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A SECOND-ORDER METHOD FOR SOLVING THE
CONTINUOUS MULTIFACILITY LOCATION
PROBLEM+

PH CALAMAI and A.R. CONN

ABSTRACT

A unified and numerically stable second-order approach to the continuous
multifacility location problem is presented. Although details are initially given for
only the unconstrained Euclidean norm problem, we show how the framework can
be readily extended to /, norm and mixed norm problems as well as to constrained
problems.

Since the objective function being considered is not everywhere differentiable
the straightforward application of classical solution procedures is infeasible. The
method presented is an extension of an earlier first-order technique of the authors
and is based on certain non-orthogonal projections. For efficiency the linear
substructures that are inherent in the problem are exploited in the implementation
of the basic algorithm and in the manner of handling degeneracies and near-
degeneracies. The line search we describe also makes use of the structure and
properties of the problem. Moreover, the advantages that we derive from the
linear substructures are equally applicable to small-scale and large-scale problems.

Some preliminary numerical results and comparisons are included.

1. INTRODUCTION

Since the 17th century, when Fermat first posed a single facility location problem involving
Euclidean distances, the issue of locating an object according to some set of rules and criteria has
recieved a great deal of attention in the literature. The bibliographies of Lea [11] and Francis and
Goldstein [7] together represent well over a thousand references to these problems.

In general, location problems ask where some object or objects should be placed to improve
a measure of the performance of the system in which they interact. Here, we consider a prototype
location problem: the static and deterministic formulation of the minisum multifacility location
problem involving /, distances. The objective involves locating a set of new facilities (objects) in a
system of existing facilities to minimize the sum of weighted I, distances between the new and
existing facilities and among the new facilities.

One difficulty with the /, distance problem is that the objective function is not everywhere
differentiable. In fact, nondifferentiability occurs whenever any two facilities coincide. The
straightforward use of gradient reducing procedures to solve this problem is therefore inapplicable.
However, various methods that circumvent this nondifferentiability have been used. For example,
linear programming methods (see [15] and [21]) and gradient reduction methods on approximating
functions (see [20]) have been used to solve the rectilinear distance (/;) location problems. For
Euclidean distance (/3) problems, modified gradient reducing methods have also been used (see [6]

t This work was supported in part by Natural Science and Engineering Research Council of Canada Grant No.
A8639.



and {12]), as have subgradient methods, pseudo-gradient methods and heuristic methods (see [3],
[1] and [19]).

In this paper we present a projected Newton method for solving the I, distance location
problem and we describe an implementation of this method that takes full advantage of the struc-
ture of the problem and its graphic interpretation. This second-order technique is a natural exten-
sion of the first-order projected steepest descent algorithm reported in [2]. A similar extension,
developed independently by Overton, is presented in [17]. In his paper, the quadratic convergence
of a projected Newton method is proved and a special line search is described.

2. PROBLEM STATEMENT
The multifacility minisum problem involving costs associated with Euclidean distances

between facilities in RY can be stated as: Find the point x* T={x*{, ..., x*J} in R?" to minim-
ize
n
fE)y = % vulxji—xill + 2 2Zwillxi—pill. 2.1
1<i<k<n j=1i=1
where
n A number of new facilities (NF’s) to be located.
m A number of existing facilities (EF’s).
ij=(xj1 s qu)A vector location of NF; inRY, j =1, ..., n.

PiT=(Pi1 s p,-q)Avector location of EF; inR%, i =1, ..., m.

vjkA nonnegative constant of proportionality relating the /, distance between NF;
and NF}, to the cost incurred, 1 < j <k <n.

wﬁ_A_ nonnegative constant of proportionality relating the /; distance between NF;
and EF; to the cost incurred, 1< j<n, 1 <i <m.
| xj —xk || = (i | Xje = Xke | HI/2A 1, distance between NF; and NFg,
c=1
1€j<kgn

| xi =pi|l = (él | xje =pic| 21241, distance between NF; and  EF,
Py

1€jgn 1igm.

If we randomly collect all the nonzero vj constants into an ordered set where the first
member is called aj and the last member is called a, and then randomly collect all the nonzero
wj; constants into an ordered set where the first member is called a,4+; and the last member is
called o, , then, if we define the index set M = {1,. .., 7}, problem (2.1) can be restated more

conveniently as
ce . _ T
minimize fey= 2 | Afx —b;| (2.2)
iEM

where the ¢ Xgn matrix A/ and the g X1 vector b; are defined by

AT = [0 ;I 0y @I 03] i=1,...,71



bj = (a; +@;)ppm i=1..,7

and

- - i=1,...,7n
0 i=qn+1,...,7

I isa g¢gXgq identity matrix

0; is a zero matrix of dimension ¢ Xg (j* —1)
02  is a zero matrix of dimension g Xg (k* —j* —1)
03  is a zero matrix of dimension ¢ Xgq (n —k*)

J*¥ = j where o; = vjy or a; B wj

{ k where i = Vji

k* = .

j+1 where o; ® wj
" an arbitrary constant where ;= V j
"= i where a ;= w

3. ANALYSIS

3.1 Introduction
One difficulty in solving problem (2.2) arises because the convex objective function f(x) is
not everywhere differentiable. If we let

rix) = Afx -b; VIEM

then the objective function can be written as

foy= % )Ilri(X)II + 2 ol 3.1.D)

iEMN i€ (x)

=f@+ 3 Inel.

i€l (x)

With a proper choice of the index set /. (x) we can guarantee that the function f~ (x) is clearly
differentiable in the neighbourhood of x and that the remaining expression contains all the
nondifferentiable (and near-nondifferentiable) terms.

3.2 A First-Order Method

Suppose we wish to minimize the first-order change in the objective function f(x) by moving
in some direction A. This can often be accomplished by minimizing the unit first-order change in
the function f(x) subject to the condition that the first-order change in the remaining terms
f ri(x)}|| , i €1(x) remain zero. That is, we solve



miniﬁnize hlv f(x)
subject to Afr =0 i1 (x) 3.2.1)

(Notice that we are able to take advantage of the linear substructure of this problem in the con-
straint terms.)

The solution to this problem yields the direction
h = —yPVf(x) (3.2.2)
where P is the orthogonal projector onto S 1, S is the space spanned by the columns of

A; i€I{x)_and >0 is chosen to satisfy the bound on the norm of Ak Thus, for
h =—~yPVf(x)# 0,g = Vfand X sufficiently small, we have

S +AR) = f(x) = AgTh + 00\
M PYS@)| +00Y (3.2.3)
<0 .

If PV j: (x) =0 then Vv f~ (x) must lie entirely in S (in this case we call the point x a dead
point; see § 3.4). Letting A = [A4;, - -+ A;] where I {x) = {iy - - i;} and ay4; = A; i €1 {x)
then, assuming A is full rank, Vf(x) can be uniquely expressed as

Vfx)

Au uT=[u,-1T--- uitT]
(3.2.49)

I

Z,'u,'.
i€l (x)

(The vector u is called the Lagrange or dual vector; see § 3.4.) Then, for any choice of A, we have
RTVfG)+ 2 | Ak
i€lg

X T )

i€l
> [u,TZ Th+a; | 40| ] (3.2.5)

i€l

2

i€l

Sx+M)— flx)=A

+ 0(A?

+

A

ri(x ) TA—[Th

2
B R

u,'TZ,'Th + a;

+

where Io={ i € I{x)| | ritx)|l =0} and I;=1T(x)\/o. If, under these circumstances, there
exists an index / €I (x ) such that || u;||] > a; we take as our descent direction

hy = —yPi A (3.2.6)
where P; is the orthogonal projector onto S;t, S; is the space spanned by the columns of A with

columns A4 deleted and A/ h; = —pu; where p>0 (see [2]). For this choice of direction (i.e.
h=h) anci for sufficiently small A > 0 we will have



SO+ = f(x) = AgTh + 0\

Mo (url 2= el ] | + 0003 I €1
- (.2.7)
-\p [H u| 24 a1m + 0()\2) lel,
| 7))
<0
where
: A
Vi) — —2L =
[l ur
g = A
~ ri(x)
V) + R el
SO+ oo !

For detail of this first-order method see [2].

3.3 A Second-Order Method

We wish now to find a direction # which minimizes the second-order change in the objective
function. This can be accomplished by minimizing the change in the function f(x) up to second-
order terms subject to the condition that the change in the remaining expressions remain zero up to
second-order terms. Thus, we solve the following problem

minimize 4TV fx) + vh TO2fh (3.3.1)
subject to A7k =0 iel{x).

(The quadratic programming problem with quadratic constraints that ensues in [4] when both func-
tion and constraint curvature are included has been simplified because of the linear substructure of
this problem’s constraints.)

Now, define a gn Xg (n —t) matrix Z satisfying
A7z =0 i €1 {x) (3.3.2)
Z7Z = I;(-1) (3.3.3)
and the transformation A = Zw so that problem (3.3.1) becomes

min wIZTvf + 12wTZ2Tv2fZw (3.3.4)
w

The solution to this problem can be obtained (assuming sz. is positive definite; see § 4.7) by
finding the vector w = w* that satisfies

Z™zw = -z Tvs (3.3.5)



Problem (3.3.1) can then be solved by setting
h = Zw* (3.3.6)

Assuming this solution is different from zero, the direction h is a second-order descent direction for
f in the neighbourhood of the point x.

3.4 Dead Points, Dual Estimates and Dropping

Assume we are at some point X where the solution to (3.3.5) is zero. Under this condition, X
is called a dead point for this problem. As in the first-order case, if A is full rank, V£(x) can be
expressed uniquely as

Vf(%) = AT (3.4.1)

What if we are at a point x¥ in the neighbourhood of ¥ where I {(x ¥) m I {%) and the solution
to (3.3.5) is “small”? If we define the dual estimate u ¥ as the least-squares solution to

Auk = Vf(xh (3.4.2)

then this dual estimate will usually give a reasonable approximation to the dual # found in (3.4.1)
[see [4], § 2b].

If we are at this dead point ¥ and there exists an index / €1 {x) such that | || > ay, where
% is the solution to (3.4.1), then the direction h; = —yP;Au; is a descent direction for f at ¥ as
shown in § 3.2.

If x* is “sufficiently close” to ¥ then | uf]| > a; where u* is the least-squares solution
obtained in (3.4.2) when x = x*. Thus there is a neighbourhood of ¥ for which

hy = —yP A uf (3.4.3)

is a descent direction for f at xX. (When we use this direction we “drop” A, from A.)

3.5 Optimality Conditions and the Linear Refinement
Suppose we are at a point x* which is a dead point for our function f. In addition, suppose

T(x*)=1{iy, ..., i,},~A= [;1.,-1, th] is full rank and || w*;|| < a; Vi EI{x*) where u =u* is a
solution to Au = Vf(x*). Then, as long as I(x*) = &, we have (from (3.2.5))
feEM)—fx) =] 3 wATh +a; | A7 | +00D (3.5.1)
€T (x*)

for any choice of direction h. For sufficiently small A >0 this expression must be nonnegative.
Since our objective function f is convex, the point x* must therefore solve our original problem.

However, suppose we are at a point x¥ m the neighbourhood of some dead point X. In addi-
tion, assume || u,}(l <a, Vi €1 (x*) where u* is the least-squares solution to (3.4.2) at this point
xk. As long as x ¥ was “sufficiently close” to ¥ we would then expect || iT;|| < a; Vi €I {x) where
% is the solution to (3.4.1). If this were true and 7 1(7:2= & then ¥ would be a solution to our
problem! How then should we proceed from the point x

The direction 4 ¥ obtained by solving problem (3.3.4) with x =x k would certainly be a local
descent direction for f at the point xX. It would therefore make sense to take the step x ¥+ Azh*
(where Ay is some computed stepsnze) to reduce f. It would also seen appropriate to take some
action to force the condition 7 1(x + Ach k) . We therefore define the refinement step v as the
solution to the linear system



AT —FOck+arh b
————— vk = e (3.5.2)

where 7 is the ordered vector of residuals 7; (where «;F; = r;) corresponding to the matrices 4; in
A. (The reader should note that the solution to (3.5.2) is the least-squares solution of minimal
norm to ATy = -—'r‘(xk + Akhk) since ZTvk = 0 ).
With this choice of refinement step we force I1(x ¥+ Axh*) = & since
Fok 4 Meh*+vEy = Pk + Mk %) + ATy

= 0.

(We try to take Ay = 1 in this instance since, for second-order methods, a stepsize of one will
asymptotically be optimal; see § 3.7.).

3.6 Degeneracy and Perturbations

Whenever the solution to (3.3.4) is “small” the dual estimate, obtained by solving (3.4.2) in
the least-squares sense, becomes important in finding a descent direction or in determining
optimality. The uniqueness of this estimate is based on the assumption that the matrix
A =[A; - Ayl where I = {i1 - - i}, is full rank. This uniqueness is surrendered whenever

A is rank deficient. Fortunately this difficulty can be resolved.
{\_ssume, fgr the moment, that we are at a point x* where A is rank deficient. If we redefine
A=[d4;, - A4;] where Jxb =1 jc I{x" and A forms a basis for the column

space of A,{ iel e(xk), then we can find the least-squares solution to (3.4.2) and obtain the dual
estimate u”* which is uniquely defined by this choice of basis. If, after proceeding in this fashion,
we find that || ujkll <a; for all jEJ (x k) then we can safely continue as outlined in § 3.5 (since
ATh =0 Viel(xN). If, however, there exists an index / €J {x ky such that | u/‘ll > @y, can
we then take the direction h; = —yP;A;uf as our descent direction under the assumption that
(3.2.7) still holds?

The answer to this question is, in general, no. This is because (3.2.7) is based, in part, on the
result that, when A =[4; ---4;] A/ =0 for all i€I{&M—{}. When
A= [Zj1 cee /Tfs] we can only guarantee that /TjThl =0forall jEJ (xH—{I}.

Determining an optimal strategy under these circumstances is not a trivial exercise. Here we
suggest an approach that is both simple and effective. After taking a refinement step and setting
xkexk+ vk we randomly perturb the values b; of all the residuals in the set 7 (x k)\J dx k) so that
the gradients V (|| r;(x%)|| ) are well-defined. This allows these perturbed terms to join the function
f when we proceed with our minimization method. Using this approach we either leave this degen-
erate neighbourhood or identify a solution in this degenerate neighbourhood. In the latter case the

point x* is our solution.

3.7 Minimization Strategy

In order to decrease the objective function at each stage in the minimization process, a
decision must be made as to which direction to use. The strategy we suggest here is based, in part,
on the analysis presented in [4] and [5].

We consider the following three cases (in all three cases h = —Z(Z Ty 2fZ)_IZ 1y

CASE I: |h| >8



The fact that || 2| is “large” suggests we are outside the neighbourhood of any dead points.
Under this condition we use this direction % to decrease f by setting

x < x + N

where the stepsize A is determined via the line search described in § 3.8.

CASE2: | h| <Band | u;| €a; VieE],
The assumption here is that we are in the neighbourhood of some dead point (which may be
optimal). We therefore set

xex+h+v

where v is the solution to

If f&x)—f(x)< =80 (| 2] 247" where &g is some positive constant and
r® = max{|| r;(x)|| , i €Ix)}) then we accept this as being a “sufficient’’ decrease and take

X < Xx;
otherwise, we set
€ «—¢/2
B« B/2
and
x < x +Ah

where the stepsize A is determined via the line search described in § 3.8.

CASE 3: | k|| < B and there exists at least one index / € I such that || ;|| > ay
In this case we define the direction

~

hy = —yPiAuy.

If gTi;I < -8, where & = dg*f(x)/7 and g is defined in § 3.2, then a sufficient decrease along this
direction is expected and we set

X < Xx +)\};1

where the stepsize A is determined via the line search described in § 3.8. If, on the other hand,
gTh; > —6 for all ] €1, with | w;| > ey, we remain at the same point x but set

€ < ¢/2

and
B« B/2.

The parameters 8 and ¢ are adjusted whenever the step A + v is unsuccessful or the step h~1 fails.
This, in effect, refines our tests for dead-point neighbourhoods and nondifferentiability.

What follows is a flowchart of our algorithm for solving the continuous multifacility location
problem involving Euclidean distances. The performance of this method is affected by the initial
choice of the parameters ¢ and 8 (it is assumed that the chosen values for 8p and ¢ are “‘reason-
able” and that they therefore have little or no effect on the algorithm’s efficiency). The decision as
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to what are optimal (or even appropriate) values for the parameters ¢ and 8 is, by no means, trivial
and goes beyond the scope of this paper. It should be noted however that the global convergence
properties will be unaffected by this choice. The selection of the starting point is also left up to the
user.

The linesearch used in our algorithm is fully described in the next section.

3.8 Line Search Algorithm

In this section we present our method for chosing the steplength A whenever the line search is
invoked in the minimization process.

As in most descent methods our criteria for accepting a steplength is based on convergence
requirements (see, for example, [9] and [16]).

In order to ensure that the objective function ‘decreases sufficiently” with respect to the
chosen steplength A and direction d, we insist that the following condition be met:

fO) = fx+Ad) > —pxrxd Tg(x) (3.8.1)

where u is a preassigned scalar in the range 0 <u < 1. We also ensure that the chosen steplength is
large enough by restricting our choice of candidates to those that satisfy the condition:

|dTg(x +Md)| < —£+dTg(x) (3.8.2)

where £ is a preassigned scalar in the range 0 <¢ < 1. This test also determines the accuracy to
which the stepsize approximates the minimum along the line. (The optimal choice of the
parameters u and £ is not obvious. In our current implementation we have had acceptable results
with the values 0.1 and 0.9 respectively.)

Now that we have defined our acceptance criteria lets look at our method of generating trial
steplengths.

If we let

o= lip 2HA=2O

A—>O+/"' A

then A* is a minimum of f(x + Ad) only if f'(x + A*d) = 0 or A* is a derivative discontinuity of
fx + M) with f' _(x +A*d) < 0 and f" +(x + A*d) >0.

It can be shown that if derivative discontinuities exist along the direction d, then they occur
at the values A = A*; that exactly satisfy the equations

ri(x +Nid) = rilx) + MATd =0 i €M\, (3.8.3)

(we exclude the set I since ri(x + M) =rix) Vi €7,.). In addition, if r{x +Ad) = 0 for some
i EM'\Ie then r; _'(x +Ad) < O and r; '(x +Ad) > 0.

Consider the set K = { iEM\I| A\;>0} where the A;’s are the least-squares solutions to
(3.8.3) (i.e. A; = —(A4 I Trix ) Ald I 2 vieK). Any number of these \;’s may define deriva-
tive discontinuities of f along d; moreover, any number may satisfy our acceptance criteria. It
therefore seems appropriate to consider, as trial steplengths, the values A; i €K, (It should be
clear that A* E(O.)\,-max] where i max€ K and A; > A VieK)

A flowchart of our linesearch algorithm follows. In this procedure we progress sequentially
through a sorted list of the trial steplengths. If one of the trial steplengths satisfies the acceptance
criteria, we use it. Otherwise, we perform an iterative bisection starting with the trial steplengths
that most closely bound the minimum along the line. This bisection terminates whenever the inter-
val of uncertainty becomes “small” or a bisection point satisfies the acceptance criteria. (The con-
stant eps which appears in the line search flowchart is defined as the smallest number satisfying
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1@ epr > 1 where P represents floating point addition.)

There are several variants of this linesearch which are currently under jnvestigation by the
authors. The most noteworthy involves using, as trial steplengths, only those A;’s which “closely”
approximate discontinuities along the line (this can be easily determined by computing the values
| 7i(x + X;id)]|| to see if they are “small”). If one of these trial steplengths is acceptable, we use it.
Otherwise, we bracket the minimum and use an appropriate method to estimate the minimum.

3.9 Extensions

In the foregoing sections of this paper we presented a second-order method for solving the
“continuous unconstrained multifacility location problem involving Euclidean distances. Here we
present some of the details for extending this technique to a wider class of location problems.

First, we consider the linearly constrained location problem:

minimize f(x) = %, || 4% —b;] (3.9.1)
ieM
such that ri(x) = a,-Tx ~-b;20 (€Ll

ri(x) = a,-Tx -b;=0 i €E€LE.
If we transform problem (3.9.1) into the unconstrained problem,

minimize F(x, p) = pf(x)— 2 min[0, r{x)] + 2% | ri(x)| (3.9.2)
ieLl ieLl

where u is a positive parameter, then the second-order method we have described can be easily
modified to solve problem (3.9.2). Details of the necessary modifications are presented in [2].

As with these constrained problems there are many practical justifications for considering /p,
distance location problems (see, for example, [13]). Fortunately, many of the results we have
presented are valid for the problem:

minimize f(x) = 2 ||A,-Tx—b,~||p I pg® (3.9.3)
eM

where
|l -Il » is the general /, norm, and

t/p
[ﬁ el P
c=1

max {| x|, ... | xq4| } p=o® .

I1p <

Ixll, =

Only a few modifications become necessary when we consider solving this problem using our
second-order technique when 1<p < or our first-order technique [2] when p =1 or p = .
These modifications revolve around the following optimality conditions:

The point x* is a minimum for problem (3.9.3) if and only if
iy PVf(x*)=0
i) (%) = @
i) Jurlp € @ ViET{x*)

where
-} p =
"= 2L 1<p<w
p 1-p p



Thus the minimization strategy for solving problem (3.9.3) involves taking a step in the direction A
whenever || k|| 2>8 (CASE 1 § 3.7); attempting the step h +v whenever | k]2 < 8 and
| uill pp < @i ViEI, (CASE 2 § 3.7); and attempting a step in the direction h ; whenever
| 2]l 2< 8 and | u, | o> a €1 (CASE3§3.7). In this latter instance, k; is defined as follows:

hi = —yPAj ,
where, for | <p =,
(2], = senlw] *[[wle|”? c=1....q
and, for p =1,
R sgnfule ¢ =c*
[ule = 0 otherwise
where c* is the index to the component of the vector

u; that is largest in magnitude (i.e. | [usle| > | [wilel ¢ =1, ..., ).

As a consequence of this last extension we are also able to solve the continuous multifacility
location problem where the distances are combinations of the /, norms (see [18]). This problem
has the form

minimize f(x) = % % | A& =bill p) (3.9.4)
kEK i€EM(k)
where
K =tk ... kr} L <o
L
UMk)=M
j=1
M(kj)nM(kj')=Q’ j#j kjkj € K
and
1<pk)< @ VkEeK

Although this particular problem has received very little attention in the literature it is quite obvi-
ous that different norms may appear simultaneously in many practical facility location problems.

4. IMPLEMENTATION

4.1 Concepts and Definitions

To explain the implementation of our method we present some basic ideas about graph
theory and some additional definitions .

Consider a graph consisting of n vertices having a one-to-one correspondence to the n new
facilities (i.e. vertex j corresponds to NF;,j =1, ..., n). Edge vk, 1<j < k <n, is found between
vertex j and vertex k if there is an interaction between NF; and NFj (ie. vjx #0). A set of edges
{vjx} form a tree if

a) the edges generate a connected subgraph
b)  the edges contain no cycles.

A subgraph is connected if there is a chain joining every pair of distinct vertices in the subgraph.
If we consider any sequence of vertices, say i1, ..., i/, then a possible chain would consist of the
sequence of edges ¥ij iy Yigiy v Yij_yif- The initial vertex of this chain would be i; and the



terminal vertex would be i;. A cycle is a chain whose initial vertex and terminal vertex are 1dent1-
cal. For example, the sequence of edges v13, v34, 41 form a cycle.

Finally let E; be the gn Xq matrix defined by
=[0j-1 Ig 0n-j]

where

0; is a zero matrix of dimension g Xgk
and

I, is a g Xgq identity matrix,

and let the sets J(*), —{n /2] <*< (n/2), and K* be defined as
J@) = | TREEG) = +} = (81, .. B2 }
and
K* = {k| J(k)# &}
where
Bi =Bi(*) i=1,..,J«
Bi<B2< - <Bu

=| J(*)|
and where the vector TREE is defined in § 4.2.

4.2 Active Trees and Masking
Each term || ;]| i € M in our objective function represents either an interaction between two

new facilities (i <#) or an interaction between a new facility and some existing facility (n <i < 7).
In the former instance the interaction between the two NF’s is represented by the edge in our
graph joining the two NF vertices. Those two NF's are included as vertices in an active tree under
the following conditions:

a) |rnll <e

b)  the inclusion of the edge does not form a cycle

c) both NF’s are not masked (this term is defined below).

When the objective function term involves the interaction between a NF and some EF we mask the
NF vertex down 1 under the following conditions:

a) |l <e
b)  the vertex is not already masked.
In both instances the first condition implies that the corresponding objective function term is
nondifferentiable (or near-nondifferentiable) whereas the remaining conditions detect degeneracies.
Now suppose that at each stage in our minimization process we have the n —vector TREE
whose i-th element is set according to the following rules:

a) TREE() <« 0 if and only if VF; is not a vertex in any active tree
and is not masked by any EF.
b) TREE() <« k if and only if VF; is a vertex in the k-th active tree

and no NF in that tree is masked by any EF.



¢) TREE() <« -k if and only if NF; is a vertex in the k-th active tree
and some NF in that tree is masked by some EF.

d) TREE() <« -|n/2}-1 if and only if NF; is not a vertex in any active tree
but is masked by some EF.

(Since there can be no more than (n/2) distinct trees in a graph with n vertices we satisfy
0 < k < |n /2] in the foregoing definitions.)
As we shall see in subsequent sections, once we have the n-vector TREE we can very easily:
1) Identify I,
2) Form a basis Afor 4, i€ I,
3) Construct Z.
The method used for constructing the n-vector TREE is a simple adaptation of the classical

Spanning Tree Algorithm (see [14]). What follows is a flowchart for this construction. In this
flowchart (and in subsequent subsections) i*,j* and k* are defined as they were in § 2.

4.3 Identifying /.,

For each term || r;] ,i=1,..., 7 in our objective function we have defined the values j*
and k* (for i <#) and j* and i* (for n <i < 7). We add the index i to the set I, under either of
the following two conditions:

If i< n and TREE(*) = TREE(k*) # 0

or . 4.3.1)
TREE(j*) < 0 and TREE(k*) <0 .
If %<i<7r and TREE(*) <0. (4.3.2)

A brief examination of the TREE VECTOR FLOWCHART should convince the reader that
all terms | r;|| , i =1, ..., 7 satisfying the inequality || r;|| < e will also satisfy (4.3.1) or (4.3.2).
However, there can be indices i € that do not satisfy this inequality. Consider, for instance, the
following situation:

Example I: n=2 m=1, ¢g=2, p=2. vp=wp=wy=1 x{=[0}, x7=10¢,
p{=10.0}. Wehave |[r (| =«/2*eand | ra =|r3] =e We also have TREE(I)
= TREE(2) = -2. Now, for i =1, j* =1, k* =2 and TREE(j*) = TREE(k*) # 0.
Therefore, according to (4.3.1), the index i =1 is added to I. even though
il >e

The reasoning for this apparent inconsistency is simple. Consider Example 1 again. Since
72l e and || 73] <eindex 2 and 3 belong in 7. The fact that 47d =0 Vi € I, guarantees
that 4 {d = 0 since 4 1= A4 — A4 3. Thus index 1 can be added to I ¢ without increasing the rank
or complicating the construction of A (see § 4.4). In addition, whenever a facility is in the
“neighbourhood” of another facility we have a term that is potentially nondifferentiable and whose
index may therefore belong in /.. Since x| and xj are both in e—neighbourhoods of P (i.c.

fr2ll = |73l = ¢ indices 2 and 3 are added to I. In making this decision we, in effect, “pre-
tend”” that x; and x ; coincide with P ;. Under this pretension, x | must coincide with x 5 ( making
| 71]] = 0). We may therefore include index 1 in 7.

It can be shown that Vi €1, either:
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a) |rill <e

or b) there exists vectors y; such that 4; = D, A;y; where [ * = {i €| Trd <
C o JEI

4.4 Constructing A

What follows is our method for constructing the matrix A which is a basis for the column
space of the matrices 4; Vi €I, This method takes full advantage of the structure of this prob-
lem and its graphical interpretation.

For j =1, ..., n, the j-th step of the construction process is as follows:
a) If TREE()) = 0 no contribution is made to A.
b) If TREE(j) < 0 augment A with the matrix E;.

¢y If TREE(j) = I/, 1<I/<|n/2], then let k >j be the next index satisfying
TREE(k) = TREE(j). If no such index exists then proceed to the next step in the
construction process, otherwise augment A with the matrix [E; — E¢].

We can now prove that A is a basis for the space spanned by the columns of 4; Vi€l (ie.
vViel, A;€C(A) and A is full rank.)

Proof that 4;,€C(A) Vi€,

Fori €I* | ri|| <eand either

i < n and TREE(j*) = TREE(k*) > 0.
or 2):i<n and TREE(*) <0 and TREE(k*) < 0.
or 3):i >17 and TREE(*) <0.

For case 1), assume that TREE(j*) = TREE(k¥) =/ and let {ji,j2, - .jL} =
{j | TREE()=1Lj* <j<k*}wherej <j2< - - <jrL.
Thus

A4 =E; —E;
! ]1 jL :
=[Ej —Ej]+[Ej —Ej]+"' +[Ej '—Ej].
1 2 L-1 L

But [E] —-E;}[E; —E;j] ..., I[E; —E; ] are the matrices that were augmented to A in its
constructlon process when3 =j,... L JjrL -1 respectlvcly Therefore 4; € C(A).

In case 2), 4; = E # —Epx. But Ex and Ey+ are the matrices augmented to A in its con-
struction process when j = j* and j = k* respectively. Therefore 4; EC(A).

For case 3), A, Ejx. But Ej is the matrix augmented to A in its construction process
when j = j*. Thus 4; € C(A)

We have shown that Vi€l * 4;€C(A). This, in turn, guarantees that 4;€ C(A) ViEI,
since, for i EI N * E A,yj for some vectors y ;.

JEI,

Proof that A is full rank

At the j-th step in the construction process there are, at most, g(j —1) columns in A. Any
augmentation to A at this j-th step involves the matrix E; or the matrix [E; — E¢] both of which
have zeros in rows 1 through ¢ (j—1) and a g Xgq identity matrix in the next ¢ rows. Thus A is full
rank (and lower-trapezoidal) and rank(A) = g*(n{ + nj) where



ni A number of NF's that are masked but not in active trees, and
ny A number of NFs in active trees minus the number of unmasked active trees.

4.5 Constructing Z

The matrix Z defined by (3 3.2) and (3.3.3), is an orthonormal ba51s for the null space of the
matrix A (i.e. A Tz=0and 27z = =I4(n-1) where rank(A) = qg(ni+ny). In [2] it is
suggested that Z be computed using the QR factorization of A. However, the structure of the
problem allows a much more efficient method for constructing Z.

We construct the matrix Z, using the information in the vector TREE, as follows:

Step 1. If there are no zero entries in the vector TREE proceed to Step 2; otherwise,
Yk €{j | TREE(j)=0} augment Z with the matrix E.

Step 2. If there are no strictly positive entries in the vector TREE, the construction process is
complete; otherwise, for /=1, ..., [n/2] if J()# & augment Z with the matrix
—_— E;.
Vi i&wy

With this construction process in mind we can prove that the matrix Z is, in fact, a basis for
the null space of A. (The proof that Z is orthonormal is trivial.)

Proof that 47Z =0 and rank(Z)=gq(n—1t)

The matrix Z has only zero entries in rows g(j—1)+1 through gj when TREE(j) < 0.
Therefore E; T7 = 0 for all indices j satisfying TREE(j) < 0. Similarily, there are only ¢ columns
in Z with nonzero entries in rows g (j —1)+1 through gj or g (k —1)+1 through gk when TREE())
= TREE(k) = [>0. These nonzero entries are all in the matrix Nl Y E; that was

I JETD)
augmented to Z in step 2 of its construction process. Therefore (E; — Ek) Tz =0 for all indices j
and k satisfying TREE(j) = TREE(k) = / >0. Since A is composed only of submatrlces E;,
where TREE()) < 0, and (E; — E¢), where TREE(j) = TREE(k) = [ >0, we have A7Z = 0.

Each matrix augmenting Z in the construction process has rank ¢ and no two such matrices
have nonzero entries in any of the same row positions, therefore

rank(Z) = q * number of matrices augmented to Z
=g *(n3+ny
where
n3A number of NFs that are unmasked and do not belong to any active trees, and
n4A number of unmasked active trees.
But

(n3tng=n-—-(ni+ny

=n -1t

Therefore rank(Z) = q(n —1t).



4.6 The Direction 4
Our minimization algorithm sometimes requires an iteration using the direction

i;l = —yP1Au,. 4.6.1)

As we shall see below, the vector TREE is easily modified to indicate index / no longer belongs in
the set I (i.e. the columns of A; are to be dropped from the matrix A). Once this is accompllshed
the matrix Z can be reconstructed. Since Z then forms an orthogonal basis for the space S;*, the

projection matrix P; can be computed as
P =2ZZ! (4.6.2)

and the direction 1:1 can be formed.

In section 4.4. we learned that the matrix 4; was constructed from either the matrix E j
where 1 € j <n or the matrix (E; — Ey), where 1 € j <k <n. With this thought in mind the vec-
tor TREE is modified as follows:

1) If A; is constructed from E; then set TREE(j) < 0.
2) If A4; is constructed from [Ej—Ex] then let * €{l| 1! |n/2) ] €K*, -] &€K*} and
set TREE(i) < /* for all i > k with TREE(/) = TREE()).

4.7 The Second-Order Direction

The direction & which is obtained by finding the solution w = w* to
ZT92fzw = -7zTyf 4.7.1)

and then setting
h = Zw* (4.7.2)

is called the projected Newton direction (ie h 1s the Newton step to the minimum of problem
(3.3.1)). The matrix Z7V2fZ and the vector Z 7V f are respectively called the projected Hessian
and the projected gradient.

Since f is convex, Z TV2fZ is positive semi-definite. When Z TV%/Z is not positive definite
or when it is positive definite but very ill-conditioned, we cannot (stably;_ solve (4.7.1). We can,
however, apply a numerically stable modified Cholesky factorization to Z v fZ to obtain the sys-
tem

LDLTw = -zTyf (4.7.3)

where LDLT = zTv 2fZ + E, Lis a lower -triangular matrix, D is a diagonal matrix and £ is a
diagonal matrix that is zero when Z 7v%(Z is “sufficiently” positive definite. The solution w = w*
to (4.7.3) can then be computed, using a forward and backward substitution, and used to obtain the
modified projected Newton direction 2 = Zw*. (The reader is referred to [10] for a complete
description of the modified Cholesky factorization.)

It should be noted that at each stage in the minimization process we use the true projected
Hessian and not some approximation to it (it is possible to use some Quasi-Newton approach).
This choice is justifiable since the construction of Z and the computation of sz are relatively
inexpensive.



4.8 The Refinement Step

In section 3.5 we showed that the refinement step v could be obtained by solving the linear
system

AT ~F(x+h)
—————— V= | m————— 4.8.1)
zT 0
As we shall soon see, solving this system is a trivial process as a result of its structure
Ifwelet vi={{ - v and 7x+n)7 = {FlT -+ - 7} where v 7 and 7 are 1Xq vectors,
then we can solve for v as follows:
Step 1. If J)=¢ for | = —|n /2] then go to Step 2; otherwise, Vj €J(/),
I =-1,..., ~\n/2}, the matrlx E; augmented A in its constructlon (sec § 4.4). If E;
was the EJ matrix to augment A then, from (4.8.1), we have Ej v=v;=~-F £

Step 2. If J(0) = & go to step 3; otherwise, for all j €J(0) the matrix E; augmented Z in its
construction (see § 4.5). Then, from (4.8.1), we have

Efv =v;=0.
Step 3. Forl =1,..., ln/2), if J() # & then the matrix —— 2, E; augmented Z in its
\/J 1; ET)
construction (see § 4.5) and the matrices [E g~ E ,32] ..... [Eg -1 Eg J] augmented
A in its construction (see § 4.4). If, for i = 1,...,J; — 1, the matrix [Eg, — Eg; ]

was the Eéh matrix to augment A then, from 4.8. 1 we have

- 1

T T ] -
Eg, - Eﬂz rfﬁl
7 V= :
Egy '~ Egy, “7%1_1
T T
E51+---+EﬂJ1 L 0

or, equivalently,

v,gJ[ = 7561 + 27562 + -+ (JI_I)FEﬁJI—l /Jl

and

vﬁi=vﬁi+l—-?5Bi i=Jr—-1,...,1.

4.9 The Dual Estimates
In our minimization algorithm we sometimes compute the least-squares solution to the sys-
tem

Au = Vf. (4.9.1)
If we factor A into the product
o’a=r[R], (4.9.2)

where QT is an orthonormal matrix, P is a permutation matrix and R is an upper-triangular
matrix, then this least-squares solution is efficiently obtained by solving the system



P[Ig]u =0Tvs. @.9.3)

_ To describe the factorization given by (4.9.2), let the Givens reflection matrices
Gi, i =1,2, - be defined as

_ c,-Iq s,-Iq
Gi =
sily —cily
where
cog=0, so=1
1 —8i—1

C; = — § T e =12 ...,
V(1 +sA) LoV +sEy)

and let the matrix G;(j,k) be the gn Xgn matrix obtained by imbedding G; in the gn —dimensional
identity matrix as follows:

1 j k n
|
1 Fq
Iq
J c,~Iq silg
Iq
G:(. k) = .
Iq
k sily —cily
Iq
n Iq
] —

We then take
Jip—1
o™= ]I fl Gy, —1(B1.81,)

kek*i=1
k>0

where K *, J; and B; are as defined in § 4.1.
The effect of premultiplying A by Q7 is equivalent to having augmented A with the matrices

[ [c_/k_.l - SJk_lSJk_z]Eﬂl - ch_zEﬂz] ..... [[cl - Slso]EﬂJk__l - COEﬂJk] (49.4)

instead of the matrices
[Eﬂl —Egy). ... Bty = Eﬂjk] (4.9.5)



when j = 8y, B, ..., B, -1 in A’s construction (see § 4.4). Thus we form 0TA or more

appropriately, P [g] by transforming A using the relationships given by (4.9.4) and (4.9.5) for all
keEK* k >0.

If we compare (4.9.4) and (4.9.5) it becomes clear that there is no fill-in whatsoever when A
is transformed in the described manner. However, since coFE B, = 0ke€K*k >0, each aug-

mentation of the matrices given by (4.9.4) results in g zero rows replacing ¢ nonzero rows of A
(These g nonzero rows of A contained, for their nonzero entries, the matrix —7I, which resulted
from augmenting A with the matrix [E Br, -1~ Eg Jk].) It is the introduction of these zero rows

that allows us to form the factorization given by (4.9.2).

As a result of the manner in which A is formed (§ 4.4) and transformed (by premultlphcatxon
by QT) the upper-triangular matrix R is obtained by simply disregarding the zero rows of Q A (ie
the permutation matrix P does not re-order the rows of R). Therefore, once Q Ty f is computed we
can solve for the dual estimate u in (4 9.3) by simple forward-substitution.

If welet Vi =[T-- Tand QTVf = [FT - - - 7117, where f; and F; are g X1 vectors,
then Q TV f is obtained by performmg the following algonthm

SETfi<f; i=1,...,n
DO forallkeKk*, k>0
DO for [ =1 Jr—1

TEMP*—c,fﬂJ +s,fﬁj

fﬂ"k slfﬂjk_, - lfﬂjk
Foy,~i = TEMP

5. PRELIMINARY NUMERICAL RESULTS

In this section we provide a cursory comparison between the performance of the projected
Newton method (PNM) described in this paper, the hyperboloid approximation procedure (HAP
[6]) and a projected steepest descent method (PSDM [2]). These three algorithms were
implemented in FORTRAN on a Honeywell 66/60 using single precision arithmetic.

Six small problems were run as a basis for this comparison. The first three problems are
given in [8] (as exercises #5.23, #5.6 and #5.7 respectively), the fourth is reported in [6] and the last
two appear in [1].

The results of these test runs are summarized in Table 1. Except for the last row, the figures
in the table refer to the number of iterations required to reach the solution.

In the last row an estimate of the total number of addition operations (in units of one
thousand) required in solving the six problems is given (approximately the same number of
multiplications would be required). The reader should note that the number of addition operations
quoted in [2], for the projected steepest descent method, is greater than the number quoted here.
This is because the structure of the problem was not taken into account when this method was
originally implemented and tested.

In all problems, except #5, the projected Newton method outperformed the other methods in
terms of both the number of iterations and the number of addition operations. The performance
on problem #5 could be improved by an alternate choice of the free ?arameters (for all six
problems the free parameters for PNM were set as follows: e B=1072% §0= 1072,

=10"%and ey = 7.45x107%.



# HAP | PSDM | PNM
1 1661 64 17
2 647 17 6
3 87 8 4
4 45 17 12
5 142 26 29
6 242 18 6
TOTAL | 2824 | 150 74
+OPs/1000 | 387 49 59

Table I Comparative Test Results

A much more thorough investigation into the performance of this second-order method is
currently under way and is intended for future publication.

6. CONCLUDING REMARKS

Our objective has been to provide a unified and numerically stable approach for solving
facility location problems. To achieve this goal we have presented a second-order method, involv-
ing projected Newton steps, that can be applied to a wide class of location problems. For
efficiency, the method has been designed to exploit the sparsity and structure that are inherent in
all these problems regardless of their scale. In addition, the degeneracies that occur quite
frequently in multifacility location problems are easily resolved using the proposed method.
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