Symbolic Computation 3:
NORMAL FORMS AND DATA STRUCTURES
by
Keith O. Geddes
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
N2L 3G1
Research Report CS-81-29

September 1981

PREFACE

This report consists of Chapter 3 of a textbook being written under the title ‘Algebraic
Algorithms for Symbolic Computation’ by Keith O. Geddes. The table of contents for Chapter 3
appears below. A more complete table of contents for the textbook appears on the following

pages.
Chapter 3: NORMAL FORMS AND DATA STRUCTURES
3.1, Levels of Abstraction
3.2 Normal Form and Canonical Form
3.3. Normal Forms for Polynomials
3.4 Normal Forms for Rational Functions and Power Series
35. Data Structures for Multiprecision Integers and Rational Numbers
1.6. Data Structures for Polynomials, Rational Functions, and Power Series
Bibtiography
Exercises

3-1
32

3-8

3-12
3-15
3-22
3-23

Chupter 1t

.1

.2
3
4

——

Chapter 2:

2L
2.2,
2.3
2.4,
2.5.
2.6.
2.7.
2.2

29.

Chapter 3:
3.1
3.2.
33
KE:3
3.5.
3.6.

Chapter 4:

4.1.
4.2,
4.3.

ALGEBRAIC ALGORITHMS FOR SYMBOLIC
COMPUTATION

KEITH O. GEDDES

Department of Computer Science
University of Waterloo

CONTENTS

INTRODUCTION

What is Symbolic Computation?
A Brief Historical Sketch
Algorithmic Notation

Analysis of Algorithms
Bibliography

Exercises

ALGEBRA OF POLYNOMIALS, RATIONAL FUNCTIONS,
AND POWER SERIES

Rings and Fields

Divisibility and Factorization in Integral Domains

The Euclidean Algorithm

Univariate Polynom:al Domains

Multivariate Polynomial Domains

The Primitive PRS Euclidean Algorithm

Quotient Fields and Rational Functions

Power Serwes and Extended Power Series

Relationships Among Domains

Bibliography

Exercises

NORMAL FORMS AND DATA STRUCTURES

Levels of Abstraction

Normal Form and Canonical Form

Normal Forms for Pelynomials

Normal Forms for Rational Functions and Power Series

Data Structures for Multiprecision Integers and Rational Numbers
Data Structures for Polynomials, Rationat Functions, and Power Series
Bibliography

Exercises

ARITHMETIC ON POLYNOMIALS, RATIONAL FUNCTIONS,
AND POWER SERIES

Arithmetic in the Finite Field Z,

Arnthmetic on Multiprecision [ntegers

Arithmetic on Polynomials and Rational Functions

L]

\.auuutf:uwmi.»
B2 B o~ = Q0 LA B e e

[V SRV S

=Y
v

4.4

Chapter 5:

Chapter 7:

Chapter 8:

Chapter 9:

Arithmetic on Power Series

HOMOMORPHISMS AND CHINESE REMAINDER ALGORITHMS
Ring Morphisms

Characterization of Morphisms

Homomorphic Images

The Integer Chinese Remainder Algorithm

The Polynomial Interpolation Algorithm

Further Discussion of the Two Algorithms

Bibliography

Exercises

NEWTON’S ITERATION AND THE HENSEL CONSTRUCTION
P-adic and Ideal-adic Representations

Newton’s Iterations for f(u) = 0

Hensel's Lemma

The Univariate EZ Lifting Algorithm

Special Technigues for the Non-monic Case

The Multivariate EZ Lifiing Algorithm

POLYNOMIAL GCD COMPUTATION AND
POLYNOMIAL FACTORIZATION

SOLVING EQUATIONS AND THE
SIMPLIFICATION PROBLEM

SYMBOLIC INTEGRATION

8-t

3. NORMAL FORMS AND DATA STRUCTURES

This chapter is concerned with the computer representation of the algebraic objects discussed
in chapter 2. The zero equivalence problem is introduced and the important concepts of normal
form and canonical form are defined. Various normal forms are presented for polynomials,
rational functions, and power series. Finally data structures are considered for the representation
of multiprecision integers, rational numbers, polynomials, rational functions, and power series.

3.1. LEVELS OF ABSTRACTION

In chapter 2 we discussed domains of polynomials, rational functions, and power series in an
abstract setting. That is to say, a polynomial (for exampie) was considered to be a basic object in
a domain D{x] in the same sense that an integer is considered to be a basic object when discussing
the properties of the domain Z. The ring operations of + and X were considered in chapter 2 to
be primitive operations on the objects in the domain under consideration. However when we
consider a computer implementation for representing and manipulating the objects in these various
domains, we find that there is a great difference in the complexity of the data structures required to
represent a polynomial, rational function, or power series compared with the representation of an
integer. Also, at the machine level the complexity of the algorithms defining the ring operations is
very dependent on the actual objects being manipulated.

While the point of view used in chapter 2 is too abstract for purposes of understanding issues
such as the complexity of polynomial muitiptication, the data structure level (where a distinction is
made, for example, between a linked list representation and an array representation) is too low-
level for convenience. It is useful to consider an intermediate level of abstraction between these
two extremes, Three levels of abstraction will be identified as follows:

(i) The object level is the abstract level where the elements of a domain are considered to be
primitive objects.

(i} The form level is the level of abstraction in which we are concerned with how an object is
represented in terms of some chosen ‘basic symbols’, recognizing that a particular object may
have many different valid representations in terms of the chosen symbols, For example, at
this level we would distinguish between the following different representations of the same
bivariate polynomial in the domain Z[x,y]:

(1) a(xy)=12x%y ~dxy +9x — 3;
(2) alxy)=(3x — 1) (dxy + 3}
(3) aly) = (12yn? + (=4y +9x - 3.

(iii) The data structure level is where we are concerned with the organization of computer
memory used in representing an object in a particular form. For example, the polynomial
a(x,y) in the form (1) could be represented by a linked list consisting of four links (one for
each term), or a(x,)) could be represented by an array of length six containing the integers
12, 0, —4, 9, 0, =3 as the coefficients of a bivariate polynomial with implied exponent
vectors (2, 1), (2,), (1, 1), (1, 0), (0, 1), 0, 0} in that order, or a(x,y} could be represented

by some other data structure,

In a high-level computer language for symbolic computation the operations such as 4+ and X
will be used as primitive operations in the spirit of the object level of abstraction. However in
succeeding chapters we will be discussing algorithms for various operations on polynomials,
rational functions, and power series and these algorithms will be described at the form level of
abstraction. The next three sections discuss in more detail the various issues of form which arise.
Then choices of data structures for each of the above classes of objects will be considered.

3.2. NORMAL FORM AND CANONICAL FORM

The Problem of Simplification

When symbolic expressions are formed and manipulated, there soon arises the general prob-
lem of simplification. For example, the manipulation of bivariate polynomials might lead to the
expression

4 (I2x%y —dxy +9x — 3= (3x = D{dxy + 3.

Comparing with (1) and (2) it can be seen that the expression (4) is the zero polynomial as an
object in the domain Z[x,y]. Clearly it would be a desirable property of a system for polynomial
manipulation to replace the expression (4) by the expression 0 as soon as it is encountered. There-
are two important aspects to this problem:

i a large amount of computer resources (memory space and execution time) may he
wasted storing and manipulating unsimplified expressions (indeed a computation
may exhaust the allocated computer resources before completion because of the
space and time consumed by unsimplified expressions); and

() from a human engineering point of view, we would like results to be expressed in
their simplest possible form.

The problem of algorithmically specifying the ‘simplest’ form for a given expression is a very
difficuit problem. For example, when manipulating polynomials from the domain Z[x,y] we could
demand that all polynomials be fully expanded (with like terms combined appropriately), in which
case the expression {4) would be represented as the zero polynomial. However consider the expres-
sion

(8) (x + p)l000 - yi000,

the expanded form of this polynomial will contain a thousand terms and from either the human
engineering point of view or computer resource considerations, expression (5) would be considered
‘simpler’ as it stands than in expanded form. Similarly, the expression

(6) x1000 - ylo(ll

which is in expanded form is ‘simpler’ than a corresponding factored form in which (x — ») is
factored out.

Zero Equivalence

The zero equivalence problem is the special case of the general simplification problem in
which we are concerned with recognizing when an expression is equivalent to zero. This special
case is singled out because it is a well-defined problem (whereas ‘simplification’ is not well-defined
until an ordering is imposed on the expressions to indicate when one expression is to be considered
simpler than another) and also because an algorithm for determining zero equivalence is considered
to be a sufficient ‘simplification’ algorithm in some practical situations, However even this well-
defined subproblem is a very difficult problem. For example, when manipulating the more general
functions to be considered later in this book one might encounter the expression

3-3

(7) logtan (% + 7:—) - sinh~! tan x,

which can be recognized as zero only after very nontrivial transformations. A discussion of the
zero equivalence problem at this level of generality will be postponed until a later chapter, where
we find that in a ‘sufficiently rich’ class of expressions the zero equivalence problem is recursively
undecidable. Fortunately though, the problem can be solved in many particular classes of
expressions of practical interest. In particular the cases of polynomials, rational functions, and
power series do not pose any serious difficulties, -

Transformation Functions

The simplification problem can be treated in a general way as follows. Consider a set E of
expressions and let ~ be an equivalence relation defined on E, Then ~ partiticns E into
equivalence classes and the quotient set E/~ denotes the set of all equivalence classes. (This
terminology has already been introduced in chapter 2 for the special case where E is the set of
quotients of etements from an integral domain). The simplification problem can then be treated by
specifying a transformation f: E — E such that for any expression a € E, the transformed expres-
sion f(a) belongs to the same equivalence class as a in the quotient set E/~. Idealistically it would
be desired that f(a) be ‘simpler’ than a.

In stating the definitions and theorems in this section we will use the symbol = to denote the
relation ‘is identical to’ at the form level of abstraction (i.e. identical as strings of symbols). For
example, the standard mathematical use of the symbol = denotes the relation ‘is equal to’ at the
object level of abstraction so that

12x2y —dzy +9x —3 = (3x ~ l){dxy + 3),

whereas the above relation is not true if = is replaced by m. In fact the relation = of mathemati-
cal equality is precisely the equivalence relation ~ which we have in mind here. (In future sections
there will be no confusion in reverting to the more general use of = for both = and ~ since the
appropriate meaning will be clear from the context),

Definition 3.1.

Let E be a set of expressions and let ~ be an equivalence relation on E. A normal function
for [E; ~] is a computable function f: E = E which satisfies the following properties;

(i) f@)~a foralla EE;
i) a~0 = fa)mf0foralla €E 0O

Definition 3.2.

Let [E; ~] be as above. A canonical function for [E; ~] is a normal function f: E -+ E
which satisfies the additional property:

(i) a~b =» fla)mf(p) forallapb €E 0O

Definition 3.3.

If f is a normal function for (E; ~] then an expression ¢ & E is said to be a normal form if
fla) = a. ~[f f is a canonical function for [E; ~] then an expression'a € E is said to be a canonical
formiff(a)yma. 0O
Example 3.1

Let E be the domain Z[x] of univariate polynomials over the integers. Consider the normal
functions f; and f, specified as follows:

fi: (i) multiply out all products of polynomials;

(iiy collect terms of the same degree.

3-4

far () multiply out all products of polynomials;
(i) collect terms of the same degree;
(ili) rearrange the terms into descending order of their degrees,

Then f) is a normal function which is not a canonical function and f3 is a canonical function. A
normal form for polynomials in Z[x] corresponding to fi is
ax® +ax T+ o Faux™ with e # e; wheni # j.
A canonical form for polynomials in Z[x] corresponding to f; is
em

alxe1+azxez+ ot amx with e; < e; wheni > j. [}

It is obvious that in a class E of expressions for which a normal function has been defined,
the zero equivalence problem is solved. However there is not a unique normal form for all
expressions in a particular equivalence class in E/~ unless the equivaience class contains 0. A
canonical form, in contrast, provides a unique representative for each equivalence class in E/~, as
the following theorem proves.

Theorem 3.1.
If [is a canonical function for {E; ~] then the following properties hold:
(i) f is idempotent (i.e. f o f m f where o denotes composition of functions);
(i) f(a) m f(b) if and only if a ~ b;
(ifi) in each equivalence class in E/~ there exists a unique canonical form.

Proof:
D fla) ~ a forall a € E, by Definition 3.1 (i)
= f(fa)) = f{a) forall a € E, by Definition 3.2 (iii).
(ii) “if’: This holds by Definition 3.2 (iii).
‘only if'; Let f(g) m f(b). Then
a ~ fay = f(b) ~ b by Definition 3.1 (i)

=> g ~b

(ifi) ‘Existence™ Let a be any element of a particular equivalence class. Define
a = f(q@). Then

fla) = f(f(a))
@ fla), by idempotency
=g,
‘Uniqueness’: Suppose @ and 42 are two canonical forms in the same equivalence
class in E/~. Then
ap~a;
=> f(z|)® flzy) by Definition 3.2 (iii)

»=» | ® g, by definition of canonical form. O

3-35

3.3. NORMAL FORMS FOR POLYNOMIALS

Multivariate Polynomial Representations

The problem of representing multivariate polynomials gives rise to several important issues at
the form level of abstraction. One such issue was briefly encountered in chapter 2, namely the
choice between recursive representation and distributive representation. In the recursive representa-
tion a polynomial a(xy, ..., x,) € Dixy, . .., x,] is represented as

31(a(x)))
axy, X)) = r% ai(x2, ..., x,)x}
(ie. as an element of the domain D[x3,...,x,][x(]) where, recursively, the polynomial
coefficients g {x2, . . ., x,) are represented as elements of the domain D[x3, ..., x,]{x2], and so
on so that ultimateily the polynomial a(x;.,...,x,) is viewed as an clement of the domain
Dlx,1fxy—~1] - - [x1]. An example of a polynomial from the domain Z[x,y,z} expressed in the
recursive representation is:

®) alxyz)=(3p? + (=223 + 5232 + (@ + (=62 + 3 +3p2 + 2* + 1)
In the distributive representation a polynomial a(x) € D[x] is represented as

a(x) = z aex®

e ENY

where a¢ € D. For example, the polynomial a{x,y.z) € Z[x,y.z] given in (8) could be expressed in
the distributive representation as

9 alepz) = %y = 22y + 52 b ax -6y +pF + 2424+ 1

Another representation issue which arises is the question of sparse versus dense representa-
tion. This issue has to do with whether or not terms with zero coeflicients are explicitly
represented. In the sparse representation only the terms with nonzero coefficients are represented
while in the dense representation all terms which could possibly appear in a polynomial of the
specified degree are represented (whether or not some of these terms have zero coefficients in a
specific case). For example, a natural representation of univariate polynomials :a,x’ € Zfx] of

i=

specified maximum degree » using arrays is to store the (# +1)-array (ao, . . . , ay); this is a dense
representation since zero coefficients will be explicitly stored. While it is quite possible to general-
ize this example to obtain a corresponding dense representation for multivariate polynomials (e.g.
by imposing the lexicographical ordering of exponent vectors), such a representation is found to be
highly impractical. For if a particular computation involves the manipulation of polynomials in v
indeterminates with maximum degree 4 in each indeterminate then the number of coefficients
which must be stored for each specific polynomial is (4 +1)". It is not an uncommonly large prob-
lem to have, for example, v = 5Sand 4 = 15 in which case each polynomial requires the storage of
over a million coefficients. In a practical probiem with v = 5and d = 15 most of the miilion
coefficients will be zero, since otherwise the computation being attempted is beyond the capacity of
present-day computers. (And who would care to look at an expression containing a million terms!)
All of the major systems for symbolic computation therefore use the sparse representation for mul-
tivariate polynomials.

A similar choice must be made as to whether or not to store zero exponments. When we
express polynomials such as (8) and (9) on the written page we do not explicitly write those
monomials which have zero exponents (just as we naturally use the sparse representation of
polynomials on the written page). However the penalty in memory space for choosing to store
zero exponents is not excessive while such a choice may result in more efficient algorithms for
manipulating polynomials. We find that in some systems zero exponents are not stored and in
other systems they are stored.

3-6

The polynomial representation issues discussed so far do not address the specification of nor-
mal or canonical forms. While all of these issues can be considered at the form level of abstrac-
tion, the three issues discussed above involve concepts that are closer to the data structure level

- than the issue of normal/canonical forms. A hierarchy of the levels of abstraction of these various
representation issues is illustrated in Figure 3.1,

OBJECT
LEVEL

v

FORM LEVEL A:
normal/canonical forms

Y

FORM LEVEL B:
recursive/distributive representation |

FORM LEVEL C:
sparse/dense representation

FORM LEVEL D:
. ZETo exponent representation

. ' DATA STRUCTURE
LEVEL

Figure 3.1. Levels of Abstraction for Multivariate Polynomial Representations

Definitions of Normal Forms

Definition 3.4.

An expanded normal form for polynomial expressions in a domain D[x,...,x,] can be
specified by the normal function

fi: () multiply out all products of polynomials;
(ii) collect terms of the same degree.

An expanded canonical form for polynomial expressions in a domain Dfx;, ..., x,] can be
specified by the canonical function

fy: apply fj, then

(iii} rearrange the terms into descending order of their degrees. [J

Definition 3.5.

A factored normal form for polynomial expressions in a domain D{xy....,x,] can be
specified by the normal function

k
fy: if the expression is in the product form I]‘o;, pi € Dilxy,...,x,] for
i=

i= ’!,2,k, where no p; is itself in product form, then replace the expression
by ufz (p;} where £ is the canonical function defined in Definition 3.4 and where
=

the latter product is understood to be zero if any of its factors is zero.

A factored canonicaf form for polynomial expressions in a domain Dlxy, . .., x,] (assuming that
D is a UFD) can be specified by the canonical function
f4: apply fy and if the result is nonzero then factorize each f; (p;) into its unit normal

factorization (according to Definition 2.13) and collect factors to obtain the unit
normal factorization of the complete expression (made unique by imposing a pre-
specified ordering on the factors). 3

It should be noted that in an implementation of the transformation functions fi and f; of
Definition 3.4, the concept of ‘degree’ means ‘exponent vector’ if the distributive representation is
used and it means ‘univariate degree’ applied to each successive level of recursion if the recursive
representation is used. Note also that in the specification of the transformation function f3 of
Definition 3.5, the canonical function f; could be repiaced by the normal function f; and f3 would
still be a valid normal function. However the normal function f3 as specified is more often used in
practical systems. Finally note that the factors p; (1< i< k) appearing in Definition 3.5 are not
necessarily distinct (i.e. there may be some repeated factors),

Example 3.2.

The polynomial a(x,y,z) in (8) is expressed in expanded canonical form using the recursive
representation for the domain Z[x.p.z]. The same polynomial is expressed in (9) in expanded
canonical form using the distributive representation for the domain Z{x,y.z]. 0O

Example 3.3.
Let a(x.y) € Z[x,y] be the expression

axy) = ((F —xp +x)+ 2+ Nx =y + 1N O3 =3p2 =% = H+ x4+ 2 + 1)

Using the distributive representation for writing polynomials, an expanded normal form obtained
by applying f; of Definition 3.4 to a(x,y) might be (depending on the order in which the multiplica-
tion algorithm produces the terms):

fi{alx.y)) = szy3 + 3x2y? - 13x2y — 10x2 + 30y + 26 - xpt ¢ Txy? - 3xy? = 3xy
- x5y3 + 27¢'5y2 + 7x5y - 20x + 4x° + x:*y3 - 313y2 - 9x3y - 523 + x.’y2 + ZxTy
+xT =yt = xSy — 3pt +12y% 4 18y2 — 12y = 3xhy? = k2 4 3xdy — 15 + x4
The expanded canonical form obtained by applying {2 of Definition 3.4 to a(x,)) is
f (a(x,p)) = x7p2 + ZxTy +x7 = x8p3 4 3xby + 26 — x5y + 263y 4 x5y + dx’
= 3xtyd -yl 4 Ity +3x% + x{v3 — 32w ox3y — 53 - x’y“ + 5xdp3 4 322
~ 13x2%y ~ 10x2 —xp* + Txy® — 3p? = 3xy = 20x — 3yt + 1297 + 18y — 12 — 5.
Applying, respectively, fy and fs of Definition 3.5 to a(x,p) yields the factored normal form
fi{alrp)) = (23 — x2y + 2% - xy +dx =3y + 3) (x4 + Ly +xt 4y~ Pl-9y -5
and the factored canonical form

3-8

flacyN =(x =y + D2 +x +NE*+y -5y + 12 0O

Some Practical Observations

The normal and canonical functions f), fy, f3, and f; of Definitions 3.4-3.5 are not all practi-
cal functions to implement in a system for symbolic computation. Specifically the canonical func-
tion fy (factored canonical form) is rarely used in a practical system because polynomial factoriza-
tion is a relatively expensive operation (see chapter 8). On the other hand, one probably would not
choose to implement the normal function f; since the canonical function f3 requires little additional
cost and yields a canonical {unique) form. One therefore finds in several systems for symbolic
computation a variation of the canonical function f; (expanded canonical form) and also a varia-
tion of the normal function f3 (factored normal form), usually with some form of user control over
which ‘simplification” function is to be used for a given computation. It can be seen from Example
3.3 that the normal function f; might sometimes be preferabie to the canonical function f; because
it may leave the expression in a more compact form, thus saving space and also possibly saving
execution time in subsequent operations. On the other hand, the canonical function f; would
‘simplify’ the expression

ary) = (x = p)(!® + x18y + x17)2 £ 163 4 (154 4 2145 4 21356 4 12,7
+oxtlyB 4 10,9 4 49,10 + a8yl g x T2 4 4613 4 45,1 + xplS 4 316
+ x217 4 xyl8 4 19
into the expression : ~
Balxy)) = x20 = y2

while the normal function f; would leave a(x,y) unchanged. Finally it should be noted that both
f; and f; would transform the expression (5) into an expression containing a thousand terms and
therefore it is desirable to also have in a system a weaker ‘simplifying’ function (e.g.
MACSYMA's ‘general simplifier’) which would not apply any transformation to an expression like
(5). The latter type of transformation function would be neither a canonical function nor a normal
function.

3.4. NORMAL FORMS FOR RATIONAL FUNCTIONS AND POWER SERIES

Rational Functions

Recall that a field D{x,, . . . , x,) of rational functions is simply the quotient field of a poly-
nomial domain D[x;,...,x,]. The choice of normal forms for rational functions therefore
follows quite naturally from the polynomial forms that are chosen. The general concept of a
canonical form for elements in a quotient field was defined in section 2.7 by conditions (2.75)-
(2.77), which becomes the following definition for the case of rational functions if we choose the
expanded canonical form of Definition 3.4 for the underlying polynomial domain. (We will assume
that D is a UFD so that GCD's exist). -

Definition 3.6.
An expanded canonical form for rational expressions in a field D(xy,...,x,) can be
specified by the canonical function
fs: (1) [form common denominator] put the expression into the form a/b where a,b €

Dfxy.....x] by performing the arithmetic operations according to equations
(2.73)-(2.74),

3-9

(i) [satisfy condition (2.75): remove GCD] compute ¢ = GCD(a,b) € D[x,, .. ., x,]
(e.g. by using Algorithm 2.3) and replace the expression a/b by a'/b' where
a=g'gandd = b'g;

(il) {satisfy condition (2.76): unit normalize] replace the expression a'/b’ by a"/b" .
where a* = a'[u(d)]"! and 6" = b'[u(p V]~ L;

{Ir) [satisfy condition (2.77). make polynomials canonical] replace the expression a” /5"
by £(a")/f(b") where f; is the canonical function of Definition 3.4. [J

It is not made explicit in the above definition of canonical function fs whether or not some
normal or canonical function would be applied to the numerator and denominator polynomials
(a and b) computed in step (i). It might secm that in order to apply Algorithm 2.3 in step (ii) the
polynomials @ and b need to be in expanded canonical form, but as a practical observation it
should be noted that if instead 4 and b are put into factored normal form (for example) then step
(if) can be carried out by applying Algorithm 2.3 separately to the various factors. It will be seen
in chapter 4 that the latter approach leads to a more efficient implementation.

As in the case of polynomials, it can be useful to consider non-canonical normal forms for
rational functions (and indeed more general forms which are neither canonical nor normail), We
will not set out formal definitions of normal forms for rational expressions but several possible nor-
mal forms can be outlined as follows:

Jactored/factored: numerator and denominator both in factored normal form;

Jactored/expanded: numerator in factored normal form and denominator in expanded canoni-
cal form;

expanded /factored: numerator in expanded canonical form and denominator in factored nor-
mal form.

In this notation the expanded canonical form of Definition 3.6 would be denoted as
expanded/expanded. In the above we are assuming that conditions (2.75) and (2.76) are satisfied
but that condition (2.77) is not necessarily satisfied. Noting that to satisfy condition (2.75) (i.e. to
remove the GCD of numerator and denominator) requires a (relatively expensive) GCD computa-
tion, it can be useful to consider four more normal forms for rational functions obtained from the
above four numerator/denominator combinations with the additional stipulation that condition
(2.75) is not necessarily satisfied,

Among these various normal forms one that has been found to be particularly useful for the
efficient manipulation of rational expressions is the expanded/factored normal form, with condition
(2.75) satisfied by an efficient schere for GCD computation which exploits the presence of explicit
factors whenever an arithmetic operation is performed. (See chapter 4 for details). Such a choice
is the default mode in ALTRAN, with the other normal forms available by user specification.
Finally noting that step (i) of function fs (Definition 3.6) is itself nontrivial, a weaker ‘simplifying’
function such as MACSYMA'S ‘gencral simplifier’ chooses to leave expressions in a less
transformed state yielding neither a canonical nor a normal form (until the user requests a ‘rational
canonicalization”).

Power Series: The TPS Representation

The representation of power series poses the problem of finding a finite representation for an
infinite expression, Obviously we cannot represent a power series in a form directly analogous to
the expanded cancnical form for polynomials because there are an infinite number of terms. One
common solution to this problem is to use the truncated power series (TPS) representation in
which a power series

(10) ax) = zakx" & DIix]

i

3-10

is represented as

!
(11) kgakx"

where ¢ is a specified truncation degree. Thus only a finite number of terms are actually
represented and a TPS such as (11) looks exactly like a polynomial. However a distinction must
be made between a polynomial of degree ¢ and TPS with truncation degree ¢ because the results of
arithmetic operations on the two types of objects are not identical. In order to make this distinc-
tion it is convenient to use the following notation for the TPS representation (with truncation
degree ¢) of the power series (10):

(12) a(x) = k;akx" + Oo@!th,

where in general the expression O(x”) denotes an unspecified power series ofx) with
ord[a(x}] > p.

The non-exact nature of the TPS representation of power series poses a problem when we
consider normal forms for power series, For if in Definition 3.1 we consider the set E of
expressions to be the set of all (infinite) power series then the transformation performed by
representing a power series in its TPS representation (with specified truncation degree) violates
the first property of a normal function. Specifically, two power series which are not equivalent will
be transformed into the same TPS representation if they happen to have identical coefficients
through degree 1. On the other hand, we can take a more practical point of view and consider the
set E; of all TPS expressions of the form (12) with specified truncation degree 1. Since we are only
considering univariate power series domains with the most general coefficient domain being a field
of rational functions, it follows immediately that (12) is a normal form for the set E; if we choose
a normal form for the coefficients and it is a canonical form for the set E, if we choose a canonical
form for the coefficients.

Power Series: Non-Truncated Representations

The TPS representation is not the only approach by which an infinite power series can be
finitely represented. There are representations which are both finite and exact. For example, the
Taylor series expansion about the point x = 0 of the function e* might be written as

1k
(13) -—x
k= k !
which is an exact representation of the complete infinite series using only a finite number of
symbols. The form (13) is a special instance of what we shall name the non-truncated power series
(NTPS) representation of a power series a(x) € D{[x]] which takes the general form

14 = Sk k,
(14) alx) k%a()x

where fy(k) is a specified coefficient function (defined for all nonnegative integers k) which
computes the k-th coefficient. By representing the coefficient function fy(k), the infinite power
series a(x) is fully represented. The fact that only a finite number of coefficients could ever be
explicitly computed is in this way separated from the representation issue and, unlike the TPS
representation, there is no need to pre-specify the maximum number of coefficients which may
eventually be explicitly computed.

If a(x) is the power series (13) then the coefficient function can be specified by
1
(18) fy(k) == T

In a practical implementation of the NTPS representation it would be wise to store coefficients

3-11

that are explicitly computed so that they nced not be re-computed when and if they are required
again later in a computation, Thus at a particular point in a computation if the first / coefficients
for a(x) have previously been explicitly computed and stored in a linear list & = (ag, ay, .. ., a-1)
then the specification of the coefficient function should be changed from (15) to

(16) (k) ==if k <! then a[k] else %

where afk] denotes an element access in the linear list a. Initially / = 0 in specification (16) and in
general [is the current length of a. It can also be seen that from the point of view of
computational efficiency it might be better to change specification {16) to

fatk -1
(17) fuk)yu=if k =0 then I else if £ </ then a[k] else -a—(—k—)
where the recurrence a; = akk_l (for & > 0) will be used to compute successive coefficients,

The specification of the coefficient function can become even more complex than indicated
above. For example if a(x) and b(x) are two power series with coefficient functions f,(k) and fy(k)
then the sum

c(x) = a{x) + b(x)
can be specified by the coefficient function
(18) (k) n= fy(k) + (k)
and the product
dx) = a(x)blx)

can be specified by the coefficient function
k
(19 fyk)y== %fa(f) folk — &)
%

If (k) and Fy(k) are explicit expressions in k then the coefficient function fuk) in (18) can be
expressed as an explicit expression in k but the coefficient function fy(k) in (19) cannot in general
be simplified to an explicit expression in k.

The problem of specifying normal forms or canonical forms for the NTPS representation has
not received any attention in the literature. A practical implementation of the NTPS representa-
tion has been described by Norman [Nor75] and it is seen to offer some advantages over the TPS
representation. However the question of normal forms is left at the TPS level in the sense that the
objects ultimately seen by the user are TPS representations, and we have already seen that TPS
normal or canonical forms are readily obtained. While a true normal form for the NTPS
representation in its most general form is impossible (because such a normal form would imply a
solution to the zero equivalence problem for a very general class of expressions), it would be of
considerable practical interest to have a canonical form for some reasonable subset of all possible
coefficient function specifications. (For example, see Exercises 3-7 and 3-8 for some special forms
of coefficient function specifications which can arise).

Extended Power Series

Recall that a field F<x> of extended power series over a coefficient field F can be identified
with the guotient fieid F((x)) of a power series domain F{[x]}]. It was shown in section 2.8 that a
canonical form for the quotient field F((x)) satisfying conditions (2.75)-(2.77) takes the form

an &)
X

where a(x) € F[[x]] and n > 0. Thus normal and canonical forms for extended power series are

3-12

obtained directly from the forms chosen for representation of ordinary power series. The represen-
tation of an extended power series can be viewed as the representation of an ordinary power series
plus an additional piece of information specifying the value of n in (20).

35. DATA STRUCTURES FOR MULTIPRECISION INTEGERS AND RATIONAL
NUMBERS

We turn now to the data structure level of abstraction. Before discussing data structures for
polynomials in a domain D[x] or rational functions in a field D(x), it is necessary to determine
what data structures will be used for the representation of objects in the coefficient domain D. We
consider two possible choices for D: the integral domain Z of integers and the field Q of rational
numbers,

Multiprecision Integers

A typical digitat computer has hardware facilities for storing and performing arithmetic
operations upon a basic data type which is usually called ‘integer* and which we shall call single-
precision integer. The range of values for a single-precision integer is limited by the number of dis-
tinct encodings that can be made in the computer word, which is typically 8, 16, 32, 36, 48, or 64
bits in length. Thus the value of a signed single-precision integer cannot exceed about 9 or 10
decimal digits in length for the middle-range word sizes listed above or about 19 decimal digits for
the largest word size listed above. These restricted representations of objects in the integral
domain Z are not sufficient for the purposes of symbolic computation.

A more useful representation of integers can be obtained by imposing a data structure on top
of the basic data type of ‘single-precision integer’. A multiprecision integer is a linear list
(do, dy, dj~) of single-precision integers which represents the value

[R
_gd:ﬁ'

where the base 8 has been pre-specified. Noting that single-precision integers can be either positive
or negative, a positive multiprecison integer witl be represented by a list of positive single-precision
integers and a negative multiprecision integer will be represented by a list of negative single-
precision integers. {Alternatively, rather than have the sign of the multiprecision integer
redundantly stored in every element of the list one might choose some other convention for storing
the sign but such differences in detail need not concern us here).

The base 8 could be, in principle, any positive integer greater than | such that §—1 is a
single-precision integer, but for efficiency § would be chosen to be a large such integer. Two com-
mon choices for 8 are (i) 8 such that §—1 is the largest positive single-precision integer (e.g.
8 = 235if the (signed) word size is 36 bits), and (i) # = 10 ”where p is chosen as large as possible
such that #—1 is a single-precision integer {e.g. 8 = 10'0 if the word size is 36 bits). The length [
of the linear list used to represent a multiprecision integer may be dynamic (i.e. chosen

appropriately for the particular integer being represented) or static (i.e. a pre-specified fixed
length), depending on whether the linear list is implemented using linked allocation or using array
(sequential) allocation.

Linked Allocation and Array Allocation

One common method of implementing the linear list data structure for multiprecision
integers uses a linked list where each node in the linked list is of the form

3-13

The DIGIT field contains one base-g digit (a single-precision integer) and the LINK field contains
a pointer to the next node in the linked list (or an ‘end of list' pointer). Thus the multiprecision
integerd = (dp &, ..., d;—) with value

-1
(21) d =2 d8'
=0
is represented by the linked list

T e e 7 e PO vy e)

where the ‘grounded’ notation represents the ‘end of list’ pointer. Note that the order in which -the
B-digits d; are linked is in reverse order compared with the conventional way of writing numbers.
For example if 8 = 103 then the decimal number

(22) N = 1234567890
is represented by the linked list

N—3 890 [ey 567 | —f 234 [=d— [—T)

This ordering corresponds to the natural way of wriling the base-8 expansion of a number as in
{21) and, more significantly, it corresponds to the order in which the digits are accessed when
performing the operations of additien and multiplication on integers.

Another standard method of implementing a linear list uses array (sequential) allocation. In
this scheme the length [of the allowable multiprecision integers is a pre-specified constant and
every multiprecision integer is allocated an array of length / {i.e. / sequential words in the computer
memory). Thus the muitiprecision integer d in (21) is represented by the array

d

[4o

dy

il

i

di-1 |

where it should be noted that every multiprecision integer must be expressed using [B-digits (by
artificially introducing zeros for the high-order terms in (21) if necessary). For example if
8 = 103 and ! = 10 then integers not exceeding 30 decimal digits in length can be represented and
the particular decimal number N in (22) is represented by the array

3j-14

890
567
234

olo|lojojo|o|—

Advantages and Disadvantages

There are some well-known factors affecting the choice between linked and sequential alloca-
tion. Sequential allocation requires that the length ! be pre-specified and this leads to two
significant disadvantages: (i) a decision must be made as to the maximum length of integers that
will be required {with a system failure occurring whenever this maximum is exceeded), and (ii) a
considerable amount of memory space is wasted storing high-order zero digits (with a correspond-
ing waste in processor time accessing irrelevant zero digits). Linked ailocation avoids these
problems since irreievant high-order zero digits are not represented and the length of the list is
limited only by the total storage pool available to the system.

On the other hand the use of linked lists also involves at least two disadvantages: (i) a
considerable amount of memory space is required for the pointers, and (ii) the processing time
required to access successive digits is significantly higher than for array accesses. These two
disadvantages would seem to be especially serious for this particular application of linked lists
because the need for pointers could potentially double the amount of memory used by multipre-
cision integers and also because the digits of an integer will always be stored and accessed in
sequence. However the advantage of indefinite-precision integers (i.e. muitiprecision integers with
dynamically determined length /) along with the even greater advantages of linked allocation for
representing polynomials and more general classes of functions makes linked allocation the choice
in most systems for symbolic computation. Of the major systems, ALTRAN uses array allocation
while SAC-1 and LISP-based systems such as MACSYMA, REDUCE, and SCRATCHPAD use
Jinked allocation.

A third possible implementation for multiprecision integers is the descriptor allocation which
attempts to combine the best features of the above two implementations. In this scheme one uses a

descriptor block
LINK

which is a node containing the length / of the particular multiprecision integer being represented
and a LINK field which contains a pointer to the array block, which is an array of the / f-digits.
For example if = 107 then the rumber N in (22) would be represented by the following scheme:

890
Ne——3d] 567
234
|

This scheme would seem to avoid all of the disadvantages outlined above for the other two
implementations. However there are problems associated with it, including the need for dynamic

3-15

array allocation and the need for a sophisticated garbage collection algorithm. While none of the
systems uses this scheme for multiprecision integers, the idea can be generalized to a scheme for
representing multivariate polynomials which is used by the ALTRAN system.

Rational Numbers

The field Q of rational numbers is the quotient field of the integral domain Z of integers. A
natural representation for rational numbers is therefore the pair (numerator, denominator) where
each of numerator and denominator is a multiprecision integer. The basic data structure is a !ist
of length two each element of which is itself a linear list. The representation is made canonical by
imposing conditions (2.75) - (2.76) of section 2.7 (condition (2.77) is automatic since the represen-
tation for multiprecision integers will be unique).

If multiprecision integers are represented by ecither linked allocation or array allocation, a
rational number can be represented by a node

where LINKI is a pointer to the numerator multiprecision integer (either a linked list or an array)
and similarly LINK2 is a pointer to the denominator. In the case of array allocation for multipre-
cision integers it is also possible to represent a rational number by a two-dimensional array (e.g.
with / rows and 2 columns) since the length / of the numerator and denominator is a fixed constant.

3.6. DATA STRUCTURES FOR POLYNOMIALS, RATIONAL FUNCTIONS, AND POWER
SERIES

Relationships between Form and Data Structure

The data structures used to represent multivariate polynomials in a particular system
influences (or conversely, is influenced by) some of the choices made at the form level of abstrac-
tion. Referring to the hierarchy illustrated in Figure 3.1 of section 3.3, the choice made at form
level A (normal/canonical forms) is independent of the basic data structure to be used. At form
level B the choice between the recursive representation and the distributive representation is in
practice closely retated to the choice of basic data structure. The recursive representation is the
common choice in systems using a linked list data structure while the distributive representation is
found in systems using an array (or descriptor biock) data structure. {Note however that these par-
ticular combinations of choice at form level B and the data structure level are not the only possible
combinations). At form level C the sparse representation is the choice in all of the major systems
for reasons previously noted and this fact is reflected in the details of the data structure, The
choice at form level D regarding the representation of zero exponents is more variable among
systems. In systems using the distributive representation it is most natural to explicitly store zero
exponents but in systems using the recursive representation the choice is somewhat arbitrary. In
any case, the choice is reflected in the details of the data structure.

In this section we describe two possible data structures for muitivariate polynomials. The
first is a linked list data structure using the recursive, sparse representation and we arbitrarily
choose to explicitly represent zero exponents. The second is an array (descriptor block) data struc-
ture using the distributive, sparse representation with zero exponents explicitly represented. We
describe these two data structures as they apply to multivariate polynomials in expanded canonical
form. Then we describe the additional structure which can be imposed on either of these two basic
data structures to ailow for the implementation of the factored normal form.

3-16

A Linked List Data Structure
Using the recursive representation of multivariate polynomials in expanded canonical form, a

polynomial domain Dfx, ..., x,] is viewed as the domain D[x3 ..., xy][x |} and this view is
applied recursively to the ‘coefficient domain’ D[x3 ..., x,]. With this point of view, a polyno-
mial a(x(, ..., xy) € Dxy, ..., xy]is considered at the ‘highest level’ to be a univariate polyno-

mial in x [and it can be represented using a linked list where each node in the linked list is of the
form

[COEF_LINK | EXPONENT | NEXT_LINK |

Each such node represents one polynomial term-ax{ with a; & D[x3 ..., x,], where the
EXPONENT field contains the value i (as a single-precision integer), the COEF_LINK field
contains a pointer to the coefficient ; of x |, and the NEXT__LINK field contains a pointer to the
next term in the polynomial {or an ‘end of list' pointer). This representation is applied recursively.
In order to know the name of the indeterminate being distinguished at each level of this recursive
representation, we can use a *header node’

[INDET_LINK | FIRST_LINK |

where the INDET_LINK field contains a pointer to the name of the indeterminate and the
FIRST_LINK field contains a pointer to the first term in the polynomial (at this specific level of
recursion),

3 - 16 {continued)

Example 3.4,
Let A(x,y.z) € Z[x,y.z] be the polynomial
Alyz)=3x2 = Yzl 4 5x 24 4x ~ 2% 4 |
or, in recursive representation,
Aleyz) = 32+ (=22 3)y + 5z 2 + (x + (=244 1).

Using the linked list data structure just described, the polynomial A(x,y.z) is represented as
follows.

y T T ST T

2

(4 | — 1

L= e [+ 1ol =

&
1] —1—n = It

TN 12—l [+l ol b
’ 13 [— li Jrl-l—%ﬁlzi'—}———ﬂf

?

[4

[2] ———l

3-17

a

In Example 3.4 the elements in the coefficient domain Z are all represented as single-
precision integers. Clearly the occurrence of a node representing an integer in this linked list struc-
ture could as well be a multiprecision integer in its linked list representation. More generally, the
coefficient domain could be the field Q of rational numbers in which case rather than an integer
node {or list of nodes) there would be a header node for a rational number in its linked list
representation, pointing to a pair of multiprecision integers.

In a high-level list processing language using the linked list data structure presented here, it
would be possible to distinguish the cases when a pointer is pointing to a polynomial, a multipre-
cision integer, or a rational number. A polynomial is distinguished by a header node the first field
of which points to the name of an indeterminate. A multiprecision integer is distinguished by the
fact that the first field of its header node contains a single-precision integer rather than a pointer.
A rational number is distinguished by a header node the first field of which points to a multipre-
cision integer.

A Descriptor Block Data Structure

Among the major systems for symbolic computation the only one which does not use a
linked list data structure for representing multivariate polynomials is ALTRAN. The data struc-
ture used by ALTRAN is not purely sequential allocation since that would require the dense
representation which is not a practical alternative for multivariate polynomials (see section 3.3).
ALTRAN uses what can be called a descriptor block data structure which we now describe,

Using the distributive representation of multivariaie polynomials in expanded canonical form,
a polynomial a(x) € D[x] is viewed in the form

a(x) = z aex®
eeNV
where a., € D, x = (x|, ..., x,) 8 a vector of indeterminates and each e = (e, ..., e,) is a
corresponding vector of exponents. More explicitly, a term a ¢ is of the form
aexilxgz ce xf".

With this point of view, the representation of a polynomial a(x) can be accomplished by storing
three blocks of information: {i} a layvout block which records the names of the indeterminates

X1 ...,Xy (ii) a coefficient block which records the list of all nonzero coefficients a ¢ and (iii)
an exponent block which records the list of exponents vectors (e ..., ey), one such v-vector

corresponding to each coefficient g, in the coefficient block. The order of the integers in the
exponent vectors corresponds to the order of the indeterminates specified in the layout block.

Each block of information is stored as an array (or more specifically in ALTRAN, a block of
sequential locations in a large array called the workspace). The use of sequential allocation of
storage imposes the requirement that the precise ‘width’ of each block of storage be pre-specified.
Thus in the ALTRAN language each variable is associated with a declared layout which specifies
the names of all indeterminates which may appear in expressions assigned to the variable and the
maximum degree to which each variable may appear. The layout blocks are therefore specified by
explicit declarations and the size of each exponent block to be allocated is also known from the
declarations. ALTRAN exploits the fact that the maximum size specified for each individual
exponent e; in an exponent vector e will generally be much smaller than the largest single-precision
integer and bence several exponents can be packed into one computer word. The layout block is
used to store detailed information about this packing of exponents into computer words.

The ‘width’ of the coefficient block is determined by the range of values allowed for the
coefficient domain D. In ALTRAN only multiprecision integers are allowed as coefficients. (Thus
the domain Qfx] is not represented in ALTRAN but since Z(x), the quotient field of Zfx], will be
represented there is no loss in generality). Since ALTRAN uses the array representation of

3-18

multiprecision integers (see section 3.5) the length / (in computer words) of all multiprecision
integers is a pre-specified constant, The coefficient block therefore consists of / computer words for
each coefficient a, to be represented. Finally, a polynomial a(x) is represented by a descripror
block which is an array containing three pointers, pointing respectively to the layout block, the
coefficient block, and the exponent block for a(x).

Example 3.5.

Let A{x.y.z) € Z[x,p.z] be the polynomiai given in Example 3.4. Using the descriptor biock
data structure just described, suppose that the declared maximum degrees are degree 2 in x, degree
3 in y, and degree 4 in z. Suppose further that multiprecision integers are represented using base
8 = 103 and with pre-specified length ! = 2.. Then the polynomial A(x,y,z) is represented as
follows.

A
("
ot
fomr

o

Descriplor

Block
N
{Indeterminates: | ¢ 3 220
| 1
| xpz | 0 -2 213
I |
| Exponents: | 0 5 202
|
| 2 bits, 2 bits, 3 bty 0 4 100
0 -1 g04
Layout 0 ! 000
Block
Coefficient Exponent
Block Block

The layout block illustrated in this example indicates that the information stored in the
actual layout block would include pointers to the names of the indeterminates and also a
specification of the fact that each vector of three exponents is packed into one computer word, with
the exponent of x occupying 2 bits, the exponent of y occupying 2 bits, and the exponent of z
occupying 3 bits. In practice there is alse a guard bit in front of each exponent (to facilitate
performing arithmetic operations on the exponents) so this specification implies that the computer
word consists of at least 10 bits. The coefficient block illustrated here reflects the specification of /
= 2 words for each multiprecision integer although /! = [would have sufficed in this particular
example. [

Implementing Factored Normal Form

The two basic data structures of this section have been described as they apply to the
representation of multivariate polynomials in expanded canonical form. It is not difficult to use
either of these basic data structures for the representation of polynomials in a non-canonical nor-
mal form or indeed in a non-normal form. The case of the factored normal form will be briefly

examined here.

A polynomial P in factored normal form as defined in Definition 3.5 of section 1.3 can be
expressed as a product of fuctors

23) P =I‘f Frl
=1

where a; (1 € i <k) is a positive integer, F; (1 €7 < k) is 4 polynomial in expanded canonical
form, and F; # F; for i # j Using a linked list data structure, the pelynomial P in the product
form (23) can be represented by the linked list

Py g o[—— 1 |l —>..— 1 [a| —+—i

7

—

M"’-ﬁ (——
&)

=~

where each factor F; {1 € ¢ < k) is represented by a linked list as previously described for
polynomials in expanded canonical form. In a system using this scheme all polynomials are
assumed to be in preduct ferm and if A is a single polynomial factor in expanded canonical form
then it is represented by

‘linked list for A as previously described’

Thus we have simply tntroduced more structure on top of the original linked list data structure for
representing multivariate polynemials.

A similar scheme can be used to represeat the product form {23) bused on a descriptor block
data structure. Indeed the ALTRAN system uses the factored normal form as its basic polynomial
form. In ALTRAN the polynomial P in the product form (23) is represcnted by a formal product
Hlock which is an array contulning one pointer to each factor Fi (1 €1 € &) and an addilional
pointer to a corresponding array of the powers a; (1 </ < k). Thus the representation of P is

P

—5Fk [

where each factor F; (I i k) is represented by the descriptor block data structure as previously
described for polynomiuls in expanded canonical form.

Rational Functions

A field D(xy, . . ., x,) of rational functions has a natural representation as the quotient field
of a polynomial domain D{x, x,]. In this point of view a rational function is represented by
a pair {numerator, denominator) where each of numerator and denominator is a representation of a
polynomial lying in the domain Dix ..., x,]. Using either a linked list data structure or a
descriptor block data structure for polynomials, a rational function is thus represented by a node

of pointers to the numerator and denominator polynomials. As discussed in section 3.4 a rational
function would usually be represented with numerator and denominator relatively prime and with
unit normal denominator. In addition, a system would provide one or more {(possibly independent)
choices of normal forms for the numerator and for the denominator.

A slightly different representation for rational functions is obtained by a trivial generalization
of the formal preduct representation described for polynomials. In the formal product

P=If F/

i=1

if we allow the powers a; to be negative integers as well as positive integers then we immediately
have a data structure for representing rational functions. No change is required in the data
structures already described for formal product representation. This is the data structure used for
rational functions in the ALTRAN system. In this formal product represeatation, the numerator
consists of all factors with positive powers and the denominator consists of all factors with negative
powers. In the ALTRAN system the denominator is always a unit normal polynomial and various
options are available for choosing among the various normal forms discussed in section 3.4.

Power Series

We are considering in this bock univariate power series lying in a domain D[{x]] where the
coefficient domain D is one of the domains previously discussed (i.e. integers, rational numbers,
polynomials, or rational functions). A data structure for power series representation is therefore an
extension of data structures previously discussed.

If the TPS representation of power series is used, the TPS

j apx+ 0@ 'tYy

has a natural representation as a linear list

@o @ ...,ap.

This linear list is easily implemented as either a linked list or an array of pointers to the
coefficients ay in their appropriate representation. As a linked list the ‘sparse representation’
would be natural (i.e. with only nonzero terms stored) while as an array the ‘dense representation’
would be used. In the dense representation the truncation degree r is implicitly specified by the
fact that there are t +1 elements in the linear list, while in the sparse representation the value of ¢
must be stored as an additional piece of information.

The non-truncated representations of power series can be implemented using a similar data
structure. The power series

afx) = io ke k

can be represented as a linear list
(@pay ... a-y fdk))

3-21

where the number / of coefficients which have been explicitly computed may increase as a compu-
tation proceeds. Again this linear list can be implemented using either a linked list or an array of
pointers, with all but the last element pointing to explicit representations of coefficients and with
the last element pointing to a representation of the coefficient function f(k). We note that in gen-
eral the representation of the coefficient function f4k) will involve expressions that are much more
complicated than we have so far discussed.

Representations for extended power series are obtained by straightforward generalizations of
the representations for ordinary power series. As noted at the end of section 3.4, the representa-
tion of an extended power series a(x) with coefficients lying in a field F can be viewed as the
representation of an ordinary power series plus an additional piece of information specifying the
power of x by which the ordinary power series is to be ‘divided’. Thus if a particular data struc-
ture is chosen for ordinary power series, a data structure for extended power series is obtained by
allowing for the representation of one additional (single-precision) integer.

3-22

BIBLIOGRAPHY FOR CHAPTER 3

W. S. Brown, On computing with factored rational expressions. Proc. EUROSAM 1974, ACM
SIGSAM Bull. 8(3), Aug. 1974, pp. 26-34.

B. F. Caviness, On canonical forms and simplification. J. Assoc. Comput. Mach. 17(2), Apr.
1970, pp. 385-396.

A. D. Hall, Jr., The Altran system for rational function manipulation —— A survey. Comm.
ACM 14(8), Aug. 1971, pp. 517-52t.

A. C. Hearn, Polynomial and rational function representations. Technical Report UCP-29, Univ.
of Utah, July 1974.

E. Horowitz and S. Sahni, Fundamentals of Data Structures. Computer Science Press, Potomac,
Maryland, 1976.

D. E. Knuth, The Art of Computer Programming, vol. 1: Fundamental Algorithms, 2nd ed.
Addison-Wesley, Reading, Mass., 1975.

J. Moses, Algebraic simplification: A guide for the perplexed. Comm. ACM 14(8), Aug. 1971, pp.
527-537.

A. C. Norman, Computing with formal power series. ACM Trans. Math. Software 1(4), Dec.
1975, pp. 346-356.

3-23

EXERCISES

3-1. For each of the following expressions try to find the simplest equivalent expression. As a
measure of ‘simplicity’ one could count the number of characters used to write the expression but a
higher level measure such as the number of ‘terms’ in the expression would suffice.

@ axy)=(xI-xp +0)+E1+DE -y + D) (03-2-9 -5 +
i+ 2y +).
(b} b(x,y)=(x—y)(x9+x8y+x7y2+x6y3+x5y4+x4y5+x3yﬁ+x3:7+xy8+y9§.

(e} clxy)= %;-(;:ﬁl where b(x.)) is the polynomial defined in part (b).
e* cosx + cosx sin*x + 2cos?x sin2x + cosx
(d) dix) = 2 7. <ix
- x“e
_ e *cosx + cosx sin’x + cos’x
x %X~ x2ex ‘

3-2. Determine whether or not each of the following expressions is equivatent to zero.

(a) alxy)= 322’: T+t T T 32x+y
Ipxc~y9 x7+xy +xp i+ xY T+t 4y Iy x —xy+y3)
= x =y _x2+y2

Axi+xy +y3 x6-y0
- x —y x2—xp + p?
® b(x'y)_xs‘%x";.;+x:’yz-!-)c2;113+xy4-2-yS-- x{’—y6)

(e) colx) = 16sin"'(x)+ 2 cos "1(2x) — 3sinh_'(tan(—;—x)) .

(d) dix)=16 cosa(x) cosh(%x)sinh {x) — 6 cos(x)sinh (%x) -6 cos(x)sinh(—-;-—x}

1, L

—cos(x)(e 2 4 el)l —e2) .

3-3, In this problem you will show that, in a certain sense, if the zero equivalence probiem can be
solved for a given class of expressions then the general simplification problem can alsc be solved.
Let E be a class of expressions and let f be a normal function defined on E. Suppose there is an
algorithm A which will generate all of the syntactically valid expressions in the class E. in
lexicographically increasing order. (i.e. Algorithm A generates all syntactically valid expressions
containing / characters, for / = 1, then / = 2, then / = 3, etc. and the expressions of a fixed length
{ are generated in increasing order with respect to some encoding of the characters).

(a} Define a simplification function g on E in terms of normal function f and algorithm
A such that g is a canonical function and moreover the canonical form g{a) of any
expression @ € E is the shortest expression equivalent to a.

(b) If E is a class of expressions obtained by performing the operations of addition and
multiplication on the elements in a quotient field Q(D) of an integral domain D then
the usual canonical function (i.e. ‘form a common denominator’ and ‘reduce to
lowest terms’) is not a simplification in the sense of the function g of part (a), Illus-
trate this fact for the field Q of rational numbers by giving examples of expressions

a a a3 aj . .
of the form b_l + -b—z- + T (where @4, b; € Z and ~ is in lowest terms, for i =
1 2 3 i
1,2,3) such that the ‘reduced form” of the expression requires more characters for its

3-24

representation than the original expression.

3-4. Consider the four forms for rational functions discussed in section 3.4: Sactored/ factored,

Jactored/expanded, expanded/factored, expanded/expanded, with numerator and denominator
relatively prime in each case.

{(a) Put each of the expressions a(x.y), b(x,y), and c(x,y) given in problem 3-1 into each .
of the above four forms. Similarly for the expressions a(x,y) and b(x,y) given in
problem 3-2,

(b) Which (if any) of these four forms is useful -for performing ‘simplification’ as
requested in problem 3-1? for determining ‘zero-equivalence’ as requested in prob-
lem 3-2? o

3.5, Consider the problem of computing the functions f{x.y) and g(x,y} defined by;

= 8a 3
fe.y) = ax ax '

_ da 3b
Blxy)y = 3y

(where @ denotes partial differentiation) where a and b are the rational functions
(0x% % + 13x = D EBxi= 732
GxY2 4 0 x —)P +)7
p = 13073+ 752y +8lxy —x +19 -
Gxy) - p) (x +)°
Perform this computation on a system (or systems) available to you using several different choices
of normal (or non-normal) forms available in the system. Compare the results obtained using the

various choices of form: in terms of (i) processor time used, (ii) memory space required, and (iii)
compactness (i.e. readability) of the output.

a =

3-6. The TPS representation of a power series appears to be similar to a polynomial but must be
distinguished from a poiynomial. Consider the two power series defined by

a(x)=io(—1)"x* [= 1-1+x
b(JC)-'*E‘m Lok { Cx}r

o k!
(a) The TPS representations of a(x) and b(x) with truncation degree { = 3 are

s

ax)=1=-x +x2=x3 4+ 0O(x%,

E(x) =1+x +—2Lx2+%x3+ 0{x4).

Let p{x) and q(x) be the corresponding polynomials defined by

px)=1-x +x2-x3,

= Loa 1 3
qix) l+x+2x +6x.

What should be the result of performing the TPS muitiplication i(x)l;(x)‘.’ What is

3-25

the result of performing the polynomial multiplication p(x) q(x)? What is the
correct power series product a(x) b(x) expressed as a TPS with truncation degree ¢
= 67

1
p(x)

. 1 .
function m What is the result of performing the TPS division
L9 What is the correct power series reciprocal ?

H
ax) a(x)

(b) Let a(x) and p(x) be as in part (a). The result of performing is the rational

3-7. Consider the problem of computing the power series solution of a linear ordinary differential
equation with polynomial coefficients:

A
PR)Y+ - o i)y + polx)y = rlx)

J :
where pi(x), 0 €/ < mw and r(x) are polynomials in x and where y denotes the unknown func-
tion of x, Show that if this differential equation has a power series solution

©

yx) = yex*
k=0
then the power series coefficients can be expressed, for k » K for some K, as a finite linear
recurrence:

Vi =udk) -1+ udk)yr—2+ ot ugk)ye—a

where uik), 1 <7 < n, are rational expressions in k. Thus an NTPS representation for the solu-
tion y(x) is possible with the coefficient function fy(k) specified by a finite linear recurrence (and
with the first k coefficients specified explicitly).

el
3-8, Show that a power series a(x) = 2 agx* has an NTPS representation in which the
k=0
coefficient function can be expressed, for & > K for some K, as a finite linear recurrence with con-
stant coefficients:

Ay =uag—| tuyag—2+ - fupag-,

if and only if a(x) can be expressed as a rational function of x. (See section 2.8),

3-9. Generalize the results of problem 3-7 and of problem 3-8 into statements about the NTPS
representation of extended power series rather than just ordinary power series.

3-10. Using a language in which linked list manipulation is convenient, implement algorithms for
addition and multiplication of indefinite-precision integers (i.e. multiprecison integers in linked list
representation). Base your algorithms on the methods you use to do integer arithmetic by hand.

3-11. Assuming that the algorithms of problem 3-10 are available, implement algorithms for addi-
tion and multiplication of multivariate polynomials in expanded canonical form with indefinite-
precision integer coefficients. Use the linked list data structure described in section 3.6, Base your
algorithms on the methods you use to de polynomial arithmetic by hand.

3-12. Assuming that the algorithms of problems 3-10 and 3-11 are available, implement algorithms
for addition and multiplication of multivariate rational functions in expanded/expanded form (i.e.
in the expanded canonical form of Definition 3.6) with indefinite-precision integer coefficients. Use
either of the linked list data structures for rational functions described in section 3.6. You will
need a recursive implementation of Algorithm 2.3 (or some other algorithm for GCD computa-
tion).

3-26

3-13. Assuming that the algorithms of problem 3-12 are available, implement algorithms for addi-
tion and multiplication of univariate power series with coefficients which are multivariate rational
functions. Use the TPS representation implemented as a linked list.

3-14. Choose a specific representation for cxtended power series and implement algorithms for
addition, multiplication, and divisicn of extended power series with coefficients which are mul-
tivariate rational functions. You will need to have available the algorithms of problem 3-12 and
you may wish to have available the algorithms of problem 3-13.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

