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ABSTRACT

We describe in pseudocode the main routine of a Prolog
interpreter. The algorithm is developed in several steps.
Initially a search algorithm for trees is described. Af ter
a review of the Prolog theorem prover, the tree-search algo-
rithm is applied to the search space of the theorem prover.
Several inefficiencies of the result are then eliminated by
the introduction of proof trees and structure sharing.

Introduction

There is no scarcity of publications dealing with Pro-
log implementation. Some of these contain expositions of
structure sharing [3,12]. Other papers [11l] treat memory
management or compare the relative advantages of structure

sharing versus copying [3,10]. In so far as these
publications are <concerned with interpretation rather than
compilation, the algorithm used is taken for granted. Thus

a prospective implementer has to unearth it from the assem-
bler or FORTRAN code of an existing interpreter or has to
reinvent an algorithm from scratch.

The present paper decribes the outline of a basic
interpreter for Prolog programs. This should be useful in
itself, as we expect that many more Prolog interpreters will
be written. Moreover, we were able to derive the algorithm
in a step-wise fashion from a basic tree-search algorithm
which is easy to verify.



A search algorithm for trees with unspecified nodes

Our starting point 1is a depth-first, left-to-right
algorithm for traversing a tree in search of a terminal node
having some given property P. At this point we do not make
any assumptions about the nature of the nodes of the tree.

We do have to make an assumption about the way the
relation is specified between a node and its descendants and
also about the specification of the order among descendants.
We do this in the style of "data abstraction": we posit the
availability of a procedure son(x,y) which, for a given node

X, exhibits (after being initialized) the following
behaviour on successive calls. If x has n sons, then
son(x,y) will return TRUE the first n times it is called and
FALSE forever after. The first n times y 1is assigned

successively the n sons. This procedure may therefore be
called a generator of sons. Similarly, father(x,y) returns,
for given x, FALSE if node x is the root and TRUE otherwise.
In the latter case y is assigned the father node of x. Note
that we have avoided any assumptions about data structures
representing trees; hence the earlier reference to "data
abstraction"”.

We pursue an assertion-oriented [5] development of the

algorithm. The minimum number of variables required seems
to include one indicating how far the tree has been
searched. We call it "en", for T"current node". Here

"assertion" is used in Floyd's sense: it is an assertion
about the wvalues that variables have at a particular point
in the execution of an imperative program.

The following assertion is useful because it applies to
the initial situation as a special case, where no part of
the tree has been searched.

A: no terminal node to the left of the current node has
property P

The assertion has been labelled "A". "To the 1left of x"
means: occurring in a subtree rooted in an older sibling of
X or in an older sibling of an ancestor of x.

B: all terminal nodes to the left of all nodes still in
the son generator of the current node do not have pro-
perty P

C: B holds; furthermore, the son generator of the current
node is empty

The following program may be verified with respect to
the assertions described. This verification is in the sense
of Floyd: it means that, whenever execution reaches a label,
the corresponding assertion, as described above, holds.



For example, if, in the initial situation where no part
of the tree has been searched, we set the current node to
the root, then assertion A holds. This implication is
expressed in the program as:

ch := root
A:

Another example: if C holds and if the current node has x as
father, then, after making x the current node, B holds.
Again, this implication is expressed by the program; this
time by

C: if father(cn,x)
then cn := x; goto B

The entire program is listed below:

ch := root
A: if P(cn)
then halt with success
else initialize son() for cn; goto B
fi

B: if son(cn,x)
then {x is the next son of cn}
cn := ¥x; goto A
else {all sons of cn have been tried}
goto C
fi

C: if father(cn,x)
then {x is the father of cn}
cn := x; goto B
else {cn is the root}
halt with failure
fi

figure 1
The basic tree-search algorithm

Note that we retain some instructions "goto B" and
"goto C" which are not needed for a computer executing the
algorithm. But these are necessary if we are to be able to
read the program as a system of logical implications true

about the set of computations to be performed by the algo-
rithm.

An efficient way to implement the "father" operation is
to Kkeep on a stack the sequence of nodes from the root to
the current node. Then the father of the current node is
obtained by popping the stack. If we want to use this



method, then the current node has to be pushed on the stack
when its son becomes the current node. See figure 2.

initialize the stack at empty
cn := root
A: if P(cn)
then halt with success
else initialize son() for cn; goto B
fi

B: if son{(cn,x)
then {x is the next son of cn}
push cn; cn := x; goto A
else {all sons of cn have been tried}
goto C
f£i

C: if stack nonempty
then pop stack into cn; goto B
else {cn is the root}
halt with failure
fi

figure 2
The stack version of the ABC algorithm



The theorem prover on which Prolog is based

A Prolog program is a set of definite clauses, i.e.
Horn clauses which are not goal statements. For a given
program P and goal statement G, a derivation is a sequence
G(0), G(l1), ... of goal statements such that G(0)=G and

G(i+l) is obtained from G (i) by resolution between a clause
of P and G(i).

Notice that often a given derivation G(0),...,G(n) can
be extended in several different ways. This is usually true
even if we restrict (as we will do) resolution to unifica-
tion between the conclusion of the definite clause and one
particular ("selected") goal of G(n). The set of all
derivations thus restricted and starting at G can be
arranged in the form of a tree of goal statements having the
property that the set of all paths from the root is exactly
the set of all possible derivations using most general
unifications. This tree 1is called the search tree. See
[1,4] for correctness and completeness properties of the
search tree.

The next step in the development of the interpreter is
the following observation:

An interpreter for a Prolog program P and initial
goal statement G is obtained by applying the ABC
algorithm to the search tree for P having G as
root.

The resulting interpreter is shown in figure 3.



where

initialize the stack at empty

cn := initial goal statement

if cn is the empty goal statement
then halt with success

else initialize son() for cn; goto B
f£i

if son(cn,x)

then push cn; cn := x; goto A
else goto C

fi

if stack nonempty

then pop stack into cn; goto B
else halt with failure

fi

son(cn,x) is defined as

while nextclause(cn,y)
do if head of y unifies with the selected
goal of c¢n
then x := goal statement obtained by
resolving y with cn
return(true)
fi
od
return(false)

figure 3
The stack-based ABC algorithm
applied to a search tree



Structure sharing and proof trees

The ABC algorithm for searching a tree has to store the
sequence of nodes between the root and the current node.
When the tree is the search tree described in the previous
section, this sequence 1is typically enormously redundant.
The reason is that in the search tree every node contains a
complete description of a goal statement, without reference
to any other data. Yet, given any node 1in a search tree
(i.e. any goal statement), each of its sons can be specified
by means of a small amount of data describing the resolution
that generated the son concerned.

A proof tree is a data structure which stores in a
non-redundant way the path in a search tree between the root
and a current node. Consider for example the program

P<-Q &R &S &T

Q <-U
U <-V
\'

With <- P as initial goal statement, the search tree for
this program is

<~ P
I
I
<-Q &R &S &T
|
I
<-U&R&S&T
I
I
<-V&R&S&T
|
I
<-R &S5 &T

The proof tree for the path in this search tree is

(P}
@ @ & W

figure 4
A proof tree



We may assume without loss of generality that the ini-
tial goal statement (the root of the search tree) has a sin-
gle goal with the distinguished predicate "goal™. This
ensures that the ©proof tree has a single root. The proof
tree for a path from the root of a search tree is defined as
follows.

Let p = g(0),9(1l),...,9(n-1),g9(n) be a path in a search
tree, where g(0) is the root. If n=0, then the proof tree
for p contains only the root and it is g(0). Let n>0, let G
be the selected goal of g(n-1), and let C be the clause that
was resolved with g(n-1) (unifying the head of C with G) to
give g(n). Let us call T the proof tree of g(0),...,g(n-1).
The proof tree for g(0),...,g9(n) is obtained from T by
attaching as sons to G (which must be a terminal node of T)
the goals of the right-hand side of C and by applying
throughout T and these goals the most general unifier of G
and the head of C.

The proof tree avoids redundantly repeating goals from
one goal statement to the next. Ultimately, storage of
goals in proof trees will be avoided altogether. To every
nonterminal node of a proof tree there corresponds a unifi-
cation. The basic idea of structure sharing [2] 1is to
represent a proof tree by storing only records of these
unifications and to refer wherever possible to the program
for the structure of clauses, goals, and terms. To help
explain this we show an example of what we call a Ferguson
diagram for a proof tree (due to R.J. Ferguson [6]). Such a
diagram shows explicitly the unifications and the structures
which are borrowed ZIicm the program. Figure 5 shows the
Ferguson diagram for the same example we used before.

(P
------- NP,
R\ [S\ [T

—— onpts  p—- w—— o— o—

figure 5
A Ferguson diagram

avads




Calls are upper half circles. Headings are lower half
circles. A unification is represented by an upper half cir-
cle meeting a lower half circle. A procedure connects a
heading with zero or more calls.

In general, a Ferguson diagram consists of an instance
of the 1initial goal statement together with instances of
program procedures. Structure sharing avoids redundancy 1in
the representation of two different instances of the same
procedure by representing each procedure by a pair consist-
ing of a pointer to the procedure in the program and an
environment, that is, a vector of substituting terms, one
for each variable in the procedure. Each substituting term,
if composite, is itself a pair: the first component points
to the occurrence of the term in the program of which the
substituting term is an instance; the second points to an
environment where substitutions for ©possibly occurring
variables in the program term can be found.

Thus, in structure sharing there is a strict segrega-
tion in the information specifying an instance of procedure,
call, or term. On the one hand there 1is the "structure",
obtained from the program; this is also called " (pure) code"
or "skeleton" (lacking the "flesh" of the substitution). On
the other hand there are the substitutions, one value for
each variable. For the representation of each of these one
also uses structure sharing.

Consider for example the procedure
subl (x,y) <- app(u,x,v) & app(v,w,y)

The environment of this procedure is a vector of 5 pairs,
one each for the variables x,y,u,v,w.

We can now be more specific about the method for stor-
ing a proof tree. We store each unification in a "frame".
Each frame records a unification (hence corresponds to a
full <circle of the proof tree). Each frame has the follow-
ing components:

CALL: A pointer to the occurrence of the call in the code
of which the call in the proof tree is an instance.

FATHER: A pointer to the environment where the substitutions
for the variables in CALL may be found.

PROC: A pointer to the occurrence in the code of a pro-
cedure. The heading which participated in the uni-
fication is an instance of this procedure.
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ENV: An environment for PROC,

The reasoning behind this is simple: a unification happens
between two participants. One 1is determined by CALL and
FATHER; the other by PROC and ENV. Notice that, by having
PROC point to an entire procedure rather than just the head-
ing involved in the unification, we have included 1in the
representation not just the full circles of the proof tree,
but also the upper half circles.

The Ferguson diagram in figure 6 illustrates the four
components of a frame recording just one unification U.

(2N
3 2 /5N

@ FATHER
CALL
- wnificakion rewrd ed
ENY
PROC
v
figure 6

Ferguson diagram illustrating the components of a frame

As an illustration we show the growth of the proof tree
for the following program and initial goal statement.

l{app(9{nil},y,y)}

2{app(7{u.x},y,8{u.z}) <- app(x,y,2)}

3{subl(x,y) <- app(u,x,v) & app(v,w,y)}

4 {goal (x,y) <- subl(5{10{a}.x},6{y.11{nil}})}
<- goal(x,y)

Let "app" mean "append", 1let "subl" mean "sublist". To
obtain the Prolog program, remove all numerals and braces.
A number refers to the expression enclosed by the matching
pair of braces of which the opening brace immediately
follows the numeral. For example 10 refers to "a", 5 refers
to "a.x". These references are needed in the proof trees
shown below.
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x Y
Eo
9o
4
TN
qu v w
E 5
e
3
o pp “Fp
figure 7

The proof tree in an early stage

The numeral shown in the "crotch" of a procedure refers to
its code in the program. Entries in the environment are

shown as p/e where p refers to an expression in the program
and e is an environment elsewhere in the proof tree.

figure 8
After one more unification
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figure 9
After another unification

P
figure 10 q
Completed proof tree. E (4 7
Read off the answer: x=nil, y=a. 4
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A useable interpreting algorithm

As we observed before, the proof tree is a representa-
tion of a path from the root in the search tree. Extending
the path in the search tree by one node (i.e. one goal
statement) extends the corresponding proof tree by one full
circle and zero or more upper half circles. To avoid becom-
ing confused between nodes in the search tree and nodes in
the proof tree, one should realize that to one node in the
search tree (i.e. one goal statement) corresponds the
frontier of upper half circles in the proof tree. We
claimed that the proof tree not only represents that single
goal statement but also the entire sequence of predecessors.
With the information we included in the frames so far this
is only true if we disregard the effects of substitutions.
In this section we will include additional information in
each frame of a proof tree for a path so that from it one
can reconstruct proof trees corresponding to initial
segments of that path.

Let us consider again the ABC algorithm using a stack
to represent the sequence S of nodes of the search tree
(i.e. goal statements) between the root and the current
node. The operations the algorithm performs on this stack
is to push (resulting, say, in S1) and to pop (resulting,
say, in S2). Given that S is a proof tree we ask for a con-
venient storage representation of it which allows us to
obtain efficiently the proof trees representing S1 and S2.
The answer is that S should be a stack of frames and that Sl
is obtained from S by a push operation and S2 by a pop
operation. It is important not to confuse the stack of goal
statements in the previous version of the interpreting algo-
rithm with the stack of frames in the following version.
Now that we are committed to the stack representation of
proof trees, we will refer to its frames as stack frames

Steps in the execution of a Prolog program are most
naturally measured by extensions to the proof tree where one
of the calls (upper half circles of the proof tree) is
selected and made into a full circle by attaching a pro-
cedure to it. This adds one internal node, hence one stack
frame to the proof tree. Most Prologs always select the
leftmost call. Ferguson observed [6] that, with this selec-
tion, the order of the stack frames in the stack is the one
obtained by preorder traversal [8] of the full circles of
the proof tree.

The interpreter acts on two categories of data. One is
the code, the internal representation of the program. This
does not change during execution, at least not in pure Pro-
log (i.e. in the absence of extra-logical facilities for
adding or deleting clauses). The other category of data
does change during execution. It comprises the stack
(representing the proof tree) which changes both in size and
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content. It also comprises what is called the state [3].
This is constant in size and variable in content. It plays
the role of the "current node" in the earlier versions of
the ABC algorithm.

Let us now determine the components of the stack frame,
which has to store the information concerning a unification.
This information was already identified in the ‘'frame' of
the previous section. The stack frame also has to contain
data which allow the proof tree to be restored to the state
in which it was before the unification. Hence the stack
frame is an elaboration of the frame, with the following
components:

CALL: A pointer to the occurrence of the call in the
code of which the call in the proof tree is an
instance.

FATHER: A pointer to the stack frame of which the pro-
cedure contains the call of CALL.

PROC: A pointer to the occurrence of a procedure in
the code. The heading which participated in
the unification is an instance of the heading
of this procedure.

ENV: An environment for PROC.

RESET: The reset 1list, i.e. a list of variables in the
proof tree that obtained substitutions as a
result of the unification.

NEXT-CLAUSE: A generator for clauses which are candidates

for attempts at unification with the call of
CALL,

The RESET component of the stack frame is obviously neces-
sary to restore the previous state. FATHER is changed from
a pointer to an environment to a pointer to the entire stack
frame containing that environment. In this way one can
still get the environment, but one also has the remaining
information which is required for restoring the previous
state. Finally, NEXT-CLAUSE is included to facilitate the
implementation of the son generator.

Let us now discuss the components of the state. Only
at one point in the ABC algorithm do all components of the
state enter into play. This is where a new son has Jjust
been found. When the tree 1is known to be a resolution
search tree, the corresponding point in the algorithm is
where a unification has just been successfully completed.
The relevant part of the search tree is thus:



e 0 E
\7'___< iew- frame

0

- proc

figure 11
'All components of .the state in use



The next version of the algorithm is obtained from the
previous one by taking into account the consequences of our
chosen representation of the path in the search tree as a
stack of stack frames and of the current node by the state.
The following notes should clarify the transition to the
next version of the algorithm.

Instead of testing whether the current node cn 1is the
empty goal statement, we call a boolean procedure "select"
which returns FALSE if the proof tree contains no wununified
call (i.e. the goal statement is empty) and TRUE otherwise.
In the latter case a pointer to such a call is returned in
the argument. At label A of the program not every component
of the state necessarily has a meaningful value. Those that
do are indicated below.

<%-C&er-framw4
cuNr - env

ULYr - Pr‘o C

figure 12
Components of the state at label A

As before, "son" is the generator of sons in the search
tree. In the current context, finding a son translates to
finding a procedure whose head matches the selected call
("curr-call"), performing the wunification, initializing a
clause generator, and returning a newly created frame
("new-frame") recording the unification. "Son" also returns
in curr-proc the procedure it found matching curr-call,
Conceptually the son 1is not Jjust the new frame, but the
entire goal statement implicit in the proof tree which is
now represented by the stack together with curr-frame and
new-frame. Just after "son" has returned TRUE, the state is
as indicated in figure 11, Just after "son" has returned
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FALSE, the state is as indicated in figure 13.

AV - fv‘w
QUTr - énv

S - m

- call

— /.,.\ X

figure 13
The state just after failure to find a son

At X no matching procedure head was found. This means that
in the search tree the father of the current node becomes
the current node. To effect this, the proof tree has to be
restored to the state in which it was before the unification
recorded in curr-frame was performed.

The function "unifies" unifies curr-call (with curr-env
as environment) with the head of curr-proc. It creates the
environment new-env for curr-proc and may place bindings in

it. "Unifies" also creates the reset list and makes it
accessible in res-1list.
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curr-proc := initial goal statement
{disguised as procedure
goal <- ...

curr—-env := create-env(curr-proc)
curr—frame:= create-frame (curr-env)
A: if select(curr-call)
then {the current goal statement is nonempty;
curr-call is the selected goal

}
next-clause := create-cg(curr-call)
goto B

else halt with success

fi
B: 1if son(next-clause,curr-call,curr—env
(new—-frame,curr-proc

)

then push curr-frame
curr—-frame := new—-frame
curr—-env := ENV(new-frame)
goto A

else goto C

fi

C: 1if stack nonempty

then pop stack into temp-frame
undo bindings recorded in RESET (temp-frame)
next-clause := NEXT-CLAUSE (temp-frame)
curr-frame := FATHER (temp-frame)
curr-call := CALL (temp-frame)
curr—-env := ENV(curr-frame)
curr-proc := PROC(curr-frame)
goto B

else halt with failure

fi

figure 14
The interpreter using proof trees implemented as a stack
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function son(next-clause,curr-call,curr-env
(new-frame,curr-proc
): boolean
while next-clause(curr-proc)
do if unifies(curr-call,curr-env
,curr—-proc
;new—-env,res-1list
)
then create new-frame with
CALL = curr-call
PROC = curr-proc
FATHER = curr-frame
ENV = new-env
RESET = res-1ist
NEXT-CLAUSE = next-clause
return (TRUE)
fi
od return(FALSE)

function select(curr-call): boolean
curr-call := first-call(curr-proc)
while curr-call = nil
do curr-frame := FATHER (curr-frame)
if curr-frame = nil
then return(FALSE)
else curr-call := next-call (CALL (curr-frame))

fi
od
curr—-proc := PROC(curr-frame)
curr—env = ENV(curr-frame)

return (TRUE)

figure 15
Auxiliary functions for the interpreter
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