SYSTOLIC TREFE ACCEPTORS

Karel Culik IT
Arto Salomaa
Derick Wood

CS-81-32

(Revised Version)

August, 1982

SYSTOLIC TREE ACCEPTORS}

Karel Culik I
Arto Salomaa §
Derick Wood

Department of Computer Science
University of Waterico
Waterloo, Ontario, Canada N2L 3G1

ABSTRACT

This paper introduces systolic automata for VLSI as
highly concurrent acceptors. Atlention is focused on
tree automata although other types are also discussed
briefly. A number of preliminary results about the
capabilities of such automata are obtained. The
approach not only opens up a new and interesting area
of language theory but alse its results give useful hints
for VLSI system design particularly with regard to the
pros and cons of specific geometric structures.

1. Introduction

It is expected that one of the best ways to exploit the poten-
tial of VL3I is to put specialized large multiprocessor systems en a
chip. To cope with the problems of communication in large paral-
lel systems the use of the design methodology of systolic systems
has been proposed [1, Chapter B, 5]. A great variety of examples
and specific constructions of such systems have been presented,
see for example [1, 5, 6] and are often combined with complexity
considerations. On the other hand, we do not know of any attempts
to characterize the capabilities of VLSI eircuits of specific types.

This paper constitutes such an attempt for systolic systems
when the communication structure is a tree. Other types of com-
munication structures {e.g. trellis and hexagonal in [7]) have also
been investigated. Cornmon to these types is that the processors
perform combinational functions, all being synchronized, and com-
municate through communication lines involving unit delay (i.e.

% This work was supporied by Natural Sciences and Engineering Research Council of
Cenada Grants Nos. A 7403 and A 7700.
1 Omn & leave of absence from University of Turku, Turku, Finland.

2 CULIK, SALOMAA AND WOOD

physically there would be a register on each communication line).

Specifically, in this paper, we consider tree structures of
processors. The leaves take the input which is then processed
towards the root, bottem-up and in parallel. At the root the
acceptance decision is made. Since the information flows only
one-way (bottorn-up), the intermediate results are always ail on
one level of the tree al any moment of time. This allews for
“pipelining" (see [1. 5]}. Such systolic systems can be viewed as a
special type of bottom-up deterministic tree automata, and are
also similar to cellular automata, e.g. the triangle acceptors of [8],
However, the emphasis in traditional cellular automata theory is
different: one censiders mainly computability.

CQur specific model arose from a study of the use of VLSI
circuits for text-editing; this is discussed further in Section 5.

There are also interconnections between our theory and the
theory of iterative arrays, as well as the theory of circuits for
language recognition. The reader might alse want to compare 8]
and [10] with our approach. Actually, systolic arrays are not
considered in [9] and [10].

Systolic tree autcmata are very efiicient acceptors, since they
operate in logarithmic tirme and the number of processors is 0(n).
(This is achieved by letting the underlying tree grow exponentially,
although this requirement is superfiuous for our technical results.)
In this paper we focus attentien on the over-all capability of
systelic tree automata: whal can be done within fized complexity.
Observe, however, that because of the mode of operation a new
word is fed at every time instant. Issues of complexity should be
viewed accordingly.

The autormata are very inleresling from a purely language-
theoretic point of view. Deterministic and parailel bottom-up
processing bring about entirely new language-theoretic features.
Traditional language theory, [4], is sequential in nature. Even the
parallelismn of L systerns, [3], is different from that in our case: it
can be viewed as top-down parallelism. Compared with traditional
hierarchies in language thecry, our new language families contain
not only everything simple (regular languages and essentially also
DOL languages) bul also languages very high up in the classical
hierarchies.

Our results concerning what cannot be done give some idea of
the restrictions of systolic arrays associated with a certain
geometry, We believe that such results also have practical
significance for choosing a proper figure for a particular task.

A brief outline of the contents of the paper fellows, Section 2
contains a brief discussion of possible medels and introduces the

22

SYSTOLIC TREE ACCEPTORS 3

specific model investigated in this paper. Even the simplest
version of this model turns out to be quite powerful and is capable
of accepting every regular language, as shown in Section 3, which
also contains further constructions involving acceptable languages
~ of different types. Negative resulls and a criterion of
nonacceptability are presented in Section 4 and, finally in Section
5 some remarks on further questions structures and results are
given, and also some comments on the practical implications of
our results for VL3I are given.

We refer the reader to [1] for further background and
motivation as regards VLSl systems. The reader should also know
the the basics of language theory. Whenever need arises, [4] can
be consulted. Cur discussion about trees and related notions (such
as “the underlying structure) is rather informal. The reader is
referred to [11], which is actually a follow-up paper to this paper,
for more forimal definitions and discussions based on traditional
tree-automata theory.

-2. The Model: Discussion and Definitions

In every formal definition of a "VLS] circuit” or ""VLSI system'”
the underlying geometric pattern plays an important role. In
order to guarantee efficiency, processors are only supposed to
communicate with their neighboring processors. This immediately
excludes many patterns, However, a number of patterns still
remain, such as rectangular, hexagonal and tree-like patterns,
One possibility would be to include the geometric pattern as one
variable component in the definition. However, we found this to be
too abstract and too general and prefer to study different patterns
separately.

Consider the “rectangular” pattern:

101

4 CULIK, SALOMAA AND WOOD

The processors are indicated by squares and the flow of
information by arrows. The input word is fed, letter by letter, to
the processors in the top row. The output of each processor
depends only on its current inputs. The final output is preduced by
the processors in the bottom row. Thus, the whole cireuit can be
viewed as a transducer. Of course, a suitable modification can be
viewed as an acceptor.

Since we are not studying rectangular patterns in this paper,
we omit more detailed and formal definitions. It is to be
emphasized, though, that the most essential feature of this model
is the uni-directional flow of information. This is the basic
difference with respect to cellular automata, for instance.

It is clear that the rectangular model is capable of realizing,
among other things, sequential machine mappings. (In fact, this is
achieved by leftward arrows only.) The hexagonal model, similarly
defined, possesses somewhat different capabilities. For instance, it
can do Boolean matrix multiplication (with proper medifications in
the input format), which can be shown similarly asin {1].

Before introducing our tree models formally, we discuss them
intuitively. The models investigated in this paper are systclic free
oufomate and binary systolic free autormate (STA and BSTA).

Consider an infinite tree T

SYSTOLIC TREE ACCEPTCRS 5

It is assumed that T has no leaves, ie. all branches are
continued. Moreover, the number of nedes at the k -th level (ie.,
nodes whose distance from the root equals &) grows exponentiaily
in terms of k. The nodes are labeled by letters from a finite
alphabet. A requirement of regularity is that the infinite labeled
tree has only a finite nurmber of non-isomorphic subtrees. (This is
only one of the reasonable requirements. We might also allow
different structures for even and odd levels, for instance.)}

Each labeled node is viewed as a processor of the correct
“arity”, ie. if it has mn sons then an mn-place function is
associated to it. Furthermore, the domains and ranges should
match. The processors are also capable of taking external inputs
in the following fashion.

Consider an input word w with fength # . We choose the first
level in the tree with » 2 £ nodes. The word w#¥~* (where # is
a special end marker) is now fed, letter by letter, to the processors
on the level in question. (We may visualize this as if we were using
a chip of the correct size, and the last line of the chip has pins for
external inputs.} Information now flows bottoem-up. Whether or not
the word w is accepted, depends on the output of the root,
Observe that this tree-like paltern is especially suitable for
acceptors because information converges to one particular node.

It is worth noting that a finite cut of an STA with n leaves can
be laid out in a chip using only O(n) area, see [1].

Our STA operates exactly as a deterministic bottom-up tree

automaton. However, as regards traditional tree automata theory,
there are two essential differences.

6 CULIK, SALOMAA AND WOOD

{i) For STAs the tree is a part of the automaten and,
consequently, arbitrary trees cannot be regarded as inputs,

(ii) Synchronizaticn is forced in case of STAs by cutting the given
(infinite)} tree con a specific level.

Thus, for instance, Theorems 1 and 5 below differ basically from
their counterparts in tree automata theory. There are however
some similarities between STAs and the tree controlled grammars
investigated in [2].

A special case of STA are the binary systclic tree automata
(BSTA). The starting peint here is the complete binary infinite tree
where all nodes are labeled by the same letter, that is all
processors are identical. Otherwise, everything remains the same
as before.

As an example of BSTA, consider the binary infinite tree

The processor computes the binary function
FiA B, C #1? - 14, B, C. #}

defined as follows:

f(4,4)=4,
I(B.B)=5,
JA B)=F(A C)=F(C.B)=C,

Flz, y) =# inall other cases .

SYSTOLIC TREE ACCEFTORS 7

The external input alphabet is {a, b}, and the external inputs
o, b # produce the processor outpuls A, B, # . respectively.
The convention of acceptance is the output € from the root.
Thus, the input 2?2 gives rise to the following computation:

The computations from the inputs 2% and ebba are given
below:

Thus, only a®b8 of these three words is accepted. It can be easily
verified that the accepted language is in this case

ItL

8 CULIK, SALOMAA AND WOOD
L = [w €e*bt | wisof length 2" for some =n 2 1} .

Observe that acceptance takes logarithmic time.
We now define formally the netions discussed above,

Consider an infinite tree T with no leaves, i.e., all branches
are continued ad infinitum, Fer &=0,1,8 - -, LEVEL(k)
denotes the set of all nodes whese distance from the root equals
k . Clearly, there is a natural ordering {from left to right) of the
elements of LEVEL(k). The nodes of T are labeled by letters
from a finite alphabet X, ., referred to as the alphabet of
processors, subject to the arity condition stated below.

Assume that 7 has only finitely many (labeled) non-
isomprhic subtrees. (This condition is referred to as the
regularify condifion in the sequel.) Assume, further, that there is a
censtant « > 1 such that LEVEL(k) contains more than oF
nodes for every k 2 1. (This condition will be referred to as the
exponential growth condition or, briefly, the growth condition.)

Let ¥y and ¥y be two further finite alphabets, the terminagl
and operafing alphabet, respectively.

With each letier A in X, aninteger n(4) 2 1 is associated,
called the ority of A . (Thus, %, can be viewed as a ranked
alphabet.) It is assumned that the labeling of T satisfles the
following arify condition: each node labeled by A has n{4) sons,

To every letter A in % we associale two functions
g4 Br» %y and F4:83¥ o F,. Furthermore, we specify a
subset Z'g of Yg, referred to as the set of accepling letiers.

We are now ready for our basic definition.

Definition. A systolic free aufomaton, (ST4), is a construct
K = (1.5, 2.5 Ep dg4), Fa] | A5,),

where T is an infinite tree satisfying the growth condition with
nodes labeled by letters of the alphabet ¥; in such a way that
both the arity and the regularity condition are satisfled. Morecver,
Yo, Z7 and B'p C Ly are alphabets and, for each A €3, ,

ga:Z7 =+ %o and fu:FW Y

are functions, where n{A) is the arity of A (when I, is viewed
as a ranked alphabet). It is also assumed that Iy contains the
special symbol # . ‘

Every word w over the alphabet ITy—{#} determines a
unique element of X;, dencted by OUTPUT(K,w), as follows,
Assume that w is of length #. Set k& be the smallest integer

¢cTlL

SYSTOLIC TREE ACCEPTCRS 9

such that LEVEL(k) in T contains w 2t nodes. (Clearly, &
exists and is unique.) Let A, ... 4, be the nodes (from Ileft to
right) in LEVEL(k). We now define

QUTPUT(K,w.k)

to be the word =z, of length u over the alphabet %y such that the
i-th letter of =z, , for i4=1,.,.,%, equals the result of applying
94, tothe i-thletter of wf*™*.

Assume that we have already defined OUTPUT(K,w,j) = zj,
for some § with 1 £4 £k . Then OUTPUT(k,w,j—1) is defined as
follows. Let LEVEL(j—1) contain 7 nodes. (Clearly, r £ |z;|
and |z;| equals the number of nodes in LEVEL(F) .) We now write

T =Y Yy

where each %; corresponds to those nodes in LEVEL{j} that are
sons of the same node in LEVEL(j—1). let the latter node be
labeled by F; . Then QUTPUT(K,w,j—1) isthe word of length =
over Zp whose i-th letter, for i=1,...,7, equals the result of
applying [p, tothe letters of y; {in the correct order). The arity

condition guarantees that f g, is an s-place function where s is
the length of % .
We now define

OUTPUT(K,w)} = QUTPUT(K,w,0) .
The word w is accepted by K if and only if OUTPUT{K w) isin
L's. {Observe that OUTPUT(K,w) is always aletfer of Ip.)
The languoge accepted by an STA is defined by

LK) = {w € (Zr—{#)* | OUTPUT{K w) EE'D} .

Languages of this form are referred to as STA aceeptable.
An STA is referred to as binary if
(i) the underlying tree is the complete binary tree, and
(i} the alphabet of processors, I, , consists of one letter only.

We use the abbreviation FSTA in this case. Thus, we may speak,
for instance of BSTA acceptable languages.

We conclude this section with a brief discussion concerning
the assumptions about the tree T'. Clearly the arity condition
must be salisfied, otherwise our mecdel dees not work. The other
two conditions are to some extent arbitrary.

The growth condition guarantees efficiency: acceptance is
always in logarithmic time.

Recall that the basic idea behind the infinite tree is that, for

ELL

10 CULIK, SALOMAA AND WOOD

each task of a particular size, a horizontal "cut” in the infinite tree
determines a ‘“‘chip" for the solution of the task. This would not be
realistic for very irregular infinite trees. Therefore, some
regularity condition is definitely needed. We want to emphasize
that it is not even necessary to take always cuts of the same
infinite trees. It is completely reasonable, for instance, to start
with two trees and take cuts of an even depth from one of them
and cuts of an odd depth from the other. Results such as the
“normal from theorem' established in Section 3 give further
motivaticn for our regularity condition. Narnely, we show that
substantially more restricted structures still accept the same
famnily of languages.

3. Properties of STA Acceplable Languages

Most of the results in this section are straightforward and
therefore their proofs are omitted. While they are not, perhaps,
the most meaningful results from a VLSI point of view they are
basic. Further results about decidability are to be found in [11].

Theorem 1. Every regular language is BSTA scceptable.
The proof of this result is illustrated by the following example.
Consider the language (ab}* accepted by the automaton

where 0 is the initial and the only final state. We have now

gle) = §(0.1),(1,2),(2.2)} = ¥,
g(b) = 10,2),(1.0),(2,2)] = Vo,
g(#)=10,0).(1,1).(2.2)} = V3,

and, for instance,

SYSTOLIC TREE ACCEPTORS 11

F (VL) = §(0,R),(1,2). (2,2)1,
TV, Ve) = 1{0.0).(1,2), (2.2)] = V,,
FVa Vo) =V,

F(VaVa) = Vs

The acceptance of the word (ab)® is illustrated by the following
tree. { ¥, is an element of Iy because it contains the pair

(0.0))

Observe that the acceptance of the empty word works in a proper
way because {0,0) is an element of V.

In general, the acceptance of a particular language I by
some STA depends heavily on the underlying infinite tree T
{referred to as the underlying structure in the sequel), i.e., a
different tree structure is not capable of accepting L . Therefore,
the following result is of interest.

Theorem 2 Let K be an arbitrary STA and let T be the first
component in X, ie., 7 is the underlying infinite tree. Then, for
every regular language /&, there is a STA Kr whose first
component equals 7' and such that L(Kz) = & .

Because of the "malleability" of regular languages this result
is not too surprising. Whether or not this is the largest family for
which such a resull holds is an cpen question.

We have already given an example of a nonregular STA (in fact
BSTA) acceptable language in Section 2. FEssentially the tree
structure can check exponential length, which induces a large
extension to the family of acceptable languages. Another
extension is due to the closure properties established below.

iR CULIK, SALOMAA AND WOOD

We begin with ancther example. It is a somewhat
sophisticated BSTA acceptable language. The terminal alphabet
Ly equals f{a,b,c}. Furthermore, Xg={4,5,C,D # and
¥'o = {D]. The function g is defined by

gla)y=A4, g@)=5. gle)=C. gl#)=4¢,
and the function f by
A F(B.B)=B, f(ABY=¢C
D =f(C D),
. otherwise .

I(44)
r(c.c)
.y}

The f{following tree depicts the acceptance of the word
afbRabe? ;

The exhaustive characierization of the accepted language is
left to the reader.

In general, the underlying infinite tree influences prefoundly
what a particular STA is able to do. For instance, if a language is
acceptable with the complete binary tree as the underlying tree, it
need not be acceplable if the complete ternary tree is chosen
instead, and vice versa. However, our main results in this section
show that only the structure of the tree is important, not the
labeling. This is aise the basic reason why we defined BSTA in the
way we did.

For every STA K, its underlying unlabeled infinite tree is
referred to as the structure of K. Although the family of all STA
acceptable languages has weak closure properties, the situation
becomes different if languages acceptable by STAs with the same
structure are considered.

SYSTOLIC TREE ACCEPTORS 13

Theorem 3. For every T, the family of language acceptable by
STAs with the underlying structure ¥ is closed under Boolean
operations.

By Theorem R, we obtain now the following corollary of
Theorem 3.

Theorem 4: The family of 3TA acceptable languages is closed under
union and intersection with regular languages.

We are now ready to establish the main result in this section.
The result can be viewed as a ‘mormal form theorem': any
language acceptable by a STA with a fixed structure is acceptable
by a STA with the same structure where the labeling of the tree
depends on the arity alone, ie., all nodes with the same arity have
identical labels. It can also be viewed as a universality result: any
given tree structure is universal in the sense that, for the
acceptance of a particular language, it suffices to label the tree in
a deterministic top-down fashion, (We note in passing that our
Theorems 2-5 remain valid even if the growth requirement is
dropped from the definition of STA)

Theorem 5: Assume that L is the language accepted by the STA
K= (T %y, B T Iy, {943, Fal | A €55).
Then I isalsc accepted by some STA
Ky={T, 5 B4, ()" Ir, (g8}, (3} | B €Lp)

where the cardinality of EI} equals the number of different arities
in T . Consequently, eny language accepted by some STA whose
structure is the complete binary tree is, in fact, BSTA acceptable.

Proof. To specify K, we have to say what the new items are. The
regularity condition guarantees that there are only finitely many
arities in T . To each of them we associate a tetter - these letters
form the alphabet I} .

Consider the STA & . The nodes of T are labeled by letters
from I, . Moreover, the regularity condition guarantees that the
tree so labeled has only finitely many, say n , subtrees. We now
introduce an additional nede labeling of T by the nuwmbers

1,...m in such a way that nodes determining identical subtrees
get the same number. Clearly, if two nodes are labeled by the
same number, they are also labeled by the same letter from I, .
Moreover, the node labeling by the numbers 1,...,mn is top-down
deterministic: each number aitached to a node uniquely
determines the numbers attached to its sons and, hencs, also the
labels from %, attached to its sons This is the basic idea behind
the following construction.

LTl

14 CULIK, SALOMAA AND WOOD

The alphabet £ is now defined by
= [(flp .onty) | each g in Lo v lE}] .

Thus, &} consists of ordered m-—tuples of letters of the original
operating alphabet augmented with an additional letter &
("blank"), where n is the constant determined by the regularity
condition,

Let j be the number of the root of the tree (in the labeling
by numbers introduced above). Then (£'p)! is defined to be the
subset of L¢, consisting of all those n-tuples, where an element of
$'s appears in the j-th position. (The letters appearing in other
positions are arbitrary.)

We still define the new functions g4 and f3. The values of
all of these functions are elements of £ . Let & be an arbitrary
terminal letter in £ . Then, for each i, the i-th component in
gA(b) equals the value gau)(b) . (Recall that A{3) is the label
from I, of the node numbered i . Thus, the i-th component
indicates what would happen in the original STA if the processor in
question would be A(i). Indeed, K; has only one g-function,
since the definition of g does not depend on B B

We define, finally, the function f3 where B has arity & .
(Recall that, for each arity, there is only one letter of that arity in
£1.) Consider an arbitrary argument {cy,...,¢) . where each ¢ is
an element of T4. It suffices to define, for each i = 1,...,n , the
i-th component d; of the value fg(c;.....c.) . I the arity of
A{iy#k, we define d;=FE. If the arity of Ay =k, let
§1r .- Jp be the numbers associated to the sons (from left to
right) of the node labeled by © . (As observed above, the j's are
uniquely determined by i .) Furthermere, let e{j,t) bethe j-th
component in ¢ , for j=1..7n and £=1,....k . We now
define

fjm(e(jl,1),...,e{jk‘ic)) ifeach e # F |
d.‘: =
E if at least one of the e's is & .

This completes the definition of X, .

It can now be verified that K; accepts L. Indeed, K,
simulates all possible computations of STAs obtained from K by
changing the labeling but still preserving the arities and the
correct subtrees. In the computation of K; all possibilities
corresponding to different labels are taken into account. However
if the arity is wrong (in the above censtruction this is indicated by
saying that the arity of A(i) # k }, then the letter in question (e,
A) cannot appear as the label of that node. Finally, the accepting
letters check that the correct processor appears at the roct and

SYSTOLIC TREE ACCEPTORS i5

produces an accepting output.

4. Nonacceptability

We have seen above that all regular languages are BSTA
acceptable (and also STA acceptable with any underlying
structure). On the other hand, even the family of BSTA acceptable
languages contains very complicated languages. Since the
language

L = {agu\ﬂg()]

is clearly BSTA acceptable, Theorem 3 implies that also the
completement of L is BSTA acceptable. But the complement of
L lies quite hizh up in all of the standard language-theoretic
hierarchies, see [3] and [4].

On the other hand, quite simple languages (from the standard
language-theoretic peint of view) are not BSTA acceptable. We
shall show below that {a™b™|n 2 1} is not BSTA acceptable.
Indeed, we do not know any nonregular context-free BSTA
acceptable language. Basically, this family seems to consist of the
Boclean closure of regular sets and languages with a suitable
exponential growth. For instance, it can be shown that the
language

1o

is not BSTA acceptable. The same holds true with respect to the
language

L, = [(a,bc)zn [n2 1],

which is of course somewhat unnatural compared with the fact that
the language L above is BSTA acceptable. However, L, becomes
acceptable if we make slight modifications in the input format { g~
functions). For instance, we can consider processors ''without
input pins”, L.e., only some specified processors take leiters of Eg
85 inputs.

We would like to stress also the following facts as regards our
input format. At a first glance, it might seermn unnatural that the
input has to be fed to a specific level of the tree. This means in
practice that a chip of a certain size is not able to process very
short words, which is of course somewhat awkward. Hence, it
would be desirable that STAs are steble in the following sense: the

16 CULIK, SALOMAA AND WOOD

same language is accepted even if we drop the condition that a
word must be fed on the minimal level. {Thus, we can input a word
on any level providing enough space.)

But now it is possible te establish the following result which
eases the difficulty described above and. thus, gives further
motivation for our input format. Assume thai the underlying
structure T is initially prefix preserving in the sense that all the
subtrees defined by the nodes on the left-most path of 7 are
identical. (This condition is immediately satisfied for BSTAs, as
well as for any balanced trees.) Then we can effectively construct
an equivalent stable STA (with the same structure).

Ve give, finally, a method of showing nonacceptability. For
simplicity, we restrict attention to BSTA.

We shall show first that the language {a™d™ |n 21} is not
BSTA acceptable. Assume it were, Then, for each %k 21, the
binary tree of height k& would have to accept all words e™b™ such

that
¥ lcgn L2 .

Recall that these words appear as inputs in the forrn a™b™#!
where 1 = 2% -2n .

We now cheoose k large enough such that the number of
words of length 287! and of the form

BRGRA 421,520, (*)

is greater than the cardinality of the operating alphabet of the B
STA K accepting L = {a™b™ |n 2 1} . For each word (*), there is
a unique word w; of length 287" such that the word w;b* isin
I . Moreover, for two distinct words (*) , the corresponding words
w; are also distinct.

On the other hand, by the choice of & , there are two distinct

numbers r and s such that
OUTPUT(K,w,b% 1) = OUTPUT(K w.b%,1) .

But this is a contradiction because w,.b% is in L, whereas
w.b%® jsnotin L .

Essentially the same argument can be used to show that, for
instance, the language

{a,s“ [n 2 1]

is not BSTA acceptable.

Intuitively, the argument concerning the language
fa™b™ |n 2 1} is based on the fact that X cannot simultaneously

keep track of the borderline between the b's and the #'s and
also check that the number of a's equals that of b's. Here the

GcL

SYSTOLIC TREE ACCEPTORS 17

exponential growth is essential: if arbitrary STA without growth
condition are considered, the language {a™d™|n 2 1] becomes
acceptable.

A similar idea is behind the proof of the following result which
can be viewed as a lemma for proving nonacceplability.

We need a couple of simple notions. let L be alanguage and
k a positive integer. Denote by #(L, k) the cardinality of the set
of words in I whose lengthis >2*7! and <B*. We say that L
is subexponential if, for every m . thereis a k such that

#lLEY>n |

We say that L has bounded tail ambiguity if there is an
integer £ such that, for every & and every word w of length
ok-T there are at most £ words w' with length 221 such
that »w' isin L.

Theorem 6. No subexponential language L with bounded tail
ambiguity is BSTA acceptable.

Proof. The argument is basically the same as in the example
considered above, and so we give only an outline. Let X be an
arbitrary BSTA accepting L . Because L is subexponential we
can, for any integer m , choose a large enough k& such that the
"tail half" of at least m words in /. produces the same cufput
from the right son of the root. {In the example it was sufficient to
take two such words.) We obtain a contradiction by choosing m to
be greater than the constant ¢ defining the bounded tail
ambiguity of L .

5. Concluding Remarks

This paper focuses attention on systolic free automala as a
possible medel for VLSL. The study seems to open a new and
interesting area in language theory. Some other questions, such
as decidability are considered in a separate paper. Work dealing
with other geometric patterns can be found in {7].

In practical applications it might be desirable to have one VLSI
chip with a fixed number of input pins but universal in the sense
that after feeding it with a program, i.e the description of a
particular language L, it wiil be able to test membership of an
input string in L . For example, it might be very desirable to have
a chip-subroutine as a part of a text editor capable of testing the
membership of a string of characters {of length fitting on one line
of the screen of a computer terminal) in an arbitrary regular set.

18 CULIK, SALOMAA AND WOOD

Our theory can be used to formalize this situation. The structure
of the chip will be fixed {any regular structure will be suitable for
testing membership in regular sets as we have shown) to be a
balanced binary tree, say. We may assume thal at every
(branching) node of the tree there is a universal processor able to
realize any function of bounded complexity (e.g. driven by a
limited-size table of a function).

In this setting a VLSI-program is very simple, namely a finite
number of rules for naming sons (from left to right) of a father
which is already named. The names of nodes can be identified with
the tables of realized functions. Since every tree of processors
(satisfying the regularity condition) has only a finite number of
different (infinite) subtrees we can choose the father's name to
determine uniquely their son's names. Thus we can use finitely
many rules to fill in a top-down manner the names of all the
processors {node labels).

Mathematically, we are generating a DOL derivation tree [3]
starting from a single slarting symbol. Practically, this would
require that all communication lines in the tree-structured
processor are bi-directional. We consider two phases, in Phase [we
feed a program (language description compiled elsewhere, e.g. on
another chip} inte the root and communicate it top-down
throughout the tree. After Phase I is completed we have a specific
STA as defined in this paper. It can then be used in Phase Il as a
bottom-up string acceptor, which makes use only of the bottom-up
communication directions in the tree.

References

[1] L. Conway and C. Mead, Iniroduction fo VLS! Systems,
Addison-Wesley, 1680.

[2] K Culik, II and H.A Maurer, Tree Controlled Grammars,
Comgputing 19 (1977}, pp. 129-139.

[3] G. Rozenberg and A. Salomaa, The Mathematical Theory of L
Systems. Academic Press, 1880.

[4] A. Salomaa, Formel Languages. Academic Press, 1873,

[6] H.T. Xung, Let's Design Algorithms for VLSI Systems,
Proceedings of the Caltech Conference on VLSI, Charles L.
Seitz (ed.), Pasadena, California, January 1978, pp. 65-90.

[6] CE. Leiserson and JB. Sexe, Optimizing Synchronous
Systems, 22nd Annual Symposium on Foundations of
Computer Science, October 1981, pp. 270-2B1.

¢dl

SYSTOLIC TREE ACCEPTCRS 19

[7] K. Culik, 1I, 4. Gruska and A Salomaa, Systolic Trellis
Automata (for VLSI), Research Report CS-B1-34, Department of
Computer Science, University of Waterloo, Waterloo, Ontario,
Canada, 1981.

[B] C.R Dyer and A Rosenfeld, Triangle Cellular Automata,
Information end Control, 48 (1981), pp.54-69,

[9] RW. Floyd and ID. Ullman, The Compilation of Regular
Expressions into Integrated Circuits, Proceedings 21st Annual
Symposium on Foundations of Computer Science, IEEE
Computer Scciety, pp. 260-269.

[10] M.3. Foster and H.T. Kung, Recognizable Regular Languages
with Programmable Building-Blocks, in I.P. Gray (ed.), VLST
81, Academic Press 1881, pp. 75-84.

[11] M. Steinby., Systolic Trees and Systolic Language Recognition
by Tree Automata, Thearalical Compuler Science, to appear.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

