - 11x — 15 € Zyosix].

Note that the last polynomial mixed radix coefficient v(x) is zero which implies that the two
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moduli pg = 5§ and p; = 7 would have been sufficient for this problem. In other words, the bound
M = 42 on the magnitudes of the integer coefficients in the result is a large overestimate. In any
case, we are guaranteed that u(x) is the desired result — i.c.

cx)=14x2-1Ix —15€Zx]. O

A Homomorphism Diagram

Finally in this chapter, Figure 5.1 presents a homomorphism diagram which is a convenient
way to visualize the computational ‘route’ to the solution of a problem when homomorphism
methods are used. The particular homomorphism diagram expressed in Figure 5.1 is for the case of
applying composite modular/evaluation homomorphisms as in (25) - (26) to project the multivari-
ate polynomial domain Z[xy, ..., x,] onto Euclidean domains Zp[x1]. Of course, the same
diagram is valid if Zp bx ] is replaced by Z,, which would express the case of Example 5.17. Note
that for the particular problem considered in Example 5.17 the homomorphism method in fact
requires much more work than a ‘direct method’ (i.e. ordinary polynomial multiplication), which
can be expressed in the diagram of Figure 5.1 by drawing an arrow from the ‘Given problem’ box
directly to the ‘Desired solution’ box. However for problems such as multivariate GCD computa-
tion and multivariate polynomial factorization, the ‘long route’ of homomorphism methods can
yield substantial decreases in total computational cost in many cases as we shall see in later
chapters.

Given problem in Zi{vy. ..., xy] Decired solution in Z{x. .. ., xy]
‘; ¢p; for T Chinese Remainder
i=01..., n Algorithm
One preblem in Zp [x 1. ... . 5] One solution image in Zp [x 1. . .., x4}
foreach, i =0, 1, ..., E foreachi =0.1,....n
‘ d".j' Cee gy for T Interpolation
each; =01.... n Algorithm
Several problems in Zp [x] Several solution images in Zp.{x |}
foreachi =0,1,...,n foreachi =0,1,....n
. Solve cach problem in Z, [x ) T
foreachi =0.1,....n

Figure 5.1: Homomorphism diagram for Chinese remainder
and interpolation algorithms.
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EXERCISES

51. (a) Let R and R’ be two rings and let ¢ : R = R’ be a ring morphism as defined by
Definition 5.2. Properties (i) - (iii) of Definition 5.2 guarantee that ¢ preserves three
of the ring operations. Using properties (i) - (iii) and the fact that R and R’ are
rings, preve that the other two ring operations are also preserved — i.e. prove that

#(0) = 0;
¢(—a) = —¢(a) foralla ER.
(b)  Suppose that the tings R and R’ in part (a) are fields. Prove that the operation of
inversion is also preserved by any ring morphism ¢ : R = R’ — i.e. prove that
#@™) = [¢p@)}”" foralla € R — {0}.

{c) Suppose that the ring R is commutative. Prove that if R’ is a homomorphic image
of R then R’ is also commutative.

52. (a) In the integral domain Z, give a complete description of each of the following
ideals: €3>, <~3>, <4, 6>, <4,7>.
(by  In the polynomiai domain Q[x] let & € Q be a fixed constant. The subset 1
fa(x) : a(a) = 0} is an ideal in Q[x] (see Example 5.9). Consider the subset J
fa(x) : a(a) = 1}. Prove or disprove that J is an ideal in Q[x].

8.3, In any integral domain D, prove that <a> = <b> if and only if & and & are associates in D.

5-4, In the bivariate polynomial domain Z[x, y] consider the ideals I = <x, > and J = <x>.
The subset relationships between 1, J and Z{x, y] can be specified as follows:

Jci1cZlx y]

The ideal I can be described as the set of all bivariate polynomials over Z with no constant term
and the ideal J can be described as the set of all polynomials in I which have no constant term
when expressed as univariate polynomials in x — i.e. when expressed as elements of the domain

Z[ylix].
{a)  Express in the usual notation for 1deals the following three ideals: the sum <I, J>,
the product I - J, and the power 12

(b)  Specify the subset relationships between <I, J>, - J, and 12

(¢) Given a description (in the sense of the descriptions of I and J given above) of each
of the ideals <1, J>,1-1J, and 12

55, Let D be a Euclidean domain and let ab € D be any two elements. Use Theorem 2.2 (i.e.
the extended Euclidean algorithm) to prove that the ideal <a, b> generated by these two elements
is a principal ideal. Meore specifically, prove that

<a, b>=<g>

where g = GCD(a,b). (Remark: A proof that every Euclidean domain is a principal ideal domain
can be based on this result.)

6. (a) Let D be a principal ideal domain and let a,b € D be any two elements. Then the
ideal <a, B> generated by these two elements must be a principal ideal, say

<a, b>=<g>
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for some element g € D. Prove that g is a greatest common divisor of a and b.

() Use the result of part (a) to prove that the extended Euclidean property of Theorem
2.2 holds in any principal ideal domain.

5-7. Show that the domain Z]x] is not a principal ideal domain by exhibiting an ideal in Z[x]
which is not a principal ideal.

58. (a) Determine all of the ideals in Zs Thus determine all of the homomorphic images
of Zs.

(b)  Prove that a field has no proper homomorphic images.

59. (a) Determine all of the ideals in Z § Thus determine all of the homomorphic images
of Zg

{b) Determine all of the ideals in Z,,, for every integer m. Thus determine all of the
homomorphic images of Z,.

5-10. (&) Prove that the only proper homomorphic images of the ring Z are rings of the form
Z,,. (Hint: Z is a principal ideal domain.)

(b}  Prove that the quotient ring Z, = Z/<p> of the ring Z is an integral domain if
and only if p is a prime integer. (Hint: A fundamental step in the proof is to
deduce that if p is a prime integer then

ab E<p> =>a E<p> or b E<p>)

()  Prove that if p is a prime integer then the integral domain Z, of part (b) is in fact a
field. (Hint: Use Theorem 5.6.)

5-11. Generalize Exercise 5-10 (a), (b), and (c) to the case where the Euclidean domain Z is
replaced by the Euclidean domain F[x] of univariate polynomials over a field F.

5.12. (a) In the integral domain Q[[x]] of power series over Q, describe the ideal <x®>
where e is a fixed positive integer.

(b}  Consider the natural homomorphism
® cxes  Qllx 1 = QIlx 1)/ <x ©>.

Describe the elements in the homomorphic image Q[[x1]/<x ®>. Describe a practi-
cal representation for the elements in this homomorphic image. (cf. Chapter 3.)

5-13. For extended power series in Q<x>, what is the ideal <x®> where ¢ is a fixed integer?

Does Q<x> have a homomorphic image comparable to the case of ordinary power series
considered in the preceding problem?

5-14. (a) Let p(x)EQfx] be a fixed polynomial and consider the quotient ring
Q[x1/<p(x)>. Prove that two polynomials a{x), b{x) € Q[x] lic in the same resi-
due class in this quotient ring if and only if

rem(a(x), p(x)) = rem(b(x), p(x)).

Thus deduce a practical representation for the elements in the homomorphic image

Qx)/<p(x)>.
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Let the polynomial p(x) in part (a) be the linear polynomial
plx) = x — a for some fixed a € Q.
Prove that the evaluation homomorphism
¢x-a:Qx] = Q
as defined in section 5.1 can be defined equivalently by
dx —ofalx)) = rem(a(x), x —a) forall alx) € Qjx]

Thus deduce that the evaluation homomorphism ¢y -, is indeed the natural
homomorphism with kernel <x — a> which projects Q[x] onto the homomorphic
image Q[x]/<x — a>.

5-15. Generalize the preceding problem to the case of a multivariate polynomial domain

D[X 1.

5-16.

(a)

(b)

(a)

(b)

()

., xy] over an arbitrary UFD D, as follows.

Let p(x,) € Dix;] be a monic univariate polynomial over D in the particular
indeterminate x; and consider the quotient ring Dxy, ..., x,]/<p{x;)>. Prove
that two polynomials a(xy, ..., xh b(x1 ..., xy) € D[xy ..., x,] lie in the
same residue class in this quotient ring if and only if

prem(a(x 1, ..., %), p(x:) = prem(b(xy,....x,). p(xi))

where the prem operation is performed in the (univariate) polynomial domain
D[X1,....Xi=1 Xi+1 - - - » Xy]{x;]. (Note that since p(x;) is assumed to be monic,
the operation of pseudo-division is in fact just ordinary polynomial division.) Thus
deduce a practical representation for the elements in the homomorphic image
Dlxi ..., xy)/<plx;}>.

Let the polynomial p{x;) in part (a) be the linear polynomial
p(x;) = x; — a for some fixed « € D.
Prove that the evaluation homomorphism
$x;—a:Dlxp ... x] > Dlxp. o Xion Xidn -, X0
as defined in section 5.1 can be defined equivalently by
bx -dlalxy ... X)) = prem(a(xy, . .., Xy), X; — &)
foralta(xy, ..., X)) EDx1, ..., x).

Thus deduce that the evaluation homomorphism éx; —a is indeed the natural

homomorphism with kernel <x; — a> which projects Dlx ..., x,] onto the
homomorphic image Dix, . . ., x,)/<x; —a>.

Describe a practical representation for the elements in the quotient ring
Qix]/ <x241>. (cf. Exercise 5-14(a).) Prove that this quotient ring is a field. (cf.
Exercise 5-11.)

In part (a) suppose that the coefficient field Q is changed to R (the real numbers).
What is the field R[x [/<x2+1>?

Is the quotient ring Z[x]/(xz+ 1> a field? Is it an integral domain? What is the
relationship between this quotient ring and the domain G of Gaussian integers
defined in Exercise 2-77
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In the congruence notation defined in section 5.3, what is the meaning of

a = b (mod 0)?
in the integral domain Z, compute the inverse of 173 modulo 945 — i.e. solve the
following congruence equation for x € Z:

173 x = 1 (mod 945).
Use the method given in the proof of Theorem 5.6.
In the polynomial domain Q[x ], solve the following congruence equation for u(x):
(x + Dix + 2)u(x) ® x(mod x(x — I)}{x — 2)).

Be sure to reduce the solution modulo x{x — I}{x — 2).

Suppose that the single-precision integers on a particular computer are restricted to
the range —100 < @ < 100 (i.e. two-digit integers). Determine the ten largest such
single-precision integers which are odd and pairwise relatively prime. (Note that
Example 5.15 uses the three largest such integers.)

What range of integers can be represented in a modular representation using as
moduli the ten integers determined in part (a)? In particular, how many decimal
digits long must an integer be in order that it not be representable?

Using the positive consistent representation, express the integer u = 102156 in
mixed radix representation with respect to the moduli mg=99,
mi=97 and my = 95.

Repeat part (a) using the symmetric consistent representation.

§-20. Apply Algorithm 5.1 by hand to solve the following Chinese remainder problems for the

5-17. (a)
(b}
(¢}
5-18. (a)
(b)
5-19. (a)
(b}
integer u:
(a)
b
521, (a)
(b)

u

u

= {mod 5)
® —3(mod 7);
= —2(mod 9).
= | (mod 5);
& —2(mod 7);
= —4(mod 9).

Step 2 of Algorithm 5.1 is based on formulas (16) - (17) with the computation of
the required inverses performed in step 1. Show that an alternate method to com-
pute the same mixed radix coefficient vy (0 € k € n) can be based on formula
(16) and the following rearrangement of formula (17} for k > 1:

vem (o (k= vamg = vom it = oo = v pmi (mod my).
Note that the inverses appearing in this formula are inverses modulo m .

If step 2 of Algorithm 5.1 were based on the alternate formula of part (a), what set
of inverses would have to be computed in step 17 In particular, how many inverses
are now required?
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(¢) Compare the computational efficiency of Algorithm 5.1 with the alternate algorithm
proposed above. Consider the case where the set [m,] of moduli is fixed (i.e. the
case where the computation of inverses in step 1 would be removed from the algo-
tithm and pre-computed) and also consider the case where no pre-computation is
possible.

§22. (a) The proof of Theorem 5.8 outlines a method for solving the polynomial interpola-
tion problem by solving a system of linear equations. For the specific problem
described in the preamble of Algosithm 5.2 (in particular, D = Zly] and
aj EZp, 0 i € n)the linear system of Theorem 5.8 can be solved by an algo-
rithm based on the familiar Gaussian elimination method and the only divisions
required are divisions in the field Zy. 1In this case the solution u(x) will lie in the
domain D[x] and not in the larger domain Fp{x] of Theorem 5.8. Give an
algorithmic description of such a method for solving the polynomial interpolation
problem.

(b)  Compare the computational cost of the algorithm of part (a) with the cost of Algo-
rithm 5.2

£23. Use Algorithm 5.2 (by hand) to determine the polynomial u(x, y. z) € Z4lx, y, z] with max-
imum degrees 2 in x, 1 in », and 1 in z specified by the following values in the field Zs

u©,0,0) = 1, w0,0,1) = 2;
uw®, i,0) = -1, u@® 1,1 =0
u(1,0,0) = 0; u{l,0, 1) = 2;
u(1,1,0) = 2; u(l, ,1) = -2
u2,0,0) = I; wW2,0, 1) = 2;
u2, 1,0 = 0; w2, 1,1) = 0.

Express the result in expanded canonical form.

824, Consider the problem of inverting composite modular/evaluation homomorphisms of the
form

bx —aibp; Zlx] = Zp,

Suppose that the polynomial u(x) € Z{x] to be determined is known to be of degree 3 with
coefficients not exceeding i7 in magnitude, and suppose that the following images of u(x) have
been determined.

P 23] Ox - aﬂ’p,-(“ (x))
5 0 1
5 1 1
5 2 2
5 -1 0
7 0 0
7 1 -2
7 2 0
7 -1 2

{a)  Verify that the image of u(x) in Zsfx} is
ugx) = 1 —2x(x — 1)+ 2x(x ~ 1)(x — 2) € Z4x]
and that the image of u(x) in Zx] is
uilx) = =2x + 2x(x — )+ 3x{x ~ Dx — 2) € Zx]



(b}

{c)

()
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Note that these interpolating polynomials have been.left in Newton (mixed radix)
form.

To complete the inversion process, we must solve the following Chinese remainder
problem:

u(x) m= ugx) (mod S)
u(x) = yifx) (mod 7).

Suppose that this Chinese remainder problem is solved by leaving the polynomials
uox) and uy(x) of part (a) in Newton form, yielding the result in the Newton form

ux) = cotepx+eoxlx —D+exlx — x —2).
Calculate the values of ¢ g, ¢ |, ¢, and ¢ 3 that would result.

Determine the polynomial u(x) & Z[x] by solving the Chinese remainder problem
of part (b) after expressing the polynomials u o{x) and u ((x ) of part (a) in expanded
canonical form in their respective domains. Is the resuit the same as the result in
part (b)? Is there any relationship between the two results?

In the problem considered above, the set of evaluation points is the same for each
modulus pg= 5 and p, = 7. In many practical problems the set of evaluation
points will be different for different moduli. Does this affect the possibility of avoid-
ing the conversion from Newton form to expanded canonical form as contemplated
in part (b)?



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

