SYSTOLIC TRELLIS AUTOMATA (FOR VLSI)!
Karel Culik, Jozef Gruska®, & Arto Salomaa®
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
N2L 361
Research Report (S-81-34

December 1981

This work was supported by the Natural Science and Engineering
Research Council of Canada under the grants A-7403 and A-1617.

On a Teave of absence from the Computing Research Center, Bratislava,
Czechoslovakia,

On a leave of absence from the University of Turku, Finland.

Abstract

A model for VLSI circuits, referred to as a systolic trellis
automaton, is introduced. It consists of a triangularly shaped system
of hexagonally connected processors {functional elements} where the flow
of data is uni-directional and there is a fixed delay in all inter-
connections. Systolic trellis automata can be viewed as a special case
of pure systolic systems [2]. Attention is focused on regular trellis
automata which can be easily laid out on a chip.

We describe a variety of programming techniques for trellis
automata. The techniques might be of interest for VLSI designers in
the sense that a design methodology for VLSI circuits is involved.
The power of these techniques is 7llustrated by several examples.
Trellis automata are shown to possess quite surprising capabilities.
The languages acceptable by trellis automata have time complexity O(nz)
with respect to deterministic Turing machines, and the family of
acceptable Tanguages is closed under Boolean operations. Special
attention is focused on a subclass of trellis automata, referred to as

homogeneous.

1. Introduction.

The cost and effectiveness of a multiprocessor system
implementation on a chip depends mainly on the uniformity of the
processors and on the regularity and simplicity of the communications.
VLSI technology, therefore, encourages the building of multiprocessor
systems where the processors are uniform and simple and their

interconnections are regular [11].

Pipetining and multiprocessing at each stage of a pipeline
should be taken into account. With pipelining several inputs can be
processed immediately one after the other. Multiprocessing increases
the performance at each stage of a pipeline.

A1l these concepts - a multiprocessor system, pipelining and
paralielism - are captured in the notion of a systolic system.
Informally, a systolic system is a multiprocessor network rhythmically
processing data in a parallel fashion. More formally, a
systolic system is a node-labeled and edge-weighted graph where the
labels specify the processors and the weights represent the non-zero
delays in the registers along the interconnections [10].

Several specific models of systolic systems have been considered
so far. In all of the models the processors have no memory. The models
differ in the ways the processors are interconnected and the data are
handled.

It has been shown in several papers ([7], [8], [9], [10]),
and in the monograph [11] how systolic systems can be designed to

perform efficiently various important tasks. For example, orthogonaily

and hexagonally connected systolic systems are suitable for efficient
matrix multipiication and LU-decomposition [9], [11]. Tree-Tike
systolic systems can be used to implement priority queues [8]. Linearly
connected systems can be designed for matrix-vector multiplication [7],
and palindrome recognition [10].

A systolic system is called pure if there is an integer
k such that every path from an input node to an output node possesses
delay k [2]. A systematic investigation of the capabitities of
pure systolic systems was begun in [6] where tree-like systolic systems,
called systolic tree automata, are studied. In such an automaton the
flow of information is uni-directional from the leaves to the root.
This leads naturally to the investigation of such networks as acceptors.
Actually, cuts of infinite trees (of processors) satisfying
& natural reqularity condition form the basis of the systo1ic‘tree
automaton of [6]. The regularity condition implies that both data
processing and tree generation can be done in g context-free way and
that the corresponding chips are programmable in a natural top-down

context-free manner.

In the present paper another model of systolic systems is
considered. They are hexagonally connected systolic systems with
uni-directional information flow.

Some of the most important and interesting applications of
systolic systems deal with hexagonally connected systems, [7], [8], [9].
Hexagonally connected systems seem to be quite powerful. They process
data in a specific context-sensitive fashion and, therefore, require

special techniques to "program" them.

The goal of the present paper is to develop some programming
techniques for such systolic systems and to present some (mathematical)
results giving more insight concerning the power and Timitations of
such systems.

This paper is restricted to the study of triangularly shaped
systolic systems of hexagonally connected arrays of combinational
circuits, referred to as systolic triangularly shaped trellis automata
(in short, trellis automata). The delay on oblique interconnections is
one and on vertical two. Figure 1.1 presents the trellis structure of
a systolic trellis automaton. The vertex labels are names of the

corresponding processors.

Figure 1.1

Our restrictions Teave enough Teeway to investigate programming
techniques for uni-directional hexagonally connected systolic systems.

Systolic trelilis automata get their input data, i.e., an
input word, on the external inputs (input pins) of the processors at the
bottom level. The flow of information is uni-directional (bottom-up).
At every level all processors receive their inputs at the same time,
after which they immediately output the data to the next level. If only
one input word is considered, then, at any time during the computation,
the processors on at most one level are active. On the other hand, if
a segquence of input words is fed in, then after a while every processor
may be activated, giving rise to full pipelining.

A tre]]is-]fke structure of processors has the property that
data can move from one processor to another along different paths, i.e.,
different contexts may he used. This fact, together with the parallelism
and pipelining, requires the use of special techniques to organize and
synchronize the flow of information in a systolic trellis automaton.

The present paper considers systolic trellis automata as
acceptors where an accépting or a rejecting signal is produced by the
top processor. We hope to return, later on, to the disscussion of
systolic trellis automata as transducers. (They can easily perform such
operations as sorting, multiplication - see also Examplie 12 in Section
5.)

Exactly as in the case of systolic tree automata [6], our
systolic trellis automata are actually cuts of infinite trellises

satisfying a certain reguiarity condition. The regularity condition

implies that the resulting chip can be programmed in a simple context-
sensitive and top-down manner.

We also study languages accepted by trellis automata. Such a
Tanguage consists of all words w accepted by the "partial" trellis
obtained from the infinite trellis by cutting away all nodes beginning at
the Tevel with |w|+1 nodes. We shall see that systolic trellis
automata are quite powerful: the acceptable ianguages lie quite high in
traditional language - theoretical hierarchies. On the other hand, the
languages are still accepted in quadratic time and Tinear space by
deterministic Turing machines and in time n on trellis automata.

Thus, we obtain also a practically interesting family of context-sensitive
languages, which is rather unusual.

A couple of further points should be emphasized. Al1 our
proofs are constructive and, thus, give a method of "“automatically"
designing “correct" systolic arrays for a certain broad class of problems.
Furthermore, if we do not require pipelining, then any program for a
(homogeneous) trellis acceptor can be executed also on a linear systolic
array. Alternatively, a systolic trellis automaton can be implemented
as one combinational circuit (without registers). This will be further
discussed in the concluding section.

A brief outline of the contents of this paper follows.

Section 2 contains the basic¢ notions concerning trellises, reguiarity
conditions, systolic trellis automata and the systolic trellis languages.

Also a normal form for systelic trellis automata is derived.

Section 3 introduces semihomogeneous and homogenecus systolic
trellis automata. It is shown that given a semihomogenecus trellis
automaton we can construct an equivalent homogeneous trellis automaton
with only cne type of processor. On the other hand, general trellis
automata are strictly more powerful than (semi)homogeneous ones.

Basic programming techniques for trellis automata are introduced
and investigated in Section 4. The techniques include "matching",
"multiple processing" and "path automaton". These techniques are also
used to establish some theoretical results: the family of languages
accepted by semihomogeneous systolic trellis automata is closed under
Boolean operations and contains Tanguages not accepted by systolic
tree automata.

More advanced programming techniques such as "parallel
guessing" and "synchronization" will be discussed in Section 5. By
these techniques, trellis automata can be programmed for surprisingly
complex tasks. It also follows from the results in Section 5 that, given
a Tinear context-free grammar G , a homogeneous trellis automaton
accepting L(G) can be constructed.

Finally Section 6 discusses implementations not requiring
pipelining and some resuits contained in [3]. Those include decidablility

and complexity considerations of somewhat more relaxed input conditions.

2. Systolic Trellis Automata

We now formally define the basic notions introduced in the
previous section.

Definition 1. An infinite binary trellis (in short an infinite

trellis for the rest of the paper) is an infinite oriented graph (with
orientation of edges from sons to fathers) which satisfies the following
conditions

{1) there is exactly one node (called the root) with no father,

(2) every father N has three sons, the left one - N the middle

2 H]
ohe - Nm and the right one - Nr and always (Nm)r = Nm = (Nr)i .

An infinite labeled trellis T (see Figure 2.1a) is an infinite

trellis with nodes labeled by symbols frem a finite alphabet AT (referred
to as the alphabet of processors of T). The label of a node N in T
is denoted by AT{N) . (A subscript T is often omitted if T is
understood.) O
Trellis is a mathematical abstraction of a triangularly shaped

and hexagonally connected network (see Figure 2.1}.

Figure 2.1

If T s an infinite (labeled) trellis, then for j =1,2,..
LEVELT(J‘) denotes the set of all (labeled) nodes of T whose maximal
distance from the root is j-1 . Clearly, there is a natural ordering
(from Teft to right) of nodes in LEVELT{J’) with the first (the left-
most) and the last (the rightmost) element. The i-th node in LEVELT(j),
1 <1<]j,is denoted by N.l.(i,j} and its label AT{i,j) . The nodes
NT{],j) and N.i.(j,j) » respectively are called the left-leg and
right-leg nodes. A1l other nodes are called internal.

To any infinite (labeled) trellis T and to any integer

k =1 we associate the (labeled) trellis Tk of height k to be the
k

maximal subgraph of T with the set of nodes U LEVEL(i) , (see
i=1

Eigure 2.1b for a T5). The nodes in LEVEL(k) in Tk are called the
input-nodes or leaves of Tk .

The nodes will be interpreted as processors and then we shall
use for processors similar terminology as above. For example, we shall
talk about Teft-leg processors and so on.

In an {infinite) trellis T the edges between a node N and
its left son, the right son and the middle son, respectively will be
often called the Teft oblique, the right oblique and the vertical edge,
respectively. When nodes are viewed as processors we often talk about
interconnectfonsdinstead of edges.

Let T,T be infinite labeled trellises and c : b > Ay
If c(lf(i,j)) = AT(i,j) for 1 <1 <j, then we write c(T) =T
and say that T 1is obtained from T by coding ¢ .

Definition 2. An infinite labeled trellis T 1is said to be

{(strongly) top-down deterministic if the label of any node is uniquely

determined by labels of its fathers (by the label of any of its fathers).
T 1is said to be a reqular trellis if T = c(T) for some top-down
deterministic trellis T . O

One sees easily that a trellis T is top-down deterministic
if and only if for any &k > 1 the label of any node on LEVEL(k) is

uniquely determined by labels of its fathers on LEVEL{k-1) .

11

Example 1. The infinite trellis (see Figure 2.2a) with the root
labeled by t , the left-Teg (right-leg} nodes labeled by & {by r),

the nodes in the middle of levels (i.e. nodes N(i, i%lj, i odd), labeled
by m and with all other nodes labeled by a 1is not top-down
deterministic. However, it is regular because it can be obtained by

coding from the top-down deterministic trellis shown in Figure 2.2b.

Figure 2.2

Now we are ready to define trellis automata and languages.

Definition 3. A systolic binary trellis automaton (in short trellis

automaton) is a construct

K= (P, A, I, T, FO’ f, g)

where A, I and T are finite alphabets referred to as the labeling,
terminal and operating alphabets, respectively and FO c T 1is the
alphabet of accepting symbols. It is also assumed that T-I contains

the special symbol e . Moreover P = {2,c) where

12

Lo (Au {#}) x (Au {#}) = A and ¢ : A A

{we assume # ¢ A) are referred to as the labeling function and coding,

raspectively. Finally

f:AxI=T is the input function
g:AxIxTxI=1T 1is the transition function.

0

With every trellis automaton K = ({(%,c), &, Z, T, Tgs q)
we can associate a regular trellis T (the so called underlying trellis
of K) where T =c(T') and T' 1is the trellis the iabeling of which

is recursively defined by the rules

A(N(T,1}) = a{#,#)
AN(1,3)) = 2(#.2(N(1,3-1))) if 3>
AN(G,3)) = 2(x(N(3-1,3-1)).#) if =1

AN(TL3)) = 2(A(N(E-1,3-1))A(NGE-1,30)) iF 1T < i<

It is also clear that every regular trellis can be specified
by a labeling function and by a coding.)

Quite often when a trellis automaton K 1is considered we
shall refer to the underlying trellis of K but not to its labeling
function or to its coding. In such cases we shall usually consider that

K 1is given in the form

K=(T, 4, £, T, I‘O, f, 9}

where T 1is a regular trellis with nodes labeled by elements from A

13

(called also labels or processor names) and A, ©, T, Ty s f

and g has the same meaning as in the Definition 3.

A node of a trellis labeled by a label b will be interpreted
as an b-processor which computes the input functicn fb(x) = f{b,x)
and the transition function gb(x,y,z) = g(b,x,y,z) .

Now we proceed to define how a word is recognised by a trellis
automaton K= (T, 4, £, T, Tgs s q) .

Informally, we assume that every processor has three internal
input pins (to receive operating alphabet symbols) and one external
input pin (to receive a terminal alphabet symbol).

An input word w of length n is fed, symbol by symbol, to
the external input pins of processors on the level n . (We may
visualise this as if we are using a chip for the subtrellis of T of
height n .) They compute in paraliel values of their input functions
and send results to their fathers. The outputs sent out along obliques
reach fathers in-one time unit, the outputs sent out along verticatl
outputs in two time units. At any level 3 < n all processors receive inputs
on their {nterna1 input pins at the same time. They compute in parallel
the values of the corresponding transition functions and again send the
results along output interconnections. (Here we assume that processors
on the level n-1 receive the special input symbol e on the vertical

internal inputs. At the end of this section we show that we can avoid

this convention,)

14

If aword w is fed to K , then in time n-1 the processor
at the root is activated and w is accepted if and only if its output
is in I‘O.

Formally, we proceed as foilow. Let w e 5F be of length n ,

i.e. w= Wilpe o Wy s W € L, T<ks<n. For 1<1i=<j=<n define
(1,3) _
w "WWHP“WJH‘
Observe that if w 1is fed to K , then those processors on

the level n which are in the leaves of the subtrellis with the node

N{i,j) as the root,receive just the word w(i’j) (see Figure 2.3).

s
w determines a unique

- NG element of I' , denoted by
el 40 OUTPUT(K,w,1,1) , as

-

T - - NM(ed,f12) follows. First we define

A kY for 1=isn
v (G f) . .
L OUTPUT (KW, 1,n) = Fy g oy (wy)

Figure 2.3 and for 1 <i<j<n

OUTPUT(K,w,1,) = 9 J.)(OUTPUT(K,W,'],.]"H),0UTPU’I'(I<,'W,1'+1,j+2),
OUTPUT (K,w,i+1,j+1))

(with the convention that OUTPUT(K,w,i,n+1) = e }.
We say that a word w 1is accepted by K if and only if
OUTPUT(K,w,T1,1) ¢ FO .

The language accepted by a trellis automaton K is defined by

LK) = (| we Tt , QUTPUT(K,w,1,1) & T}

Languages of this form are referred to as trellis automata

acceptable or trellis languages. Denote by L(RT) -the family of all

trellis languages. (Here R refers to the fact that only trellis
automata with regular trellises are considered.) Observe that no treilis
language contains the empty word.

It is important to note that we can view trellis automata as
follows.

An infinite unlabeled trellis represents a network of universal
processors and their interconnections. A specification of a treilis
automaton is actually a program for this network which attaches to any
universal processor a label and feeds in this universal processor a
program to compute the input function and the transition function
associated with this label. ‘

Vertical interconnections in trellis automata are exceptional
in the sense that they need two time units to transmit data. They are
quite often useful, as we shall see later, when transparency of speci-
fications (of programs) for trellis automata is of concern. However,
it is easy to see that no power is lost by not having vertical inter-
connections; the information can be transmitted via oblique outputs.

This is shown in the following theorem together with the fact that we can

always assume that the underlying treilis is top-down deterministic.

16

Theorem 1. {A normal form for trei]is‘automata}. To every trellis
automaton K= (P, A, L, T, Fo, f, g) we can effectively construct an
equivalent trellis automaton K = (P, &, £, T, Tb, f, g) such that the
following conditions are satisfied.

(1) T(asu.x,v) = gla,u,y,v) for any a e &, U,X,y,¥ ¢ T .

(2) the coding in P is the identity function.
Proof. Let us assume that P = (A,c) and define P = (A,id) where
id is the identity function on & . Moreover let ¢ : A ~ A and

T=rxTuy {e} T.=T

and for a ¢ A , £ el , X,You,¥v el , ZeT

Tla,&) = (flc(a),t),e)
E(as(xsy}’zs(uiv)} = (Q(C(a),x,ysu),u)

Clearly, the conditions (1) and (2) are satisfied. If we now adopt the
convention, that for w e Tt » 151 < |w ., OUTPUT(K,w,i,lw[+1} = e,
then it is easy to show by induction on i and j , that for

1<i<jisn=|jw|
OUTPUT(K,w,i,3) = (OUTPUT(K,w,i,J),0UTPUT(K,w,i+1,3+1))

This immediately implies that trellis autcmata K and ¥ are
equivalent.
0
Theorem 1 implies, that in order to study the power of trellis
automata it is sufficient to consider only trellis automata in the normal

form K= (P, 8, 5, T, Iy, f, g) or

17
K= (T: A, I, T, FG’ fs g)

where T s a top-down deterministic trellis and g : Ax T xT T . If,
in addition the input functions are the identity functions we shall talk
about a strong normal form. The interbretation is that in order to compute
9,5 ac« A, an a-processor takes as arguments only inputs received
along obliques. It means that vertical interconnections play no fole for
trellis automata in the normal form and therefore in such cases we omit
them also in pictures. We can also assume that P contains only a
labeling function.

We conclude this section with one methodological remark:
Trellis automata are defined in such a way that every processor produces
exactly cne output which is immediately sent out to all its fathers (or
produced as an external Output.in the case of the root}. A specification
(program) of a trellis automaton is sometimes more transparent if we
assume that each processor a under the inputs (x, y, z) produces
three outputs X, Y, Z, formally ga(x, ¥, z) = (X, Y, Z) , which are
sent out along the right oblique (X) , the vertical (Y) and the left
oblique {Z) . (See Figure 2.4a.) (Similarly, see Figure 2.4b - in the

case of trellis automata in the normal form.)

18

X Y z X Z z -/F X,
e N b\/
/ /q
X z X z X | Z
¥ ¥
(3) (b) (¢)

Figure 2.4

In such a case, if a processor outputs on an output oblique
(vertical) the same symbol x it received on the corresponding input
oblique {vertical), we say that x goes through this processor (see
Figure 2.4c for the case that symbols coming alcng obliques go through

a processor.}

19

3. Homogeneous Systolic Trellis Automata

Regular trellises have a Tabeling which can be generated in a
very simple way and therefore trellis automata have fairly regular layout
of processors. .

In this section we introduce and study restricted types of
trellis automata, the so called semihomogeneous and homogeneous trellis
automata, with even a simpler labeling of underlying trellises. Even
with the same processor at every node these trellis automata process

data in a tricky way and accept complicated Tanguages.

Definition 4. An infinite labeled trellis T {s said to be a

semihomogeneous trellis if T = C(T') where T' is a strongly top-down

deterministic trellis. T dis a homogeneous trellis if all nodes are

Tabeled by the same symbol. a

We shall often deal with trellis automata whose underlying
trellis has the root Tabeled by t, the left-leg nodes by 2, the
right-leg nodes by v and all other nodes labeled by a. It is a semi-

homogeneous trellis which will be called in short roof. {Treilises in

Fig. 2.2 are not semihomogeneous.}

20

Fig. 3.1

An alternative characterisation of semihomogeneous trellises

is given in the following lemma which is easy to prove.

Lemma 1: An infinite labeled subtrellis is semihomogenecus if and
only if it has only a finite number of different infinite Tabeled sub-

trellises.

Definition 5. A trellis automaton is said to be semihomogeneous
(homogeneous} if the underlying trellis is semihomogeneous (homogeneous).
Denote by L(ST) and L(HT], respectively, the family of Tanguages
accepted by semihomogeneous trellis automata and homogeneous trellis

automata, respectively.

21

In the case of homogeneous trellises a labeling of nodes is of
no importance and therefore we can write a specification of a homogeneous

trellis automaton shortly in the form

K=(z, 1, Ty, f, g)

where I, T, FO’ f and ¢ have the usual meaning.

The following theorem shows that homogeneous trellis automata
have the same power as semihomogeneous ones and, moreover, that in the
case of homogenecus automata we can even assume that the input function

is the identity function.

Theorem 2. (A normal form for semihomogeneous trellis automata) Given
a semihomogeneous trellis automaton we can effectively construct an
equivalent homogeneous trellis automaton, the input functicn of which is

the identify function.

Proof. let K= (P, A, 3, I, Fgs fs 9) be a semihomogeneous trellis
automaton. In view of Theorem 1 we can assume that the underlying
trellis T is strongly top-down deterministicand g : AxT x T + T .
Without Toss of generality we can also assume that Z AT = 8

A={1, 2,...,n} and that the root of T is labeled by 1.

22

Now we give an informal description of a homogenecus trellis
automaton K which accepts the language L(K). K has the same pro-
cessor in every node. Any time a processor of K s activated it
simulates, in paraltel, computations of all processors of X as follows.
If this processor receives a symbol t € £ on the external input Ppin,
then it outputs t. If it receives two symbols x, y €% or two
n-tuples (x1, e xn) and {yI, . yn), then it outputs the
n-tuple (zy, ..., z) where z; =g, (fiz(x), fi (¥)) or

1
v

z; = gi(xi » ¥y) where i, and 1 respectively are labels of the left
L r

& r?
son and the right son of the node labeled by i in T. (Remember that
T 1is strongly top-down deterministict!) A word w 1is accepted by K
if and only if the output n-tuple has the first component in PO (remem-
ber ‘that the rootof T 1is labeled by 1).
The construction of a specification of X' and the formal proof
that L(K') = L(K} are now straightforward.]

In view of this theorem we can always assume that

a homogeneous trellis automata is given in the foilowing strong normal

form
S = (E, r: I‘O’ g)
Corollary. L{HT} = LIST)

Homogeneous trellis automata are easier to deal with but they are

not so powerful as nonsemihomogeneous ones.

23

Theorem 3. L{HT) < L(RT)

Proof. We show that the language L = {a2n | n=0} ids in

L{RT) - L(HT}. Let T be the infinite regular trellis with the root,
left-leg and right-leg nodes labeled by a and with all other nodes
labeled according to the rules given in Fig. 3.2b (which show how Jabels
of fathers specify the label of their common son.) Fig. 3.2a shows the

labeling of nodes of the first 8 1leveis of T.

a
a a
a b a
a a a a
a b b b a
a a b b a a
a b a b a b a
a a a a a a a a

(a)

a b b a

(b)

Figure 3.2

24

For i =1,2, ... Tet Ai’ Bi be top-down and bottom-up
triangular matrices of a‘s and b's defined as follows: A; s the
top-down matrix {see Fig. 3.2a) formed by labels of the first 2 rows
of T and Bi is the bottom-up triangular matrix containing only b's
which has 21 -1 rows and 2f - J b's in the j-th row.

Using mathematical induction we show that for 1 > 1, Ai has

A/ -1

the form

(1)

and that all bottom-row elements of A, are a's (2i of them).

An inspection of Fig. 3.2 shows that for i =2 and i =3 Ai
has really such a form. Let us now assume that for a k> 3, Ak_I
has form (1) and that all elements in the bottom row of Ay are a's.

Then Ak has to have the form

/
AN
// k-1?

Ak = ; . /f\\
/“\\/”\

25

Since all elements in the bottom row of A _; are a's (21

of them) B matrix must contain only b's (see Fig. 3.2b). Moreover,
from the definition of Ak it follows that all left most elements in C
and all right most elements in D are a's. So the top elements in C
and D are a's. Since B contains only b's this implies that all
right most elements in C and all left most elements in D are a's.
Therefore € =A, _; =D.

It s easy to see that the i-th row of T contains only
a's if and only if i =25 for some k.

Now we describe a trellis automaton K 1in the normal form
which accepts the language L. The underlying trellis is the one from
Fig. 3.2a, {a} ds the terminal aiphabet, {a,b} 1is the operating
alphabet, a being the onily accepting symbol. In the case of the exter-
nal input an a-processor outputs a and a b-processor outputs b. In
the case of internal cutputs a processor produces a 1if and only if both
inputs are a's.

It is now clear that if X recognises a word from {a}*, then
the root outputs a if and only if during the recognition process no
processor outputs b, i.e., if and only if the input word has the form
22, (s 1. Therefore L{K) - L.

The proof that L 1is not in L{HT] ds by contradiction.

Let us assume that L 1is in L{HT}. Then there exists a homo-
geneous treliis automation K in the normal form which accepts L. {a}
is the terminal alphabet of K and Tet its operating alphabet have k

symbals. Let us choose a fixed n such that n > k and 2" . 2n-1 > k.,

26

Since K s homogeneous, for an input word w = azn and for any 0 =1 = 2",
QUTPUT(K,w,i) = b} where bi is a symbol in the operating alphabet of K.
Since n > k, there must exist 0 = iI = 12 < i" such that i2 - ; ? k.

and by =by . This dnpiies that OUTPUT(K,2% ,1,1} = OU;’PUT(KjaZ -(1p-1y),
1,1). But AL PSP (1,-17) < 2" and therefore a’ -lig-1y) ¢ L.

This contradiction completes the proof of the theorem. 0

Remark 1: The infinite trellis defined in Fig. 3.1 is an example cf an
infinite regular trellis all infinite subtrellises of which are distinct.
Remark 2: Note that the regularity condition for the labeling of trellises
is quite essential. If unrestricted labeling is allowed then every
Tanguage cver a one-letter alphabet becomes acceptable by a trellis
automatoen. On the other hand it can be shown in a similar way as in the
proof of Theorem 3, that the family of languages over a one-letter
alphabet which are acceptable by homogenecus trellis equals automata

the family of regular languages over this one-Tletter alphabet.

27

4, Elementary Programming Techniques

Systolic trellis automata have several features which require
the use of special techniques to program them. In this section we dis-
cuss several such simple techniques. In order to iTlustrate these
techniques we use them to show how to design trellis automata to accept
some important languages. We use also these techniques to derive some
more general results.

Matching. (Context-free matching). The basic technique to
deal with a remote context is to keep sending data along obliques tit1

they properly match.

Example 2. Denote by D the Dyck language over the alphabet

= {{,),[,1} (i.e., the language generated by the context free grammar

s+ {s) |[s3] ss |O] £1.)

We shall construct a semihomogeneous trellis automaton K in
the normal form which accepts D . The underlying tré]]is will be the
roof {see Figure 3.1}. {(, }, [, 1, Y, N} is the operating alphabet of
K with Y as the only accepting symbol. The input function of any
processor is the identity function and the processors are driven by

transition functions shown in Figure 4.1.

Informally, processors of K keep transmitting Teft parantheses
(and { along left obliques and right parentheses) and] along right
obliques ti11 they either match properly {and then the corresponding pro-
cessor outputs Y} or improperly {and N 1is outputed} or they hint a

leg-node precessor without being matched {and again N is produced).

28

S

Figure 4.1

29

The Y outputs are consequently absorbed but the outputs N are
propagating i.e., once an N is produced, then the final output symbol is
N . Therefore a word is accepted by K if and only if all parentheses
are properly matched. Figure 4.2 shows the processing of two words. The
symbols written in the nodes are the outputs of the corresponding

processors.

Al AN
N Y { N
B T

) Y

Figure 4.2

30

In order to prove that K accepts D it is sufficient tc show
that for we I ,1<i<js<|w and ze {{,), [, 1 ¥} , the

following assertion {A) holds.

OUTPUT{K, w, i, j) = z 1if and only if w(i’j) has
the form shown in the entries of the table in
Figure 4.3 (where d ds either the empty word or a
(A) word in D, d dsaword in D, p is a prefix
of aword in D and s is a suffix of a word in

D.}

This assertion can be easily proven by induction on 1 and j

(with the help of tables in Fig. 4.1).

UTPUT (K, W, 1,3)
_ () [1 ¥
Ai,y)
a (p | s) [p| s]| sdp
3 (p| @) | [p| d1| dp
r {d| s) [d]| s]| sd
t - - - - d

Dash indicates an impossible combination.

Fig. 4.3

It has been shown in [6] that there is no systolic tree auto-

maton to accept the Dyck language. Therefore we have obtained the

following result.

31

Lemma 2, Systolic trellis automata accept some languages not accept-
able by systotic tree automata.

Multiple processing. Quite a complicated task can be done

by a trellis automaton which simulates in parallel several simpler trellis
automata and at the end the processor at the root combines in a proper way
the outputs of all simulated automata.

The main use of this technique is actually captured by the

following theorem.

Theorem 4. The families of trellis languages and of homogeneous trellis

languages are effectively closed under boolean operations and reversal.

This theorem can be proven easily in a similar way as Theorem 3
in {6]. One has only to realise that if T;» T, and T are infinite
trellises such that AT(i,j) = (AT (i,3), A (i,3)), then T 1s regular

1 2

(semihomogeneous) if T, and T, are regular (semihomogeneous).

Example 3. The Tanguage L = {a™d" | n= 1} s in L(HT). Indeed,
L=Da L0 where D is the Dyck language over the alphabet {(,),a,b}
and LO = {aib:I | i, 3 =1} L0 e L{HT) can be shown easily using the

matching technique.

Path automaton. (Simulation of a finite automaton on a
path). AT1processors of a trellis automaton are combinational circuits,
i.e., they have no memery. In spite of that they can be used to activate
and to simulate behaviour of a finite automaton (or several of them), which,
once activated by a processor, climbs the trellis along a path till it

either stops or reaches the root.

32

Indeed, processors of a trellis automaton can be designed in
such a way, that if they receive, encoded in their input symbols, a state
and an input symbol of a finite automaton A , they compute the new
state and the output symbol of A and send them up along some output
interconnections.

A finite automaton can be activated by a trellis automaton in
many different ways. For example by letting a special symbol reach a
particular processor or a processor receive on its inputs a special com-
bination of symbols.

Simulation of a finite automaton on a path is a very powerful
technique and we shall make quite an intensive use of this technigue in
the rest of the paper. To start with we illustrate this technigue by a

simple example.

Example 4. We show that the language L = {w § Wt | w e z+, $ £z} s
in L{HT). Let M be a finite state @(a’a) aex
acceptor with two states § and N, $

with the input alphabet
{(a,b) | a,b <z U {e}} and the trans- {a,b)

o oo
]

it

o

]

4]

ition function specified in Fig. 4.4.

Now Tet K by a trellis ,
N
automaton with the roof as the under- C;ES (a,b)

lying trellis, 2 U {$, e, N} as the

{a,b ¢ L u {e}}

operating alphabet and $ as the only
accepting symbol, which behaves as Figure 4.4

follows: (See Fig. 4.5.)

33

LN

o
o

(o)

n
&
[N

[Q >
(O
o

Figure 4.5

If the symbol § is received on the external input of a
processor, then this processor activates M and since then on "M
climbs up along vertical edges". In every processor on this route M
receives as the input a pair of symbels coming to the processor along
obliques. This input changes the state of M and the processor sends

M (in this new state) up along the vertical edge.

If an a < = 1is received on the external input of a processor,
then this processor cutputs a along all available output obliques and
it outputs the symbol e along the vertical output. A1l processors
except leg-node processors, let symbols coming along obliques go through
the processor. The leg-ncde processors send e along the output obliques,

if they receive $§ or N on an input.

34

It is now easy to see that K outputs $ if and only if the
input word is in L.
A very simple use of the path automaton technique is actually

in behind the constructions used to show the following result.

Theorem 5. Given two homogeneous trellis automata

K} = (Z!, Iy, F1’0, g]) and K2 = (22, Ty, FZ,O’ 92) and a symbol
$ ¢ 21 u 22 , we can effectively construct homogeneous trellis automata

K, K and K such that

(1) if 3,42, =@ then L(K) = L(K;).L(K))

(2) LR = L{K) $ L{Ky)

(3) LK) = (Lk)$*
Proof. In order to show (1} it is sufficient to show how to
construct a semihomogeneous trellis automaton K Iif Ly ALy =6 This

we shall do now. In a similar way semihomogeneous trellis automata X
and K can be constructed.

We can assume without loss of generality that F] n Pz =6
and that Y, N are two symbols not in P¥ u Fz . Let us define
K= (P, A, Iy v Iy, Ty Ty f, g) as follaws.

tet P = (2, id) where & is the Tabeling function of the
roof. Thus A ={t, 2, 2, a} . Let T = TyuT,u {Y,N} and FG = {¥}

and let fS s, S e A be the identity function on I, u I

1 2"

The transition function g {is defined in Figure 4.6 for the
case that no arguments equals N and its value is N if the value of
at Teast one argument is N . In Figure 4.6 E] and ™ denote arbitrary

elements in F] and gz s My arbitrary elements in F2 . Moreover

35

gs, Set ga gt g£ gm
(s ¥)
(g5 ™) g91(&y5) N 91{g1s ng) N
(€ps Mp) 95(855 ny) N N 95(Ep0 1)
(g5 &) Y z Z z,
(£55 &) N N N N
(€» 1) Y Z, Z N
(Y, &) Y z, N z,
(v, &) N N N N
(€5, Y) N N N N
Figure 4.6

zy = if EI € PI,O then Y else N
z, = if Ez € Tz’o then Y else N
z = if EI € F],O and 52 € FZ,O then 1 else 0

To show that K accepts L(K1) . L(KZ) we proceed as follows:

First abserve that if w e (Z; U 22)+ - ZT Z; and |[w| = n , then when

w 1s being recognised by K, at least one of the processors at the level
n~ 1 produces N and therefore w ¢ L(K).

Let us therefore assume that w = Wil with Wy e ZT

Wy € z; . Let T be the underlying trellis of K] i.e., the roof. Let

and

T(T) and T(z) be those subtrellises of T (see Fig. 4.7) which have
as their Teaves exactly those leaves of Tn to which Wy and w, are

fed when w s fed to K.

36

When w 1is being recognised by K, then the processors in
the nodes of T = produce the following outputs (see Fig. 4.7).

The processors in the ncdes of the subtrellises T(I) and
T{z) produce the same outputs as the processors in the corresponding
nodes of K] and Kz when w, and W is being recognised by K1

and I<2 , respectively.

Figure 4.7

37

The processor in the left-leg (the right-Teg) node of T, sthe
left son (the right son) of which is the root of T(I) (of T(z)),produces
Y or N depending if the output produced by its left son (right son) is
in F],O (in FZ,O) or not.

A1l other processors produce Y or N and they produce N if
and only if one of their input symbols is N .

Therefore, the root produces Y as the cutput symbol if and only

if Wy o€ L(K]) and Wy € L(KZ) . 0
Corollary. The family L(HT) 1is closed under marked concatenation

and marked star.

Example 5. The language L = """ | n =1} s in L(HT) . Indeed,
L= ({anbn [n=]}-{c}+) n ({a}+-{bncn | n21}) and Theorems 4 and 5
imply that L e L(HT) .

Example 6. Let K be a homogeneous trellis automaton and R a regular
Tanguage. It is easy to construct a semihomogeneous trellis automaton

K' all processors of which simulate the corresponding processors of K
and, moreover, K' simulates in its left-leg nodes the behaviour of an
acceptor for R which interprets theoutput of a left-leg processor as 1

or 0 depending if this output is an accepting symbol of K or not. In

such a way K' accepts the language

L={y|yeZ andthere is z ¢ R such that |z| = |y
and for 1 <1 < n the i-th symbol of z s 1
(is 0) if the prefix of y of length i is in
L(K) (is not in L{K))}

38

5. Advanced Programming Techniques.

Two techniques are discussed in this section. They make an
essential use of the facts that trellis automata process data in a
parallel way and data flow is completely synchronized.

Parallel guessing. Discussing subroutine initiation

technique we saw how separators can be utilisied. Their role seems to be
often crucial, for example in the case of the trellis automaton in
Section 4 which recognizes the language {w $ wR | we DA § I} .

In this section we first establish the somehow surprising
fact that also the language {wwR | we Z+} is recognisable by a
homogeneous trellis automaton. This automaton is designed in such a way
that when an input word w is recognized, all processors at the level
[w]-1 assume (guess) in parallel that they are just in the middle of the
row and, similarly as in the case of a treilis automaton recognizing
the Tanguage {w $ wR; W e Z+} , they send up a finite automaton checking
in every encountered processor if its input signals along obliques are
the same.

Parallei guessing technique consists in guessing in parallel
a certain finite context (but maybe unboundedly remote) and processing
data in parallel under the assumption that all guesses were correct till
no contradiction is found. Of course, in order to be abie to do it the
amount of guesses each processor has to keep track of has to be
bounded.

We proceed now to illustrate this technique.

39

Example 7. We design a homogenecus trellis automaton K which
accepts the Tanguage L = {ww" | we £}, Let £ u {e.N} be the
operating alphabet of K with e , N not in T and e the only
accepting symbel. The input and the transition function are defined as
follows:

(In order to gain transparency we assume that each processor outputs

three symbols which are sent out along three outputs edges.)

ft) = (t,N,t) tel
a(tysNaty) = (tp.Noty) tyat, e 2

g(t1,e,t2) = if ty =% then (tz,e,t1) else (tz,N,t]) .

Informally, the symbol e plays here the role of the
separator which is assumed to be wherever possible at the beginning.
Each e moves up the trellis a1on§ verticals as long as it keeps meeting

pairs of equa} symbols (see Figure 5.1).

Fiaure 5.1

40

In order to show formally that X accepts the language L it

s sufficient to prove (by induction) that the following assestion (A)

holds for any we ', 1<i<jz= |wi

(A) A(i,d} - processor outputs the symbol e along its
vertical output if and only if w(i’j) = w1w$ for

some W-I € Z+ .]

As an easy medification of the Example 7 we can also construct
a homogeneous trellis automaton accepting the language
U | wezt and ¢ ¢ Thex .

These examples are special cases of the following rather
surprising result, the proof of which is based.on the parallel guessing

technique.

Lemma 3. If v is a rational transduction, then the lanquage

L= Gy () en, v el dsin L) |

Proof. Let T be a rational tranduction. Then there is a rational

transducer (in a normal form)

R= (0, I, v, Q. F)

where Q ds the set of states, Qo =Q and F cQ are the sets of

initial and final states, I d{s the input and output alphabet and
ve (@ xEx{e} xQ) u (Q x {g} x L x Q)

such that T 1is realised by R .

A homogeneous trellis automaton K which accepts L is now

constructed as follows.

41

internal alphabet: =1z x ZQ % L
accepting symbots Ty = {(a,M,b) | a,b e, McQ and
MnF#6}cr
input function f:Z~>T where for all ac¢ =
f(a) = (a,M,a) with M = {q i (p,e,a,q) e v or
(pya,e.q) e v for some p e QO}

transition function g : T xT T, g = (§,9,4) where

3((a,M,b),(c,N,d))

a } a,b,c,d ¢ X
§((2,M,b),(c,N,d))

d M,N ¢ Q

g((a,M,b),(c,N,d)) = {g € Q | (p,e,d.q) c v for some p e M} u
{3 ¢ Q| (p,a,e,q) ev for some p e N}

Informally, K works as follows. Initially K makes all
possible guesses for the position of an imaginary marker in the input
word w which decomposes w = uRv in such a way that v 1is a possible
output of R under the input u . For any initially guessed decomposition
uRv K simulates R on the input u and checks if v 1is a possible
output of R . The input w 1is accepted if there is a correct guess. (This
shows that systolic trellis automata, which are.deterministic automata, can
simulate in real time locally bounded but globally unbounded
nondeterminism.)

To show formally that L(K) = L it is sufficient to prove
(what can be easily done by induction) that the following assertion

holds for any w e Foand 1214 < s |wl

42

OUTPUT(K,w,1,3) = (a,M,b) where a 1is the first and b
is the last symbol of w(i’j) and
(A) M= {q e Q| there are UpsVyseeeslpsVye Zu {e} and
qo.q],...,qk ¢ Q such that w(i’j} = ”kuk-l"'VZU?VIVZ"'Vk-]Vk .
9 € Q0 and (qs_1,us,vs,qs) ev for s = 1,2,...,k}
a

Before we state the following theorem,which is the main result
of this sectionswe would Tike to remind that trellis Tanguages do not contain

the empty word,so all equalities of languages are considered modulo ¢ .

Theorem 6. Any linear {context-free) language is accepted by a

homogeneous trellis automaton.

Proof. It is well known [1], that L ds a Tinear language if and only
if L= {uRv [{u,v) « T} for a rational tranduction 7 . Now the

theorem follows from Lemma 3.

0
Corollary. The family of homogenecus trellis languages contains the
Boolean closure of linear languages.
Coroliary. The families of homogeneous trellis languages and of trellis

languages contain regular languages and are closed under intersecticn

with reqular languages.

Example 8. Theorem § has the following rather interesting application.
Assume that you want to test whether or not one of the key words

X1,...,Xk appears in a text w . This amounts to accept all words of the form

43

R,uwR R
X1#X2#...#xk#w s
where w can be written as

W= uxiv ,

for some u and v and i, 1=1=k . Reverse Xﬁ is considered
here only because, otherwise, the language is not Tinear context-free.

But words of this form constitute a tinear language - independently
whether we consider a fixed k or a variable k . Hence, Theorem 6 teils
us that key word testing can be accomplished by a trellis automaton.
Moreover, for words of bounded size, one chip of an appropriate size is

sufficient.

Synchronization. Quite often it is useful to construct
a fre?]is automaton in such a way that it does in parallel two things.
First, in all processors some computation is done. Secondly, it keeps
"moving input data, or some other data along obliques or verticals
through processors till they are (again) needed." This idea is behind of
the matching technique and in such a way trellis automata accepting Dyck
Tanguage and palindromes were constructed.

This technique can be generalized in the following way. A
trellis automaton can not only keep moving data along some obliqﬁes or
verticals but it can also change directions in which data "climb the
treliis". By changing these directions in proper moments the data
movement can be synchronized to achieve that proper data, often from

quite remote sources, arrive to inputs of some processors.

44

In the rest of this section this technique is illustrated by

several examples.

Example 9. The language L = {w $wiwe Z, $4 T} dsin L(HT) .

Since the language L, = {w; $ w, [wyswy e I, Iw]\ = [wz[} is
tinear,it is sufficient to show, in view of Theorems 4 and 6,that there
is a homogeneous trellis automaton K such that K accepts a word
W= Wy S Wos WyoWy & A |w1| = |w,|s if and only if wy = w, .

This seems to be avery simple task. For a given word
w=w $w with w, and w, in I , iW3| = iwz[=n, K simply will
keep sending symbols from Wy (from wz) along the left (right) obliques
and the processors at the level n simply compare their inputs (see
Figure 5.2a). (The i-th processors on the level n receives as inputs
the i-th symbol of W, and the 1i-th symbols of w2.) K accepts w, $ W,
if and only if every processors on the level n receives on both inputs
equal symbols.

However, this does not work. There is no way to achieve, that
for any word w, $ Wy, [w]! = 1w2] =n all processors at the level n
behave differently than processers at cther levels.

K has therefore to be constructed in a different way and we
show now how it can be done using our synchronization technique (see
Figure 5.2b).

Let T denote the alphabet disjoint from .Z consisting of
"barred" symbols, I ={a [a e I} .

K will have two kinds of processors. R-processors in the

right-leg nodes and A-processors in all other nodes. Informaliy,the

45

processors of K work as follows.

(1) A-processors. If the external input is $, then this symbol is
sent out along the right oblique and the empty symbol is sent out
along other outputs. If an external input is from T , then this
symbol is sent cut aleng all output obliques and e 1is sent out
along the vertical output.

In the case of three internal inputs, an A-processor lets an input
symbol to pass through with the following exceptions. If a
processor receives a symbol £ ¢ I along the left oblique and the
symbol § along the right oblique, then it outputs e along the
right oblique and the symbol % along the left oblique. If a
processor receives a symbel Z along the left oblique and a symbol
n e T along the right oblique, then it sends £ along the Teft
oblique, e along the right oblique and n along the vertical
cutput.

(2) R-processors. Ifa £ e 1is received on the external input
then &£ 1is sent up along the right oblique. In the case of three
internal inputs from £ u {e} , an R-processor outputs the symbol
coming along the right oblique. If a processor receives a £ ¢ &
on its left oblique and an n « £ on its right oblique, then it
outputs Y if £=1n and N if £ #n . If an R-processor
receives N on one of its inputs, then it sends up N . Finally, if
an R processor receives Y on its right obligue, then it sends
out Y or N depending whether the input symbols on other inputs

are equal or not. Y 1is the only accepting symbol of K .

46

Figure 5.2

We can say that when @ £ ¢ T hits an R-processor, then a finite
automaton A s activated. A then moves along the right-leg edges and
in each encountered processor A compares fnputs on the left oblique
and on the vertical.

Formal construction of K 1is now quite straightforward.

Example 10. The language L] = {ww | we I} is in L(RT) . Indeed,
a trellis automaton K] accepting LI can be constructed in a similar
way as the automaton K in the Example 9. The underlying trellis of K1
wiil be the treilis shown in Figure 2.2b, i.e. the roof with the nodes
just in the middle of rows labeled by m . First time an m-processor
receives an input it sends out the symbol § along its left output
oblique. The rest of the construction of K] is similar to the

construction of K in the Example 9.

47

It seems that the language {ww | w ¢ £*1 is not in L(HT)
however, we have no proof of this.

We conclude this section with several examples of languages
which can be shown to be homogeneous trellis languages using the
synchronization techniques. These examples show thh the power of
homogeneous trellis automata and the power of cur synchronization

technique.

Example 11. Let £=1{0,1}. Let p: L xZ~+Z bea binary operation
on T . For x,yes2', x| = |¥| = n slet
xpy = p(xgs¥q)elxy.y5) . 0(xy,) - The language

L={xyz]| xy¥:z¢ tt, [x] = |y|s 2 = xpy} 1ds in L(HT) .

Example 12. lLet % =1{0,1} . The tanguages

L = X yz| xy.ze i, x| = iyl, 1z = 1x + 1y} and

(1x)*(1y)} are in L(HT).D)

L={xsybz|xyzer, x| =y, 12

Example 13. Let & = {a} . The languages L; = {ai $ al $ ak [J = i+k}
and 1, = {ai $ aj $ ak $ at | i+k = j+2} are in L{HT).

Example 14. Let £ be an alphabet and $ ¢ £ . The Tanguages
Ly = {w$ W | we ¥ and Ly={uw$ W | we £33 are in L(HT).

To show that L, is in L(HT) 1s quite easy. The case of L3
is more tricky. One can make a use here cof the fact that the language

L2 from the Example 13 is in L(HT).

1} For x ¢ 2+, 1x denotes an integer represented in binary by x .

43

Example 15. The following language L over the alphabet {0,1,#} is

the homogeneous trellis language. L consists of all words

WI#WZ#"'#WH

where the w's are words of equal Tength % over the alphabet {0,1}
and, moreover, Wy = Ok s Wy = 1k and each Wi represents in binary
notation the successor of Wi o (0#1 and 00#01#10#11 are two shortest

words of L .)

49

6. Conclusion.

We discuss here briefly some modifications, as well as results
from further work in progress [3, 5].

If we wish to process only one input string at a time, i.e., if
we give up the possibility of pipelining, then there are two rather
distinct possibilities how te interpret a systolic trellis automaton.
First we can view the whole (finite) trellis as one large processor (with
no registers) computing a combinational function in one step of a (slow)
external clock. Alternately, any program for a homogeneous trellis
automaton. can be executed also on the linear systolic array (not pure)
shown in Figure 6.1, one trellis-level per each (fast) clock cycle. The
circles show the (identical) processors and the rectangulars show the
memory registers. The corresponding output is produced n-1 steps {clock

cycles) after an input is read.

IN1 . IN2 IN3 IN4
ouT #%o o o

Figure 6.1

50

Actually, it can be even shown that a program for a trellis
automaton can also be translated to a program for a linear systolic array
(see Figure 6.2) which reads the input in a serial way and produces the

cutput with delay n , where n 1is the Tength of input (see [5]).

IN o
HOST Linear Systolic Array

out

Figure 6.2

Therefore, as an application of Theorem 6 we can mechanically
compile a program for any of the above devices from a linear context-free
grammar specifying a given problem. Such program would not be necessary
an. optimal one but will be guaranteed correct. See Example 8 in Section 5.

Even if we cannot design a program for a linear systolic array
fully mechanically or if such program would not be efficient enough, it
seems to be much easier to write first a program for a trellis automaton
since the trellis structure gives us good geometric intuition about the
information flow and synchronization probiems. Such program can then be
executed on the array of Figure 6.7 or mechanically translated for
sequential linear array of Figure 6.2. We consider this approach an

important methodological tool in the design of systolic arrays.

51

We have not discussed in this paper any decidability or
complexity results. It follows from Theorems 4 and 6, see [3] for details,
that the emptiness problem for homogeneous trellis automata is undecidable.
Consequently, also the equivalence problem is undecidable for homogeneous
trellis automata. On the other hand, the membership probiem is decidable
in O(nz) time on (deterministic) multi-tape Turing machines. This
result and some of its generalizations will be further discussed in [3].

Gur definitions of trellis automata above require that an input
word is fed to a trellis automaton always on a sepcific level, i.e., always
on the shortest possible level. Important generalizations on input
conditions allow the possibility of the input being fed on an arbitrary
(sufficiently long) Tevel. In other words, the use of any sufficiently
large chip is allowed to recognize an input.

There are two modifications of such a generalization. In a
stable automaton an input must be fed to the external input pins of the
Teftmost processors on any sufficiently long level of processors. Blanks
are fed to the remaining processors on this level. The final output must
be independent of the level chosen.

In a superstable automaton an input can be fed to the external
input pins of arbitrary processors on any sufficiently Tong Tevel
{preserving the left-to-right order of the input letters). Again, blanks
are fed to the remaining processors on this level. Now the final putput
must be independent of the level chosen, as well as of the choice of the
processors an this Tevel actually taking the input.

It will be shown in [3] that, for any homogeneous trellis

automaton, an equivalent superstable (and therefore also stabie)

52

homogenecus trellis automaton can be constructed. The practical
significance of this result is obvious: any sufficiently large chip is
suitable for the processing of words within its range. From the theoretical
point of view, stability results can be used, for instance, in various
considerations concerning closure properties and the characterization of
acceptable Tlanguages. As regards stability and superstability, it is
interesting to note that there is a remarkable differenée between systolic
tree and systolic trellis automata [3, 41.

In this paper we studied systolic automaton based on the
trellis structure. In [6] tree structure was considered. It is clear
that some aspects of systolic automata and some proof technigues are
infinite independent on the underlying structure. For example the next
state {configuration) of a systolic automaton is recurrently computed so
that each processor locally computes a new value based on the values
produced by its neighbours according to the transition function. Actually,
under very general conditions on the underlying structure, we can show
that the homogeneous systolic automata constitute a normal form, that
the defined family of languages is closed under Boolean operations and

contains all regular sets.

53

REFERENCES

1.

10.

11.

Berstel, J. Transductions and context-free languages, B.G. Teubner,
Sttatgart, 1979,

Culik, K. II, Gruska, J., and Salomaa, A, Systolic automata for VLSI.
Research Report CS-81-33, Department of Computer Science, University
of Waterlco, 1981.

Culik, K. II, Gruska, J., and Salomaa, A. Systolic trellis automata:
stability, decidability and complexity. Research Report CS-82-04,
Department of Computer Science, University of Waterloo, 1982.

Culik, K. II, Gruska, J., and Salomaa, A. Systolic automata for VLSI
on balanced trees. Research Report (S-82-01, Department of Computer
Science, University of Waterloo, 1982.

Culik, K. II, and Pachl, J.K. Designing systolic arrays (in
preparation).

Culik, K. II, Salomaa, A., and Wood, D. VLSI systolic trees as
acceptors, Research Report CS-81-32, Department of Computer Science,
University of Waterloo, 1981.

Kung, H.T. Let's design algorithms for VLSI systems. Proc. Caltech
Conference on Very Large Scale Integration, Ch. L. Seitz, Ed.,
Pasadena, 1979, pp. 65-90.

Kung, H.T. The structure of parallel algorithms. Research Report,
Department of Computer Science, Carnegie-Mellon University, 1979.

Kung, H.T., and Leiserson, C.E. Systolic arrays {for VLSI). Proc.
Sparse Matrix, I.S. Duff and G.W. Stewart, Ed., Society for
Industrial and Applied Mathematics, 1979, pp. 256-282.

Leiserson, C.E., and Saxe, J.B. Optimising synchronous systems.
Proc. 22nd Annual Symposium on Foundations of Computer Science,
Nashville, Tennessee, 1981, pp. 23-36.

Mead, C.A., and Conway, L.A. Introduction to VLSI systems. Addison-
Wesley, Reading, Massachussets, 1980.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

