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Higtorically (around 1960!), there were no effective numericsl
algorithms available for nonlinesr, consﬁréined ovtimization, but good
techniques for unconsirained optimization were starting to be developed.
For example, Rosen's (1960) gradient projection method (perhaps ihe
firsl effective techﬁique for linear constraints) was published then,
and Davidsen's (1959) variable metric wethod was formulated in 1959,
wag re-presented in 1963 (Fletcher and Powell, 1963), and is g3l 4he
tasis of many current unconsirained algorithms. Therefore the originsl
motivation for penalty functions was that they chenged the extremely
difficult nonlinesr, constrained optimizaticn protliem into a sequence
of (it was heped) easier unconstrained problems for which reasonable
algorithms existed. The questions I wish to pursue here are : why are
we 8till interested in penalty funciions, should we continue %o be
interested in them, ond (finally) what is their future ?

The major immediate advantage of penalty funciions, as we
have already remarked, is that they reprecent the constréﬁned problem in
terms of uncenstrazined problems. However, this is of more significance
than just the historical point coﬁcerning the aveilsbility of superior
algorithins for the unconsirained caiculation. Typically, the reformulstion
of the problem enables one to move avay from nonlinear congstraint

boundaries; especimlly when one is znot in the Yiecinity of & stationary
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point. In addition,to my mind, a consideratle edvantage is the intuitive
global interpretation of the meaning of both the pen&lfy function and

the corresponding iterates of any related algorithm. Any particular
penalty funciion, in effect, incorporates two aims,vthat of minimizing
the objective function and that of satisfying the constraintyg. Cone
sequently, if one is so far from a soluiion that one can rake large gaing
in the objscti?e furiction value, then it is of less importance to satisgfy
the constraints accurately. However; when one is close to a solution,
then feasibility ie likely to become a more dominant issue. Penalty
fﬁnctionn are merely s consistent method of negsuring progress in these
two, often naturally conflicting, aims,

4 major digadvantage is the choice of penalty parameteras. In
other worde, the choice tc give to the weighis that fix the relative
importance of the objective funciion and the varioug consiraint functions.

T4 is,perhaps, worik pointing out thaf several aspects of
penalty function methods can be closely related to techniques that are
uged in augmented Lagrangian, succéssive quadratic programming, sng

reduced gradient methods. In some regpects penalty functions provide g

more natural interpretation of these techniques (see for example Coleman and
Conn, 198la; Gill, Murray and Wright, 1981; Han, 1977; Powerll, 1978; Tapia,
1977). With these relationships in mind, it is certainly legitimate to state

that some of the best algorithms available are, in effect, penalty techniques.

A particular subclass of penalty functions are the so-called
exact penalty functions, that is those that give rise tc a finite

sequence of unconstrained problems, which may te differentiable (see the
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paper bty Bertsekas in this volume) or non-differentiakle. The non-
differentiskle forms are typified by the penalty function of Zangwill
(1967) end Pietrzykowski (1969), and have recently enjoyed a broad

popularity. Essentially, in spite of thnif riecewige nature, these
functions are simpler and more closely related to Thne original problem and
its Lagrangian function than either the non-exact penalty functions or

the differentialble exact penalty functions. Therefore they are useful even
in the special cases of linear programming (Conn, 1976) and quadratic
programming (Conn and Sinclair, 1975). I predict that, with the possible
exception of trajectory methods (Murray and Wright, 1978), exact penalty
functions will continue to hold more promise than the non-exact penalty
functions, as long as one is not unduly concerned with the intermediate
generation of infeasible points. However, in practice, one often requires
even intermediate points to be feasible (see Gutterman 1982). For such

problems those penalty methods referred to as barrier methods are the only

viable penalty techniques, and the trajectory barrier methods are then

particularly promising.

Trajectory analyeis is certainly an approach that deserves
more attention,

One consequence of this interest in exact penalty functions is
that I expect there to be wuch more effort than there is 2% presenty on
gpecial line searches, trust regiong, and other step size selecting
.mechanigms for pilecewige differentiable functions. Some initial work in
this area bas been done by Murray and Overton (1979) and Charalambous
and Conn (1978). It has alsoc been suggested at this meeting (Davidon, 1982)

that conic approximations may be particularly useful for line searches because



of their applicability to functions with poles (this remark also applies to
differentiable penalty functions). However, conic approximations appear to
me to be more useful when the positions of the poles are not known, which is
not the case here. In particular, some of the methods mentioned above rely
strongly for their success on an a priori knowledge of the 1océtion of the

neighbourhoods of the non-differentiable points.

It is difficult to foresee any significant advénces in the
local convergence properties of current algorithms applied to small dense
proklems that does not presuppose équivalent advances in unconstrained
optimization. The reswon for this comment isg that, in using the term
local, I am assuming that one is in the neighbourhood of & solution, end,
in partieulsr, that one has identified correctly the ac*ive constraints.
Therefore the essential problem st hand is to f£ind 4 stationary point of
8 Lagrangisn, or, equivalently, to solve an unconstrained‘puoblem in a
reduced space. In fact, the current siste of local convergence of penalty
function methods is analogous to the corresponding state of unconstrained
optimization with two exceptions. There is still no publighed guasi-Newton
method that updates only a projected Hessisn matrix and that maintging
& superlinear convergence rate: such methods sre considered by Coleman
snd Conn (1981). Secondly, wherever we have preferred to choose our
search directione from a model that ie distinct from the line gearch

merit function (as is common in most of the successive quadrafic Pro-

gramming methods; see Bartholomew-Biggs, 1982), there has been difficulty in
guaranteeing that a stepsize of unity is eventually acceptable (see, for

example, Chamberlain, Lemaréchal, Pedersen and Powell, 1980). At present a



unit stepsize is an essential ingredient in any algorithm that claims to mimic
efficient unconstrained algorithms asymptotically.

Thus, one current difficulty is to identify when the region of
asymptotic convergence has been reached. I suggest that more effort should be
spent on studying the earlier stages of iterative methods. An isolated example
of genuine non-asymptotic analysis is given by Overton (1981).

A related question concerns the type of penalty transformation that
is used. Lemarechal (1982) considered two distinct extreme kinds of algorithm,
namely a) when the set of all generalised gradients is used explicitly, and
b) when only one element of the set is used. He then refers to the method of
bundles, which can be regarded as a compromise of b) that is closer to a).
There is also the possibility of a compromise of a) closer to b), which

suggests a penalty transformation that involves only a few constraint functions.

For example, congider the problem

minimize £(x), xe¢ B
subject to ci(x).é 0, iel,

and consider replacing the usual exact penalty function
1o '
(e = 2(x) = = 2 min [0,0,(x)]
A il

by the exéct penalty function

S(XL/Q = f{x) - ;5: min [b, min e, {x)]



-6 -

i.e. we replace the sum of the infeasibilities in the penalty term by
the grestest infeasibility. We have in mind the pogsibility of "guessing"

3 such‘that cé(x) = min {ci(x)}, and then defining
Plxype) = £(x) = = o, (x) .
Ve )/“_ 4(x)

From time to time we expect to update our gueso.Aseuning one uses a
projection~like method for determining n descent direction for 3, the
optimal number of sctive constraints to include in the projecticn is ap

open question. It is also uncertain how often one should update j.

The main advantage of this approach would be economies of computation
far from the solution when the original problem contains many constraints.
A disadvantage is that one has to correct for an inappropriate choice of j .
It is of interest to note that, assuming j always corresponds to a violated
constraint, there does exist a positively weighted exact penalty function of

the form

§(xzf9 = f(x) - e ;E;; vvi(x) min [b,ci(xXJ ,
/“ i€l

such that the sequence generated by % produces & monotonically decremsing

sequence of values of D. '

With reference to the identification of the correct active set,
there sre gome known difficulties that have been largely ignored. For
example, serious problems can be caused by degeneracy (due to redundant
active conetr&ints), negr~degeneracy, spurious constreints thai zre near-

ly active (all these difficulties occur often in nonlinear ﬂ data fitting),
k|



and near-zero multipliers. Near-zero multipliers are discussed by Gill,
Murray, Saunders and Wright (1979). ‘

Furthermore these problems are not necesgarily confined to
neighkourhoods of local optima. In fact, a related protlem that requires
c¢loser examinstion is falee stationary points; an example is given in
Coleman and Conn (1980 ),

Anotger algorithmic detall that has been largely ignored is
the question of the choice of penalty parameters. Although, in the case
of exact penalty functions, their threshold values are known in terma of
the optimal lagrange multipliers (see Luenberger, 1970, for example),
there is 1ittie understanding of which values sre ideal. At present,
there iz no global algorithm with an exact penaltiy merit funciion for
vhich sophisticated updating techniques are applied to the paremeters,

and yet the resulting algorithm is robust ana guperlinesrly convergent.

Ag in all areas of optimization, scaling is a significant
problem for which few useful results are known.

Since some recent advances can be reliated to minimizihg &
quadratic function subject to quadratic ronstrainis (Coleman and Conn,
1961 ), perhaps such models will be more generally sapplied. This is the
simplest approach that allows ocurved constrainis. Further, 1t would enable,
for example, the practising model builder fo replace 2n upper and lower
kouncs by one elliptical constraini, which is clearly more reasonable if
onie is using a penalty function ~lgorithm, instead of a fessible direction

algorithm.
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It is heartening to note that the experience of nonlinear
programmers with plecewise problems, that are motivated by exact penalty
functions, hag influenced the algorithmic and theoretical development
of many other piecewige differentisble probleme, including linear ones.
(For exgmples, other than those already mentioned, see Bartele, 1980;
Bartels and Comn, 1981; Bartels, Conn and Charalambous, 1978; Bartele,
Conn and Sinclair, 19785 Calamai and Conn, 1980, 1981; Fletcher and
Watson, 19813 Murray and Overton, 1980, 1981; Watson,-1981).

I anticipate that these fruitful offshoots will continue %o
grow, and, hopefully, will include broader aspects of non-smooth optimi-
Zetion.

I also feel that advances in large sparse nonlinearly consivained
optimization will involve penalty function techniques. For example,
NINOS-augnented (Murtagh and Saunders, 1980) is eggentiglly a method baged
on Robvinson'ea (1972) algorithm and the method of MINOSb(Murtagh and Ssun-
ders, 1978). However, it is poseible to replace the objective function of
Robinson's algorithm by any exact penalty function, which poges gome
interesting challenges. For example, the usual dense techniques involve

precise projectioné, orthogonal matrix decompositione, careful multiplier

estimates,iand the precige determination of quadratic minima, but
sparse technigues may have to be lessg precise, In addition, for many

~ large scale protlems, the work of the matrix calculations of an iteration
is very much greater than the cost of evaluating the objective function.

N . .
For a fvller discusgsion of large sparse oitimization problems see Gill,

Murraey and Wright (1981).



I am sure that much has been omitted in this brief introduction.
One topic that comes to mind is the impact of computer hardware on the subject;
for example, parallel processing may alter entirely the choice of a suitable
penalty function. Another topic is whether penalty functions have any signi-
ficant contributions to make to discrete optimization or global optimization.

I would like to emphasize the ﬁossibility of using penalty functions
for purely linear problems, quadratic problems, and any other problems with
special structure. It can be very helpful, provided one uses a penalty
function that does not destroy the advantages attainable from the original
structure.

Thus, I hope that in this paper I have made it clear that we should,
indeed, still be interested in penalty functions, that they have certain

inherent desirable properties, and that there is still research to be done.
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