(c}

PRINCIPLES OF DATA STRUCTURE
ERROR CORRECTION

David J. Taylor
James P. Black

Department of Computer Science
and
Computer Communication Networks Group
University of Waterloo
Research Report CS-81-30

September 1981

COPYRIGHT: Computer Science Department

University of Waterloo
Waterloo, Ontario, Canada

Abstract

Error «correction 1in robust data structures is a
difficult problem. Several correction algorithms have been
examined to determine common design features which may prove
useful in the design of correction algorithms for other
structures. This paper presents a summary of the algorithms
studied and the design principles which were derived. The
paper is not a "cookbook" for constructing error correction

algorithms, but should prove useful to those designing such

algorithms.

1. JINTRODUCTION

In previous papers [1, 2, 6, 71, we have described
methods for analysing the robustness of representations of
data structures. The two principle robustness properties of
data structure representations are the number of errors
which can always be detected (detectability) and the number
of errors which can be corrected (correctability). In a
sense, each of these properties implies a procedure: an
error detection procedure for detectability, a correction
procedure for correctability. In general, writing a
detection procedure for a structure 1is not tremendously
difficult. The conceptual difficulties are generally no
worse than, for example, the problem of inserting a node
into the structure. This 1is not the situation with

correction procedures: they are wusually very hard to

design.

Because correction procedures present such great
difficulties, we have 1less experience with them than with
detection procedures. Indeed, until recently the experience
was extremely limited: the brief sections on error
correction in [6, 7] included virtually everything then
known. Recently we have obtained new insights into the
design of error correction procedures; this paper attempts
to describe those insights.

In the remaining sections of the paper, we first
present several examples of error correction routines.
Then, in Section 3, we ahstract from these examples a number
of useful general principles. 1In Section 4, we describe an
example where the principles don't apply. Section 5
contains a discussion of storage structure design principles
and Section 6 contains a summary and areas for further work.

Before proceeding to the examples, one cautionary
remark must be made. Although any system which 1is to be
fault tolerant must contain some form of error detection, it
need not necessarily contain correction procedures of the
kind discussed here. When an error is detected there are at
least four fundamental possibilities: halt, wuse backward
error recovery, use forward error recovery, or ignore the
problem. The last possibility is occasionally (rarely) a
good idea. However, halting to allow manual intervention is

appropriate on many systems and backward error recovery

should be the first alternative considered if halting is
unacceptable. Backward error recovery can consist of a
checkpoint and rollback mechanism or take a more
sophisticated form, such as recovery blocks [4, 5], Because
of its complexity, forward error recovery, such as described
here, should be used only when the other three alternatives
are unacceptable, The usual example of a system requiring
forward error recovery 1is a real-time system 1in which
backward@ error recovery cannot be done because rollback past
an interaction with the external environment is

unacceptable.

2. CORRECTION EXAMPLES

This section describes six correction algorithms for
different storage structures or classes of storage
structures. The first two have been described in previous
papers, so their descriptions here will be quite brief.
Descriptions of the storage structures referred to in this
section are contained in the appendix. We are confident
that the algorithms described here do correct errors as
specified. Each algorithm has been validated either by a
proof of its error correction properties or by extensive
testing of an implementation of the algorithm. Testing was
carried out both by introducing errors automatically at
random and manually introducing errors to exercise all parts

of the algorithm.

Example l: General Correction Algorithm

One of the basic theorems of data structure robustness
states (essentially) that 2r-detectability and r+l1 edge-~
disjoint paths to each node 1imply r-correctability. The
proof of this theorem (7] uses the General Correction
Algorithm, which can perform the required r-correction. The
algorithm works by first performing a depth-first search of
the data structure Iinstance, using the presence of
identifier fields to prevent the examination of an unbounded
number of nodes which are not part of the <correct storage
structure instance. Then the algorithm makes guesses at
possible corrections and uses a detection procedure to check
each guess. Because the guesses are essentially random, the
execution time of the General Correction Algorithm 1is very
slow. If the detection procedure is 1linear time, then
correcting an instance of n nodes may take time
O(n** (2r+1)) .

Because the General Correction Algorithm is only useful
as a theoretical device for proving correctability, more
efficient special-purpose correction algorithms have been
designed for wvarious storage structures. Each of the
following algorithms has a worst-case execution time which

is linear in the size of the instance being corrected.

Example 2: Linear Lists, Single Error Correction
The first linear-time correction algorithm was devised

for double-linked 1lists. A pseudo-code version of this

algorithm is in [6]. A minor modification of this algorithm
yields a 1l-correction algorithm for modified(k) double-
linked 1lists. Because it has been published elsewhere, we
limit the discussion here to remarking that this 1is a
particularly simple correction algorithm. A forward and a
backward scan to the point of error makes possible a small
constant number of tests to determine which field is in

error and what its value should be.

Example 3: Linear Lists, Local Error Correction

While it 1is only possible to guarantee the correction
of a single error in a modified(k) double-linked list, many
cases of multiple errors can also be corrected. 1In fact, it
appears that for k > 1, any set of "well separated" errors
can be <corrected. This is referred to as "local error
correctability." For k = 1 (a standard double-linked 1list},
local error correction 1is impossible because changing a
forward pointer in node X and a backward pointer in node ¥,
which follows node X, results in all paths to nodes between
X and Y being 1lost, preventing correction. This same
phenomenon can occur for k > 1 only if both pointers to a
node are changed or a set of k consecutive back pointers is
changed: neither of these represent well separated changes.

Before describing the local error correction algorithm
for modified(2) double-linked lists, it must be pointed out
that precise general definitions for "well separated" and

"local error correction" have not yet been developed. The

algorithm given here should, at present, be considered
simply a particular correction algorithm which can correct
certain well-defined sets of errors. Tt is hoped that the
specified sets of errors correspond to the reader's
intuitive understanding of "well separated."

To understand the operation of the 1local correction
algorithm for modified(2) double-linked lists, it is useful
to draw the list structure in an unusual way. In Figure 1,
we show a 1list with the two header nodes at the bottom of
the figure and the nodes reachable by following bhack
pointers in a c¢olumn above each header. The forward
pointers then form a zig-zag pattern running between the two
columns, For convenience, the nodes are numbered in reverse
order, since the correction algorithm traverses the 1list
backwards.

The basic idea of the local correction routine is to
have two parallel traversals of the list, one using the
column of nodes above H1l, the other using the column of
nodes above HO. Let us refer to these as the left and right
traversals, respectively. Ignoring details of
initialisation, assume each traversal has reached node 1,
the right traversal by HO -> 1, the left by H1 -> 2 -> 1.
Now to reach node 2, the left traversal "retreats" to 2: no
pointer need be followed since 2 was already visited on the
way to i. The right traversal must follow pointers from 1

to 3 and then 3 to 2. Then, to reach node 3, the right

7
J

: - ;
6 / 5
| / |
4 -l 3
/
2 == |
r b <

Modified(2) Double-linked list

-7 -

traversal retreats and the left traversal follows 2 -> 4 ->
3. It should now be clear how the two traversal routines
can individually enumerate all the nodes in reverse order,
if the structure is undamaged.

Now consider what happens when an error is encountered.
As an example, suppose the backward ponter in node 2 is
changed from 4 to 8. (In the following discussion we simply
assume various pointers are correct and at the conclusion
enumerate the exact set which must be correct to allow the
correction to take place.) 1In this example, everything will
be fine as nodes 1 and 2 are enumerated, but when we advance
from node 2, the left routine will reach node 7 while the
right routine will reach node 3, Because the right routine
did not follow any pointers, the error must be in a pointer
followed by the left routine, either 2 -> 8 or 8 -> 7. To
distinguish between these cases, we note that a forward
pointer error affects only one node in the traversal, but a
backward pointer error affects all following nodes. So, we
advance once more: the 1left routine retreats to 8, the
right routine follows 3 - 5 and 5 -» 4. We still have a
disagreement, so the error was in 2 -> 8, and we now know
that the backward pointer in node 2 should point to node 4,
the node just reached by the right traversal.

The question is: which pointers must be correct to
allow this to take place? Of course, errors preceding this

one must already have been corrected, and this depends on

separation of this error from those previous ones, but that
possibility will already have been examined with respect to
the preceding errors. Thus, we require the backward pointer
in node 3, the forward pointer in node 5, and the forward
pointer in node 8 to be correct. (Actually, the pointer in
node 8 can be incorrect, but if it is incorrect and points
to node 3, that causes a severe problem.}! Depending on how
the algorithm reacts +to incorrect identifier fields, we
might also have to require some correct identifier fields,
but this is not essential.

The analysis for forward pointer errors is ver? similar
to the above, and identifier field errors and count errors
can also be handled in the context of this algorithm. Thus,
we have an algorithm which corrects an arbitrarily large
number of errors, subject to a simple separation constraint,
and accomplishes all this in linear time.

To make this example more concrete, assume that each
traversal "balks" when it encounters a bad identifier field,
simply returning the address of the node containing the bad
identifier field, and that each traversal indicates not only
the next node but a status. Possible status values are:
O.K.--everything seems correct; TERM--end of list reached,
everything seems correct; TIDERR--bad identifier field
encountered; PTRERR--illegal pointer encountered. The
correction routine can then use a "fault dictionary" as

shown In Figure 2 to select a diagnosis routine. The

If returned addresses are equal:

0.K. TERM IDERR PTRERR
0.K. next error error error
TERM error trm_ck error error
IDERR error error error error
PTRERR error error error error

If returned addresses are unequal:

O.K. TERM IDERR PTRERR
0.K. adv_ck tr_adv id_ck c¢h_ptr
TERM tr adv error error error
IDERR id_ck error error error
PTRERR ch_ptr error error error

Figure 2

Fault dictionary for modified(z)'local correction routine

- 10 -

diagnosis routines are: next--evervything is correct,
proceed; term-~correction completed; adv_ck--advance again
and compare (as described above); tr_adv--similar to adv_ck
but after correction check for termination of traversal;
id_ck--use other traversal routine to determine whether
error caused by bad pointer or bad identifier field;
¢h _ptr--change pointer using information from other
traversal routine; error-—cannof occur for well separated

errors, so abort correction.

Example 4: CTB-tree Error Correction

The next algorithm to be discussed corrects single
errors in CTB-trees [2]. Because of its complexity, only a
general indication can be given of the design of the
algorithm. Like the previous algorithm, this one uses two
parallel traversals. Here, one traversal uses the normal
"tree pointers" of the B-tree, and the other uses the chain
and thread pointers. The traversal order used places a node
immediately after the nodes 1in its leftmost subtree. As
before, an error is detected by observing a disagreement
between the two traversals. Unfortunately, it is not easy
to determine which traversal is in error, so the correction
algorithm guesses: it first assumes the tree pointer
traversal is correct and mékes the appropriate correction to
a chain or thread pointer. The resulting tree is passed to
a detection routine to be checked. If the check fails, the

"correction" is undone and a tree ©pointer is changed,

- 11 -

assuming the chain and thread pointers to be correct. The
resulting tree is again passed to a detection routine.
Because the detection routine checks the whole tree, this
algorithm can only correct single errors. 1In principle, a
detection procedure could be executed over a subtree,
allowing many cases of multiple errors to be corrected, but

the details of such a scheme have not been worked out.

Example 5: RCL Error Correction

As nodes of a CTB-tree are examined in the above
algorithm, the robust contiguous 1ist (RCL) structure of
each node must be checked and corrected. This correction
routine begins by attempting to verify the count, the dummy
key (K0), and the fill values. If an error is found at this
stage, a guess may have to be made as to which is in error,
and the resulting guess checked using a detection procedure.
(In this case, the correction algorithm itself is used as a
detection procedure, with a flag parameter indicating not to
attempt correction.) Once these items have been verified,
it is straightforward to scan the RCL, checking keys and
differences, and when a discrepancy is discovered, to

determine whether a key or a difference is in error.

Example 5: K-linked Lists Error Correction
All of the preceding algorithms, except the General
Correction Algorithm, c¢an only be guaranteed to correct

single errors. The following algorithm is a multiple error

correction algorithm for k~-linked lists f1l1. In [8] it was
shown that a k-linked list 1is (2k-1)-correctable, but no
linear time correction algorithm was then known.

The idea used in this algorithm is teo partition the
pointers into k sets, such that each set is l-correctable.
(Each set contains two pointers per node. The correction is
performed by a generalisation of the algorithm described in
Example 2 of this section.) The algorithm begins by
performing l-correction on each of these sets. Then it uses
a set which is now correct to correct any sets which were
not previously corrected. The only major difficulty is that
if a set contains several errors it may appear (to the
l-correction routine) to have no errors or one correctable
error. Thus, after the 1l-correction routines have been
executed, it 1is necessary to quess which one is to be
believed, then use the corresponding set to fix all the
other sets, even those which apparently don't need to be
fixed. TIf this results in problems (a large number of
"errors" being fixed), another guess is tried. In the worst
case, it may be the k'th guess which is correct, and since a
guess can vesult in 0O(n*k) node accesses for an n-node
instance, the algorithm might take O(n*k**2) time. Except
for pathological cases, the time will be only O(n*k), but in

any event, the time is linear in n, for any given value of

k.

- 13 -

3. PRINCIPLES

Using the six correction procedures of the preceding
section as examples, we would now like to determine some
principles for the design of correction procedures.
Implications for the design of storage structures will be

discussed in Section 5.

Principle 1: Data should be partitioned.

In some simple cases this may not be necessary, but for
a complex structure, partitioning seems essential. In the
modified(2) local correction algorithm, an essential feature
is the partitioning of nodes between the two traversals.
Similarly, the CTB~tree correction uses two parallel
traversals operating on disjoint sets of pointers. A more
vivid example occurs in the k-linked correction algorithm,
which uses a2 k-way partition to "divide and conquer" the
correction problem.

To be useful, a partition generally must possess two
properties. The first is that the partition be "stable" in
some sense: as much as possible, errors should not shift
data between blocks of a partition. Oner feature of a
storage structure’which may cause this problem is a tagged
peinter, such as is often used to distinguish thread
pointers in binary tree storage structures. If different
tag values can cause the pointer to belong to different
blocks of the partition, considerable confusion is possible.

The second property 1is that each block of the partition

- 14 -

should ideally be a "determining set:" all other structural
data should be reconstructable from each block of the
partition. This allows the structural data from different
blocks of the partition to be "compared"™ in order to detect
and correct errors. The three examples in the previous.
paragraph are all reasonably stable partitions and all

partition blocks are determining sets.

Principle 2: Looping and unbounded foreign traversal must
be prevented.

If a loop has been introduced into a structure which
should be loop-free, the correction routine must avoid
repeated traversals of the loop. Similarly, when a pointer
is changed to point to an area of storage which is not a
node of the instance being checked, it must be possible to
bound the number of "nodes" which will be wvisited outside
the instance. Usually, the latter is easy to accomplish if
there are identifier fields in the instance. It is more
difficult to make a general statement about the prevention
of looping. The General Correction Procedure keeps a 1list
of all nodes previously visited, which is effective but very
expensive. The other examples given in Section 2 generally
make wuse of the fact that an invalid loop must contain a
detectable error somewhere, so when an error is detected, no
further traversal is attempted from the point of error until
the error has been corrected. The single error correction

algorithm for double-linked 1lists does this by using a

- 15 -

traversal which runs from the end of the list backward, when
an error 1is detected. The other algorithms examine a
bounded set of data in the vicinity of the error in order to
perform correction. In the CTB-tree error correction
algorithm, the size of this set is not bounded by a
constant, but has a bound which depends on the height of the
tree in some cases. (During initialisation, determination

of the correct tree height is an important activity.)

Principle 3: A coroutine organisation is frequently useful.

In the modified(2) local correction procedure and the
CTB-tree correction procedure, there are {conceptually) two
coroutines which can individually generate a traversal order
using one block of the partition. This simplifies the
correction algorithm since any single error can affect only
one coroutine., Thus, the only errors which are hard to
handle are those which cause both coroutines to detect no
errors but produce a disagreement on the identity of the

next node in the traversal order.

Principle 4: Use a fault dictionary.

A classical hardware diagnosis technique makes use of a
"maintenance dictionary" {3]. The observed symptoms of a
problem are looked up in the maintenance dictionary to
determine which replaceable unit(s) is (are) implicated. TIf
the collection of symptoms 1is properly organised, an

analogous technigue can be used in correcting data structure

- 15 -

errors. An example of such a "fault dictionary" was given
in the description of the modified(2) 1local correction
routine. That example 1is sufficiently simple that an
explicit fault dictionary is useful but not essential. The
CTB-tree correction routine uses a fault dictionary which is
sufficiently complex that there seems no reasonable way of

not making the dictionary explicit.

Principle 5: If you can't decide, guess.

In many cases it is too difficult to analyse all
available data in order to decide precisely which field is
in error. Tt is often useful therefore to perform a more
limited analysis, which yields several candidates for the
error, rather than Jjust one. To make this technique
successful, two criteria must be satisfied: (1) The number
of guesses must be 1imited, usually bounded by a constant
independent of the data structure instance. (2) It must be
possible to check the guess with an appropriate algorithm,

In Section 2, only the two double~linked 1list
correction algorithms do not make any guesses. The General
Correction Algorithm is almost entirely based on guessing.
Because it does not satisfy criterion (1), it 1is not a
practical correction algorithm. The CTB-tree and RCL
correction procedures each make at most two guesses and then
use a detection procedure to check the correctness of the
complete resulting instance. In the k-linked <correction

procedure, the guessing concerns which single error

- 17 -

correction result to believe; the guess is checked by
observing the apparent number of errors which must be
corrected. If a 1local error correction procedure were to
make guesses, a guess would have to be checked using only a
fixed set of data "near" the current position in the

instance.

4, A HARD PROBLEM: THE CT-TREE

In addition to the examples of correction algorithms in
Section 2, we have an example of a correction algorithm we
have not been able to develop. The chained and threaded
representation of a binary tree {CT-tree) 1is known to be
l-correctable, but no correction algorithm for it, other
than the General Correction Algorithm, has been developed.

Attempts have been made to produce a correction
algorithm for CT-trees and have led to the following
conclusions: (1) An algorithm for performing single error
correction on CT-trees in linear time probably exists. (2)
Any such algorithm is too big and complex to he worth
writing. WNeither of these has been proven; the second is
too subjective even to attempt a proof.

It is possible to examine the CT-tree in terms of the
principles of Section 3 to determine why our attempts to
obtain an efficient error correction algorithm have been
unsuccessful. The first principle requires a stable

partitioning of structural information. Because of the

tagged pointers, a partitioning into (1) 1links and (2)
chains and threads is very unstable. This partition also
fails to have the "determining” property, since chains and
threads cannot be used to reconstruct links. Because only a
relatively few 1link configurations are consistent with a
given set of chains and threads, it might be possible to
work around this second difficulty, but there seems no easy
Lad

way of avoiding unstable partition problems. There also
seems to be no other wuseful partition of the structural
data.

Principle 2 requires loops to be prevented. Because
any standard tree traversal will require an indeterminate
number of links to be followed, upon occasion, to access the
next node, preventing loops is very difficult.

The coroutine idea of Principle 3 is applicable, except
for the partition stability problem. Principles 4 and 5
might also apply, if the problems previously outlined could
be solved.

The preceding say, in effect, that our present
principles do not allow us to construct a reasonably simple,
efficient correction routine for CT-trees. The only hope of
success would seem to be the discovery of a new, and quite
different, principle for the design of correction routines,
or the development of a better binary tree storage

structure.

- 19 -

5. IMPLICATIONS FOR STORAGE STRUCTURE DESIGN

in a sense, the principles of Section 3 simply imply
that storage structures should be designed so that the
principles can be applied. A few, more specific,
implications for storage structure design can be extracted.

One implication is that a k—-determined storage
structure should be easy to correct if k is sufficiently
large. (Informally, a structure 1is k-determined if the
structural data can be partitioned into k sets, such that
any one set can be used to reconstruct all other structural
data.) Storage structures which are only l-determined may
be difficult to deal with.

Another implication is that structures with "simple"
traversals, where the number of operations to reach the next
node 1is bounded by a constant, are easier to deal with.
Unfortunately, this property tends to be inherited from the
data structure being represented. For example, no standard
linked representation of a binary tree has this property. A
final implication, drawn directly from the examples of
Section 2, is thét "global" properties such as a count of
the number of nodes in an instance, may not be very useful
for correction purposes. (Although they are often
convenient for error detection.) Counts were assumed to be
present in all storage structures, but usually the
correction routines simply reset the count to match the

pointer structure, once pointers were corrected. There are

- 20 -

two exceptions: the count 1is quite important in the RCL
correction algorithm and the count 1is wused as a "tie
breaker" in the k-linked list correction algorithm when two
apparently correct sets disagree on the number of nodes in
the 1list. The RCL is the only contiguous storage structure
included here: counts may have a greater importance for

contiguous structures than linked structures.

6. SUMMARY AND FURTHER WORK

IWe have presented a number of examples of correction
algorithms, extracted some general principles from the
algorithms, and suggested some implications from these for
the design of storage structures. We Dbelieve that the
principles of Section 3 are useful in the design of storage
structure error correction algorithms. Although the
principles are presented here as observations of common
properties of correction algorithms, the principles were in
several cases used in the design of the algorithms. For
example, Principles 1, 3, and 5 (partitioning, coroutine
traversal, and guessing) were all used explicitly to Quide
the overall design of the CTB-tree correction algorithm.

Although the work presented here should provide help in
the design of error correction algorithms, much work remains
to be done. For example, the 1local correction routine
presented in Section 2 is only applicable to modified(2)

double-linked lists. It should be extended to modified(k)

double-linked 1lists for k > 2. Another obvious unsolved
problem is efficient error correction in storage structures
like the CT-tree, which do not yield to our present
principles.

A significant implementation problem is the inter-
module coupling in correction algorithms. The problem is
not obvious in the descriptions of Section 2, but in the
implementation of correction algorithms, it often seems to
be necessary for wvarious modules to know about details of
the implementation of other modules. For example, the local
error correction algorithm for modified(2) double-linked
lists uses two traversal procedures. One would expect an
initialisation routine and a "next node" routine to be
sufficient for the traversal and that no other modules would
have to know the implementation of these routines.
Unfortunately, it is necessary to know whether the "next"
routine has Jjust followed zero or two pointers, and there
must be a mechanism for resetting the traversal when an
erroy is corrected in a pointer previously followed.
Finding good modular design technigues for correction

algorithms is a problem we have not yet been able to solve.

- 22 -

Acknowledgements

The work described in this paper was supported by the
Natural Sciences and Engineering Research Council of Canada
under grant A3078 and a Postgraduate Scholarship. Support
was also provided by a research contract from the Digital
Equipment Corporation. The implementation of the software
described 1in Section 2 was performed with the assistance of
several programmers: Ralph Hill, Mark 1Ingram, and Adrian
Pepper. In addition, Chidi Nwulu did much of the design for
the k-linked list correction algerithm, as well as its

implementation.

BIBLIOGRAPHY

Black, J. P., D. J. Taylor, and D. E. Morgan. A
compendium of robust data structures. Digest of
Papers, The Eleventh Annual International Symposiuom on
Fault-Tolerant Computing, Portland, Maine, June 24-26,
1981. ppl29-131.

Black, J.P., D. J. Taylor, and D. E. Morgan. A
robust B-tree implementatiop. Proceedings of the 5Sth
International Conference on Software Engineering,
March 9-12, 1981, San Diego, California. pph3-70.

Downing, R. W., J. S. Nowak, and L. S. Tuomenoksa.
No. 1 ESS Maintenance Plan. Bell] System Technical
Journal, vol. 43 ({September 19644}, pl1961-20179.

Horning, J. J. Programming Languages. In
Computing Systems Reliability, edited by T. Anderson
and B. Randell. Cambridge University Press, 1979,
ppl09-152,

Randell, Brian., System Structure for Software
Fault Tolerance. IEEE Transactions on Software
Engineering, vol 1, ho. 2 [June 1975). pPp220-232.

Taylor, David J., James P. Black, and David E.
Mergan. Redundancy in data structures: Improving
software fault tolerance. IEEE Transactions on

Software Engineering, vol. 6, no. 6 (November 1980) .
PPH85-594",

Taylor, David J., .James P, Black, and Dhavid E.
Morgan. Redundancy in data structures: Some
theoretical results, IEEE Transactions on Software
Engineering, wvol. 6, no. A (November 1980) .
pp - .

Taylor, David J. Robust Data Structure
Implementations for Software Reliability. Ph.D.
thesis, University of Waterloo, Waterloo, Ontario,
1977.

APPENDIX: STORAGE STRUCTURES

Several 1linked 1linear list structures are referred to
in Section 2. The double-linked list 1is essentially Jjust
the standard two-peinter representation with pointers to the
following and preceding nodes. We also assume that each
node contains an identifier field, whose value uniquely
identifies a node as belonging to a particular data
structure instance, and that there 1is a header node
containing a count of the number of nodes on the list.

A modified(k) double-linked 1list is like a standard
double-linked list except that the "backward" pointer points
to the k'th preceding node rather than the immediately
preceding node. Thus, a modified(l) double-linked list is a
standard double-linked 1list. It 1is necessary to have k
header nodes for a modified(k) list and to store the headers
contiguously.

A k-linked list has 2k pointers in each node, one
pointer to each of the k following nodes and to each of the
k preceding nodes. Identifier fields and a count are also
used, and like modified(k) 1lists, k header nodes are
required.

A chained and threaded binary tree (CT-tree) is a
binary tree using identifier fields and a node count stored
in the header, which uses logically null pointers to provide

a second access path to each ncde. Unused right pointers

contain a thread to the symmetric order successor of the
node (this is a standard binary tree implementation trick).
Unused 1left pointers contain a "chain"™ ¢to the next (in
symmetric order) node which has an unused left pointer. In
each case, a tag is used to indicate whether a pointer is a
"normal" link or a chain or thread. An example of a CT-tree
is shown in Figure 3.

A chained and threaded B-tree (CTB-tree) is a B-tree
which uses identifier fields, has a node count and the
height of the tree stored in the header, and the height
(above the leaves) stored in each branch node. A CTB-tree
also has chain pointers connecting all the 1leaf nodes in
order and has thread pointers from certain leaf nodes to
branch nodes. The rule for thread pointers is that the
rightmost leaf in the leftmost sub-tree of a branch node
contains a thread to that branch node. Height fields are
not required for error detection or correction: they were
added to simplify the correction algorithm. An example of a
CTB-tree is shown in Figure 4.

Each node of a CTB-tree 1is represented as a Robust
Contiguous List (RCL). An RCL contains stored differences
between consecutive keys, a stored count of the number of
keys, a special "dummy" key at the beginning of the list,
and has unused key and difference positions filled with a
special value computed from the dummy key. An example of an

RCL is shown in Fiqgure 5.

- 26 -

HEADER
ol T | B
COUNT-——-F - \
/,’ \\\\\\
P /i) N
/// D o) ' \\
//
/// /_’/,/// f‘
!’/ I/ ,///
| ! //," E
e @
\
1
| / oy
| 1
y ! / :
\/l :
@ BN e LN :
N E :
| |
t L
] i
G| 13 ! !
LINKS —
CHAINS AND —-- -
THREADS
Figure 3

Chained and Threaded Binary Tree

- 27 ~

(e

RS 7.

aremm

S0I3-g poPpeSIUl pur pauIrly)

p 2aInbTta
0 [¢ 4 Spa L et 3 t Ly & At
sa'os'vo| . £9'09'ss; mm.om_eovn gese'ze G og'ee'eR| 4 oz'si‘el A a 8's’l |4
i I I 1 1 i I
Pl - 2~ 211 1 e Ay,
\ ¥id NIVHD
« Hld QVINHL
\ L 4 |
oz 6 |a
1
I
@
[3\
|
9) u3avau

}

ANRGO

{%%eg -1
S2MVA T

S8 |GE (G- 1G -

G 2anbta

3STT snonbTluc) 3Isngoyd

3MIVA

AYYHLIGYY

1

£2

2 mwmmmu

BEl G

Sp Sy vp ¥y €p €y Zp €y lp Iy Op Oy *

LNNCD

29

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

