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LOWER BOUNDS FOR DISTRIBUTED ELECTION ALGORITHMS

IN CIRCULAR CONFIGURATIONS OF PROCESSES

J. Pachl, E. Korach and D. Rotem

The election problem is the problem of selecting a single
process ("leader") in a homogeneous configuration of asyn-
chronous processes with no central controller. An election
algorithm is one that solves the problem. We estimate the
number of messages required by election algorithms in
message-based unidirectional rings of processes. We give a
simple combinatorial formulation of the problem, and show
that n 1n n + O(n) is a lower bound for the average number
of messages sent in rings of size n. The bound is optimal,

because it matches a previously known upper bound.



1. Overview.

As the feasibility of building large networks of auto-
nomous processors increases, so does the interest in
decentralized algorithms suited for large configurations of
concurrent processes. An elemental problem, whose solution
is likely to be used as a building block in more complex
distributed algorithms, is that of choosing a single node in
a network. Since the choice must be made by the nodes
themselves, not by any central authority, we refer to the

problem as the election problem, and call its solution an

election algorithm.

The election problem is to be solved by executing an
identical algorithm in each participating node. Of course,
if all the nodes are exactly identical  then one cannot
guarantee absence of deadlock; thus we assume that the nodes
differ in one parameter: Each node 1is assigned a unique
label, of which it alone is aware when the algorithm starts

executing.

Gallager [4] proposed a solution to the election prob-
lem in a general configuration of processes. Le Lann [91]
investigated the important special case of a circular confi-
guration. His solution was modified and improved in several
published papers (2] [6] as well as in several still sitting
on referees' desks. Thus today we Kknow several election
algorithms for both unidirectional and bidirectional rings,

and also their efficiency as measured by the execution time



and the total number of messages.

The only paper known to us which is concerned with
lower bounds 1is [1], where Burns shows that the worst case
number of messages needed by any election algorithm in
bidirectional rings of size n 1is at least (n log, (n/2)}/8,
and at least (n 1og2 n}/4 when n is a power of 2. Since
obviously every bidirectional ring can be used as a
unidirectional one, the bound is also valid for

unidirectional rings,

In this paper we concentrate on unidirectional rings,
which are apparently easier to understand, and show that the
average number of messages needed by any election algorithm

in unidirectional rings of size n is at least

2

n lnn + 0({n) 0.693 n 1og? n+ 0(n).

The bound is the best possible (modulo O(n)), because it is
actually achieved by the Chang and Roberts algorithm [2].
This raises an interesting question concerning the differ-
ence between unidirectional and bidirectional algorithms.
Apparently, no bidirectional algorithm with average
behaviour better than n ln n + 0(n) is known. The question
whether the capability of sending messages in both
directions can be effectively utilized to decrease the

(average or worst case) number of messages remains open.

The paper is organized as follows: In section 2 we

describe the election problem in some detail. 1In section 3



we enumerate all electlion algorithms by means of certain
sequences of 1labels; that will enable us to use a simple
counting argument to prove our main result in section 4. In
the last section we speculate how our method could be used
to derive sharp lower bounds on the worst case number of

messages.

2. The election problem.

In our main problem, a number of identical nodes
(=processes) are connected by one-way (simplex) communica-
tion channels to form a circular configuration so that each
node transmits (sends) into exactly one <channel, and
receives from exactly one channel. We refer to such confi-

guration as a unidirectional ring. The nodes communicate

only by messages sent along the channels. Messages can be
arbitrarily long, but sending and receiving in each node are

atomic actions which cannot overlap in time.

There is no central node. All nodes execute the same
algorithm; they differ from one another only in that each
has a unique (integer) label. Initially each node knows
only 1its own label; it knows neither the values of other
nodes' 1abe1§ nor the number of nodes in the ring. We say
that the ring with n nodes is labeled s = (s .- s,) 1f the
output poert of the node labeled 54 is connected by a commun-—
ication channel to the 1input port of the node with label
Siq for i = 1,...,n-1, and to the input of the node with

label $; for i = n. Thus if a ring is labeled by s, it is



also labeled by any cyclic permutation of s.

The execution is asynchronous, in the sense that the
nodes can only synchronize explicitly through messages (not
implicitly by a real-time clock) . However, messages are
delivered with arbitrary (finite) delays. Thus while every
transmitted message is eventually receivéd, there is no a
priori bound on its transmission delay, and the delays are
mutually independent. 1In particular, there is no bound on
the number of messages that can be simultaneously in transit
on any one channel. For the sake of simplicity, and with no

loss of generality, we assume that a1l nodes start execution

simultaneously.

The election problem is to choose a single node in the

ring, the so called leader of the network. An election
algorithm is an algorithm which, when executed in every node
in the ring, will always (ie. for every ring size, for every
label assignment and for every choice of transmission
delays) result in electing a unique leader. We consider
only deterministic algorithms; that 1is, the behaviour of
each node is uniquely determined by the node's label and by
the messages received in the node. We shall use a slightly
nonstandard termination criterion: the election terminates
when the leader has been notified that every node in the
ring knows the leader's 1label. fThis has the technically
useful consequence that there must be a chain of consecutive

messages spanning the full circle (ending in the elected



node) , as we will see later, Other termination criteria
have been used, but they are all essentially equivalent as
far as the total number of messages is concerned. They
differ by at most 2n messages {in a ring of size n), which

is a low order term in our results.

At this point we wish to avoid the potentially most
obscure aspect of the election problem, the indeterminism
caused by variable transmission delays. We adopt two
additional assumptions, thereby making execution in each
ring deterministic. The assumptions will allow us to
proceed directly to the mathematical heart of the matter.
In Appendix we return to the question of indeterminism, and
show that the assumptions (2.1) and (2.2) do not limit the

generality of our results.

Thus we assume, in the rest of the paper (except Appen-

dix), that

(2.1) In each channel, the messages are received in the

same order as sent.

(2.2) The nodes can receive messages only by executing the

blocking receive command (710], p.481).

The blocking receive command means "wait until the next mes-
sage arrives at the input port" (if the next message has
already arrived then the waiting time is zero). Thus a node
can only receive a message if it commits itself to suspend

all its activity until a message arrives. An important



consequence of (2.1) and (2.2) 1is that the execution of
every election algorithm in every labeled ring is
deterministic (ie. independent of the transmission delays).
Indeed, in the unidirectional ring every node receives all
messages £rom a single source, (2.1) guarantees that they
are received in a deterministic (delay independent) order,
and the blocking receive primitive {along with the absence
of a real-time clock} ensures that only the order (not

actual arrival times) of received messages matters.

3. Full information algorithms.

In order to be able to find lower bounds (over all
election algorithms), we want to enumerate all election
algorithms in a simple manner which would allow us to esti-
mate the number of messages used by any algorithm in any
ring configuration. To this end, we define a class of
algorithms (which we call the full information algorithms),
and show that the algorithms in the class are as good as all

other election algorithms.

The idea of our simplification is this: To specify an
algorithm, one has to say when to send (or, at a particular
moment in time, whether to send) and what to send. We elim-
inate the latter decision by considering the algorithms in
which every node sends everything it knows (hence the name
"full information" algorithms); these algorithms only have

to specify whether to send or not.



A full information algorithm is an election algorithm

in which the content of each message is a finite sequence of

labels such that

(1) the content of a message is a sequence (51) of length 1
iff the message sender has 1label s, and it has

previously received no message, and

{2) the content of a message is a sequence (s1 So eee sk)
of length k > 1 iff the message sender has label s, and
the content of the last message previously received in

the node is (sl So cer S 1),

This means that every message contains all the information
about ring labels that is potentially available to the send-
ing node at the time when the message is sent. (The 1last
received message always contains more information than the

previous ones, in view of (2.1}).)

Our first result says that, at least as far as the
number of messages is concerned, every election algorithm

can be replaced by a full information algorithm.

3.1. Theorem. For every election algorithm A' there is a
full information algorithm A which uses the same number of

messages as A' on any ring.

Proof is straightforward: The content of every message sent
by a node executing algorithm A' is a function of the

local label and of the <content of the messages received



previously in the node. Hence the content of every message
is a function of a sequence of labels. Instead of sending
the wvalue (result} of this function (as A' does), the
algorithm A sends its arquments; the message recipient then
computes the function value every time it is needed. Thus
A is constructed from A' by (i) replacing every "“send"
operation by send (sl cee Sy sk+1) where (sl cer 5) is the
content of the last previously received message and Siy1 is
the 1local 1label, and (ii) replacing every "receive" opera-
tion by a subroutine which receives a message of the form
(s

1 *** SKg) and computes the value which the corresponding

message in the execution of A' would contain.

(]

For full information algorithms, we shall estimate the
number of messages by counting certain sequences of labels.
The concatenation of two sequences s and t of integers is
denoted st. When s and t are two sequences, we say that t
is a subsequence of s if s = rtu for some sequences r and u;
we say that t is a prefix of s if s = tu for some u. Two
sequences of integers are said to be disjoint if no integer
belongs to both. When s is a sequence, we denote by len(s)
its length, and by C(s) the set of cyclic permutations of s.

Clearly IC{s}| = len{s).



Let Z be the set of integers. We denote by D the set

of all finite nonempty sequences of distinct integers:

AD={(Sl--~sk)Ikzl,siEZforlgif_k,
and s; # sj for i # 3 }.

For s €¢ D and E € D, we denote by N(s,E) the number of
subsequences of s which belong to E . A subset E of D

is called exhaustive if it has these two properties:

Prefix property: if tu € E and len(t) > 1 then t € E.

Cyclic permutation property: if s € D then C(s) N E # 0.

Note that, in view of the latter property, every sequence of

length 1 is in E .

Since the assumptions (2.1) and (2.2) make the execu-~
tion of every election algorithm on every unidirectional

ring deterministic, we get the following useful fact:

3.2. Lemma. Let t be a subsequence of s €D. A message with

content t is transmitted when a full information algerithm A
executes on a ring labeled t if and only if a message with
content t is transmitted when A is executed on a ring

labeled s.

(]

In the next section we shall use the following theorem

to get a bound on the average number of messages.

3.3. Theorem. For every election algorithm A there exists

an exhaustive set E € D such that A requires at least N(s,E)



- 10 -
messages when executed on a ring labeled s.

Proof. 1In view of 3.1 we can assume that A is a full infor-
mation algorithm. Define E as follows:
E={t| t €D and a message with content t will be

transmitted when A executes on a ring labeled t }.

First we show that E is exhaustive. The prefix pro-
perty follows from Lemma 3.2 and from the definition of a
full information algorithm. To prove the cyclic permutation
property, take any sequence s = (sl e sk) € D. Assume,
without loss of generality, that the algorithm elects the
node labeled S, to be the leader of the ring labeled s. By
our termination criterion, the election is not over until
the node labeled S; has been notified that all the other
nodes know S, to be the leader's label. Hence at least one
message with content ts, where len(t) > 0, must be sent (by
the node labeled s,) before the election is over. Obviously
len(ts} > k. The prefix of ts of length k is a cyclic per-

mutation of s which belongs to E , hence C(s) N E # 0.

To show that at least N(s,E) messages will be sent in
the ring labeled s, it 1is enough to prove that for each
subsequence t of s such that t ¢ E, at least one meSsage
with content t will be sent. The latter claim follows from

the definition of E and from Lemma 3.2.

{1

It can be shown that, conversely, every effectively
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computable exhaustive subset E of D corresponds in this way
to an election algorithm. This fact will not be needed in

the sequel, and will not be proved here.
We illustrate Theorem 3.3 with an example:

Example (Chang and Roberts [2]). 1In each node execute this

program:

integer max, m

begin
max := local.label
Send( local.label )
Receive( m )

while m # max do
if m > max then
max :=m
Send{ m )
end if

Receive( m )
end while

if max = local.label then
Send( local.label )
Receive({ m )

end if

stop { leader's label is max }
end

In this algorithm, the content of every message is a single
integer. Receive( m ) 1s a blocking receive command; it
stands for "wait until next message arrives, and then copy
its content into the variable m". The algorithm elects the
node with the 1largest 1label to be the 1leader. The

corresponding exhaustive set is
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E = { (sl Sy eee 8)) | sq =12?§ksj }

It should be observed that the description of E is,
at least 1in this case, considerably simpler than the
programming language description of the algorithm. We
intend to pursue the idea of describing distributed

algorithms by the information content of their messages in

more detail elsewhere,

4. Lower bound for the average number of messages.

We define A(I) as
: 1
A(I) = min 2. N(s,E).
E nT s€P (1) !

where E 1iIs an exhaustive set, and P(I) is the set of all

permutations of I.

It follows from Theorem 3.3 that an election algorithm
with a corresponding exhaustive set E will send at least
#TsGP(I) N{s,E) messages on the average on rings 1labelled
by permutations in P(I). Hence A{I) is a lower bound on the
average number of messages sent by any election algorithm on
rings labelled by P(I). Furthermore, as shown in the next

lemma, A(I) depends only on the cardinality of the set I.

4.1. Lemma. If IIl] = |121 then A(I;) = A(l,).

Procf: Since IIll |12| there is a 1-1 mapping f:2 -> Z

such that f(I

1) I,. It is easy to verify directly from

the definition that a set E € D is exhaustive if and only if
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f(E) 1is exhaustive, The lemma follows from the fact that
for s € P(Il) we have f(s) € P(I,) and N(s,E) =
N(f(s), £(E)).

(1

Lemma 4.1 allows us to define A(n) = A(I) when n = [I|.
By the previous arguments in this section it follows that
A(n) is a lower bound for the average number of messages
sent by any election algorithm in unidirectional rings of

size n.

4.2, Theorem. For n > 1 we have

n
A(n) > (n+l)H - n where H = égi..

=

Proof: For a fixed n we consider the set I = {1,2,...,n}.

For a given exhaustive set E, s ¢ P(I) and 1 £k < n let
s{k)={tlt is a subsequence of s with len(t)=k and t E}.

It follows from this definition that

n n
N(s,E) = ¥ Is(k)| ana 2, N(s,E) = X 2. Is(k)t
k=1 s €eP(I) k=1 s €P(I)

There is a total of (n+l-k) subsequences t of 1length
k in each permutation s ¢ P{I}). By the c¢cyclic permutation
property of E, it follows that at least one out of the k
cyclic permutations of t must be in E, hence

> Is(k)| > nl(n+l-k)
s € P(I) - k
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Therefore for every exhaustive set E we have

1 ~ D (n+l-k)
= N{s,E) > et = (n+l1)H_ - n.
™ os el Eih k n

The theorem follows by the definition of A{n).

{1

By the well known approximation to Ho .

H =1lnn+ Y+ O(n'1

)

where ¥ = 0.577, we have

~

A(n) > nlann+ 0{(n) = .693 n log2 n + 0(n).

The Chang and Roberts algorithm (described in section
3) requires n ln n + 0{n) messages on average (see [2], p.

282), which shows that A{(n) < n lnn + 0(n). We conclude

that
A(n) = n lnn + 0(n).

5. A recursive formula for the worst case number of

messages.

Obviously, the average case bound in the previous sec-
tion is also a 1lower bound for the worst case number of
messages. In this section we suggest a method that could
possibly lead to a sharper worst case bound. The method
also further illustrates the calculus of exhaustive sets.
Since we have not been able to actually fiﬁd a sharper

bound, we only present a brief outline and omit the proofs
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of our formulas.
For each finite set I of integers, define
W{I) = min max N(s,E)
E s€P(I)

where the minimum is taken over all exhaustive sets E € D.

As in Lemma 4.1, one can show that W(I) depends only on
the cardinality of I, and we can write W(n) = W(I) when
n = |I]. From Theorem 3.3 it follows that W(n) is a lower
bound on the worst case number of messages sent by any elec-

tion algorithm in unidirectional rings of size n.

In analegy with our result in section 4, we would 1like

to find a constant K such that
W{n) = K n log2 n + 0(n)

The algorithm constructed recently by Dolev et al [3] proves

that
W(n) < 2 n log2 n + 0(n)
Since clearly W(n) > A(n), from 4.2 we get
W{n) > nlnn+ 0(n). (5.1)

By combining k sets of cardinality n we are able to prove

the recursive inequality

W(kn) > k W(n) + n W(k) - kn. (5.2}
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Since W(l) = 1, from (5.2) we get, for any fixed k > 1,

(W{k}-k) n log, n
W(n) > K Tog, % + 0(n) (5.3)

Formula (5.3) has an interesting consequence: We can obtain

a bound of the form |

W(n) > K n 1og2 n + 0(n)
by estimating W(n) for a single value of n. For example,

one can show that W(2)=3, which together with (5.3) gives
W(n) > & n log, n + 0(m)
=7z 2

We can also prove that W(k) > 3k-4 for every k. This along

with (5.3) yields

(2k-4) n logy n
k log2 k

W{n) > + 0{(n) {5.4)

From {(5.4) we get the best result when k=5, namely

W(n) > S—Iggz—g n log.n+ 0(n) (5.5)

However, B_Té%—‘g = 0.51... is well below 1n 2 = 0.69... and
2

thus (5.5} does not improve upon (5.1).

Appendix: Eliminating indeterminism.

The assumptions {2.1) and (2.2) in section 2 allowed us
to 1ignore the indeterminism introduced to the system by
indeterminate transmission delays. In this appendix we will

argue that our results stay true even when the assumptions
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are relaxed.

Consider a unidirectional ring in which messages can
arrive out of order {(contrary to (2.1)) and processes can
test their input ports (or rather the associated buffers)
for emptiness (contrary to (2.2)). Theorem 3.1 and its

proof remain valid in this more general setting.

For a given election algorithm, the total number of
messages sent in the ring now depends on two factors: label
assignment and the choice of transmission delays. There
does not seem to be any canonical probability distribution
on delay choices; we define the average number of messages
as in [2] and [7]: Given a set I of labels, for each permu-
tation of I take the worst possible choice of delays (ie.
the one resulting in the largest number of messages) and
then average over all permutations. The "worst possible
choice of delays" appears to be fairly typical, and there-
fore the average number of messages defined in this way is a

realistic performace measure.

Now we can get a lower bound on the average number of
messages in rings of size n, as follows: For each election
algorithm and for each labeled ring of size n select one way
to execute the algorithm on the ring, count the number of
messages (in the selected execution history), and then aver-
age over all label permutations. Suppose that we select one
execution history for each election algorithm ahd each ring,

and that we make the selections for distinct rings mutually



- 18 -

consistent, so that 3,2 is true. We can then proceed as in
section 3 to ©prove a modified version of Theorem 3.3: For
every election algorithm there exists an exhaustive subset
E of D such that, for a certain choice of delays, the
algorithm requires at least N(s,E) messages when executed on
a ring labeled s. It follows that, with the average number
of messages defined as above, the results in sections 4 and

5 remain true,

The mutual consistency of the selected execution
histories for different rings can be achieved by construct-
ing the selected histories recursively. First we define the
selections on linear segments, starting with segments of
length 1 and proceeding recursively to longer ones. When
the selections are made for all segments, we select

histories for rings (to agree with those on segments).

Although we have described the construction informally,
it can be easily formalized: Following Greif [5] and Lam-

port [8], we take an execution history to be a partially

ordered set of events, where each event 1is either the
transmission or the reception of a message. Each event has
its location (the node where it is executed) and a
distributed algorithm is specified (locally) by defining all
possible sequences of events in a single location (this is,
essentially, a denotational version of Burns' operational
model) . It is straightforward to define which execution

histories are allowed by a given algorithm, and which pairs
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of execution histories are consistent. The recursive selec-—

tion construction can then be carried out formally.
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