MENT
MENT

BEPARY
DEPART
DEPARTMENT

ER SEIENGE
SR

|
T
T
T

MptH
MPU

AR €8

WA
W
ERSITY OF WATERLOO COMPU

8

s

>>>>

N
N

:

MAPLE
User’s Manual
Keith O. Geddes

Gaston H. Gonnet

CS-81-25

July, 1981

MAPLE

User’s Manual

Keith O. Geddes

Gaston H. Gonnet

July 1981

Department of Computer Science
University of Waterloo
Waterloo, Ontario
Canada N2L 3Gl

PREFACE

The design and implementation of the Maple system are currently in progress. This
document is a working document for the project.

The Maple project was first conceived in the fall of 1980 as the logical outcome of
discussions on the state of symbolic computation at the University of Waterloo. The
authors wish to acknowledge many fruitful discussions with colleagues at the University of
Waterloo, particularly Morven Gentleman, Michael Malcolm and Frank Tompa. It was
recognized in these discussions that none of the locally-available systems for symbolic
computation provided the environment nor the facilities that should be expected for
symbolic computation in the 1980’s. We concluded that since the basic design decisions
for all current symbolic systems were made ten to fifteen years ago, it would be wise to
design a new system from scratch.

An important property of the Maple system is its modular design. The basic system
is sufficiently compact and efficient to be practical to use in a present-day time-sharing
environment while providing a useful array of facilities. On top of this basic system are
successive levels of ‘function packages’ each of which adds more facilities to the system as
may be required by a particular user, such as polynomial factorization or the Risch
integration algorithm. The systems implementation language for Maple is primarily C
running under the UNIX operating system. Maple is also available in Honeywell TSS
where B is used as the implementation language, and work is progressing to bring Maple
up in C under VM/CMS. It is anticipated that very high level use of Maple (e.g. the
Risch integration algorithm) will be impractical in a heavily-used time-sharing environment
and that the appropriate environment for such use will be a dedicated microprocessor with
one or more megabytes of main memory. Current plans are to use a Motorola 68000-
based microsystem for the first implementation on dedicated hardware.

TABLE OF CONTENTS

Preface
Lo IRtTodUCLION oooiiiii i e e e e e 1
2. Language EIeMents ...t e e e 2
2.1 CRATACIET SEL .oiiiiiiiiiii ettt e et e, 2
2.2 TOKEIIS oottt e e e e e s 3
2.3. Blanks, Lines, and COMMENTS ...ttt eeeeee e e eaen 6
2.4 FIlES oo e e e s 6
3. Statements and EXPressionso.ccooocoiiiiiiiiiiiiiiie s o 8
3.1, Types of SLAtemMENts ...cooiiiiii e 8
31,10 Assignment STatement cc.oiiiiiii it e 8
J1.20 EXPIESSION it e e e e e e e 8
3.1.3. Read Statementococcooiviiiiiiiiiiiii e e 8
3.1.4. Save Statementoooooiiiii e e e 8
3.1.5. S0lve SatemMent ..ooooieeiiiiiis ettt 8
3.1.6. Selection StAteMEntoooeviiioiiiiiiiie e 9
3.1.7. Repetition Statementcoooiiiiii i e 9
18 PrINt STAEMENT ooviiiiiiiies oot et et e e, 9
3.1.9. Local Statementcccooivoiiiiiiiiiieo e e 9
31100 Stop Statement ..o e, 10
3.2 EXPIESSIONS oetiiitiiiee it citie ittt e e e e ite e e et e e e e e e e e ee e e e e 10
3.3. Sample Maple SESSION ...cocoiiiiiiiiiiit et 13
4. Data Types and Formal Syntaxcccoooiiiiiiiiii e 17
A1, Data TYPES ooeieiit ettt e e et 17
411 NAITIE ot e e e e e e e 17
4.1.2. Rational number ..ot 17
4.1.3. General algebraic eXpressionocooooiiiiiiiiiii i, 17
4.1.4. Polynomial canonical form ... 17
4.1.5. Boolean eXpression occviiieiieioiie it e e 17
4.1.6. Statement SEQUEMCE oocevviireiietiieeeiteeiteeee e eeeeeea e eeeieres e eeee e 17
4.2, Formal SYNtax oo e e e 18
5. FURCHONS oo e e e e e e 20
5.1. Boolean FUNCHIONS .ooooiiiiiiiiiiiit i e e 20
5.1.1. has ? <expl>, KeXP2> 7 ioioiiiii e, 20
S5.1.20 assigned 7 <NamMe> 7 e e 20
S.13.name T KeXPD> 7 o e 21
5.4, constant 7 <eXP> T i e 21

S.15.0neET T CEXPD 7 ot e 21

S.1.6. addition ? KeXP> 7 oot e e e 21

5.1.7. multiplication 7 <exXp>> 7 ioeiiiiiie e e e e 21
5.8, POWET 7 XD 7 ottt e ettt ettt e e e ettt rreeea e e et e e e e e e b 21
5.2, Algebraic FUNCLIONSiiiiiiiitiiiiiiii i et e e eraree e eee s e e e s e e ae e e e aenes 21
5.2.1. 0p(Krange>, KEXP>) eeriiirie oo ee e et e e et e et e e e e e 21
5.2.2. subs(<equation>>, KeXP>) iereiiiiiiiiii e e e e 23
5.2.3. taylor(<expl>, <equation>, <exp2>) ...ooooriiiiiiiiiiiie e 23
5.2.4, diff(<exp>, <NAMESEA™>) .oorirtiiiiiitieee it e e ee e eeeee s e e e e eearaeeeenenes 23
5.2.5. Int(<exXp>, KNAMED J oottt ieiiit i e eee e e e e e e e ererereesenniieeeeannns 24
5.2.6. int(<exp>, <name> = <TANEZED) eviiciieerriirreeeeerieerarinniineae e 24
5.2.7. sum(<exp>, <IAMED>) .oiviiiiinirireriiitertreeeereaiieereesainaenaanernaraereeenens 24
5.2.8. sum(<exp>, <NAmMe> = CIANLED) ccoovirereiriiireeererenarerreeresvneraeees 24
5.2.9. simplify(<exp>, <equUatSe>>) ..oooooeriiiiiiiiiiiiieeiiiee e e 25
52,70, SIN(KEXP>>) 1ovieiitiiniieaaes e e arieie it ietaeae e easrian e re et ree e e e e eees aaanbeeaeaeaeas 25

S. 2011, COS(CEXPD) eevvveiiiireieees cerateees st s en e e e e aataeneaeeeaeasesstaseaeesbasanaeae annns 25
5.2.12. @XP(KEXDP™) oiiiiiiriiiieiie creteeite s eer e e aee s st eeaeta e e eneaeaaeeaaetnteaeennne 25

S 2030 IN(KXPD) criiiiiitieiiiii et et et ee e ettt e e e e bbb e aaer e e e e e aaaaeaebeanes 25
S5.2. 14, trUNC(KEXP >) oortiiiitiieeiiiiie ettt e ettt e et e bttt e eeaaeeaae e aaaaaaaes 25
5.2.15. iged(<expl>, KeXP2>) ooiiiiiiiiiiii e 26
5.2.16. expand(<expl>, <eXP2>) ittt e e 26
5.2.17. coeff(<expl>, <exp2>, <exP3>) i 26
5.2.18. degree(<expl>, KEXDP2Z) it e e s 26
S.2.19. NOPS(CEXPD>) oeoeiiiiiiieies ettt e et e e e e e e e e ee e e e e e e e e e eaea e e e e e aararaennnas 27
5.2.20. Indets(KEXP>>) iireiiiiiieeiiiee e eee e et e e e e e ettt e aaaaaaa s 28
5.3. User-defined Functions ... e e 28
6. Internal Representation and Manipulationcoooeiiiiiiiiiiiiinn e e 35

6.1. Internal Representations
6.2. Rules of Evaluation ... e
6.3. Automatic Simplificationoocoiiiiiiiiiiiii e e
6.4. Common Expression Handling

7. Miscellaneous Facilitiescccooooviiiiiiiii e e 36
7.1. Debugging Faciliti€sccociriiiiiiires it ereeiiisneeeeeeeeinveesaaesisveniseeerenrenes 36
7.2. Echoing and TIMINgG ..ocoooiiiiiire oot e ee e e e crvree e e e e renanaeae sennes 37
7.3. Facilities for INAMESocoiiiiiiiiiiiiiiii e e e eee e te e e e e ee e aeanes 38
T4, Other FaCiliti€svviiiiiiiiiiiiiiiit ittt et iirrs eeeeeeaaee e aeeaaeaseenen 39

8. The Maple LIDTarycccccoiiiiiiiii oo e e e 40

1. INTRODUCTION

Maple is a mathematical manipulation language. (The name can be said to be
derived from some combination of the letters in the preceding phrase, but in fact it was
simply chosen as a name with a Canadian identity). The type of computation provided by
Maple is known by various other names such as ‘algebraic manipulation’ or ‘symbolic
computation’. A basic feature of such a language is the ability to, explicitly or implicitly,
leave the elements of a computation unevaluated. A corresponding feature is the ability to
perform ‘simplification’ of expressions involving unevaluated elements.

In Maple, statements are normally evaluated as far as possible in the current
‘environment’. For example the statement

a:= I

assigns the value 1 to the name a. If this statement is later followed by the statement
X:=a + b;

then the value b+1 is assigned to the name x. Next if the assignments
b:= —1; f:= sin(x);

are performed then x evaluates to 0 and the value 0 is assigned to the name f. (Note that
sin(0) is automatically ‘simplified’ to 0). Finally if we now perform the assignments

b:=0; g:=sin(x);

then x evaluates to 1 and the value sin(1) is assigned to the name g. (Note that sin(l)
cannot be further evaluated or simplified in a symbolic context, but there is a facility to
‘evaluate to real” which would yield the floating-point value of sin(1) to the accuracy of the
floating-point number system used).

2 Keith O. Geddes and Gaston H. Gonnet

2. LANGUAGE ELEMENTS

2.1. Character Set

The Maple character set consists of letters, digits, and special characters. The letters
are the 26 lower case letters

a,b,c,d e, fg, hi,j,k,Lmn, o p g s tuv,wxyz
and the 26 upper case letters
ABCDEFGHLJLKLMNOPQR,ST UV WX Y Z
The 10 digits are
0,1,2,3,4,56,7,8,9

and the 24 special characters are

blank
semicolon
colon

equal

plus

minus
asterisk

slash
exclamation
period

comma
question mark
left parenthesis
right parenthesis
left bracket
right bracket
left brace
right brace
single quote
double quote
less-than
greater-than
underscore
sharp

TS 4o

N - N AN 0D Y

| VA =

5

leaving the following ASCII characters as yet unused:

5 dollar | vertical bar

MAPLE User's Manual 3

& ampersand % percent
- tilde @ at-sign
\ back slash B circumflex

grave accent

2.2. Tokens

The tokens consist of keywords, reserved function names, operators, strings,
constants, and punctuation marks.

The keywords are the following reserved words which are used in forming
statements:

by od
do print
done quit
elif read
else save
end solve
fi stop
for then
from to

if while
local

The reserved function names are the following reserved words:

diff subs
int sum
op taylor
simplify

The operators consist of the binary operators

+ addition; set union
- subtraction; set difference
multiplication; set intersection

/ division
** exponentiation
< less than

<= less than or equal

the unary operators

and the nullary operators

Keith O. Geddes and Gaston H. Gonnet

vV Vi

and
or

not

”
44

nen

equal
greater than
greater than or equal

logical and
logical or

assignment
concatenation
equation symbol

ellipsis (more generatly, ...

unary plus (prefix)
unary minus (prefix)
factorial (postfix)

logical not (prefix)

last expression
penultimate expression

*)

before penultimate expression

(Note that three of the operators are reserved words: and, or, not).

A string is a letter followed by zero or more letters, digits and underscores, with a
maximum length of 43 characters. A string is a valid name (e.g. a variable name or a
function name) but we shall see that a name may also involve the concatenation operator.

The constants are integers, rational numbers, and reals.
natural integer (i.e. an unsigned integer) or a signed integer. A rational number is of the
form <integer>/<natural integer>. The length of integers (and hence rational numbers)
is restricted only by the address space of the host processor. A real is an (optionally
signed) sequence of digits containing a period (decimal point). [Note: Reals are not yet

implemented in Maple.]

The punctuation marks are

semicolon

comma

single quote
left parenthesis

— e — D

An integer is either a

question mark
left bracket
right bracket
left brace

MAPLE User's Manual 5

) right parenthesis } right brace

The semicolon is used to separate statements and the comma is used to separate
expressions in a function call and in specifying a set. The single quote is used to specify
that an expression, a statement, or a sequence of statements is to be unevaluated, by
enclosing the expression or statement sequence in a pair of single quotes. For example,
the statements

a:=1; x;:=a+b;
cause the value b+1 to be assigned to the name x while the statements
a:=1; x:="a+ b

cause the value a+b to be assigned to the name x. The latter effect can also be achieved
(if b has no value) by the statements

a:=1; x:="'a" + b;

A special case of ‘unevaluation’ arises when a name which may have been assigned a value
needs to be unassigried, so that in the future the name simply stands for itself. This is
accomplished by assigning the quoted name to itself. For example, if the statement

g:='g}

is executed, then even if g had previously been assigned a value it will now stand for itself
in the same manner as if it had never been assigned a value.

The remaining seven punctuation marks are used for various kinds of bracketing.
The left and right parentheses have their familiar use in grouping terms in an expression.
These parenthesis also have a familiar use in grouping parameters in a function call for the
case of algebraic (non-boolean) functions. For the case of boolean functions the question
mark is used to group the parameters. For example, a call to the built-in algebraic
function iged (which computes the greatest common divisor of two integers) can be
contrasted with a call to the built-in boolean function integer (which has the value true if
its argument is an integer and has the value false otherwise) in the following sample
statement:

if integer ?7a? and integer ?b? then g := igcd(a,b) fi;

The left and right brackets are used to form subscripted names (as in the use of arrays).
For example, the following are valid distinct names in Maple:

a[3,1,5]; a[—4]; a[l};
=2 j:=1; afi,j].

(Note that arrays are not declared in Maple and the above may be viewed simply as a
facility for forming new names by the concatenation of symbols, where the subscripts may
be arbitrary expressions which evaluate to integers. Note also that a specific string, such
as a above, may be used with one subscript and with several subscripts in the same session,
although it is probably bad programming practice to do so). The left and right braces are
used to form sets in Maple. An example of a set would be

6 Keith O. Geddes and Gaston H. Gonnet

a:= {x,y,z} .

2.3. Blanks, Lines, and Comments

The blank is a character which separates tokens, but is not itself a token. Blanks
cannot occur within a token but otherwise blanks may be used freely.

Input to the Maple system consists of a stream (sequence) of statements separated by
semicolons. The system operates in an interactive mode, executing statements as they are
entered. A line consists of a sequence of characters followed by <return>. A single line
may contain several statements or it may contain an incomplete statement (i.¢. a statement
to be completed on succeeding lines), or it may contain several statements followed by an
incomplete statement. A statement is complete if it is a syntactically valid statement
followed by a semicolon. When a line is entered, the system evaluates (executes) the
statements (if any) which have been completed on that line.

When a sharp (#) is encountered, all subsequent characters on the line are considered
to be a comment. The comment is echoed by the system.

2.4. Files

The file system is an important part of the Maple system. The user interacts with
the file system either explicitly by way of the read and save statements, or implicitly by
specifying a function name corresponding to a file which the system will read in
automatically.

A file consists of a sequence of statements either in ‘Maple internal format’ or in
‘user format’. If the file is in user format then the effect of reading the file is identical to
the effect of the user entering the same sequence of statements. The system will display
the result of executing each statement which is read in from the file. On the other hand, if
the file is in Maple internal format then reading the file causes no information to be
displayed to the user but updates the current Maple environment with the contents of the
file. All files which are in Maple internal format are distinguished by the fact that the file

name ends with the characters *m’ . Some valid file names for files in user format are:

temp
/mycat/filel

and some valid file names for files in Maple internal format are:

temp.m
/lib/integration/risch.m

A file is created using system facilities external to Maple. The contents of a file in user
format are written into the file either from a text editor external to Maple or else from
Maple by using the ‘save’ statement. The contents of a file in Maple internal format are

MAPLE User's Manual 7

written into the file from Maple by using the ‘save’ statement. FEither type of file may be
read into a Maple session by using the Maple ‘read’ statement.

Some Maple functions are not part of the basic Maple system which is loaded in
initially but rather reside in files in Maple internal format. When one of these functions is
encountered by the Maple system, the corresponding file is automatically read in to the
Maple session.

8 Keith O. Geddes and Gaston H. Gonnet

3. STATEMENTS AND EXPRESSIONS

3.1. Types of Statements

There are ten types of statements in Maple. They will be described informally here.
The formal syntax is given in section 4.2.

3.1.1. Assignment Statement

The form of this statement is
<name> := <expression>

and it associates a name with the value of an expression.

3.1.2. Expression

An <expression> is itself a valid statement. The result of this statement is that the
expression is evaluated.

3.1.3. Read Statement
The statement
read <filename>
causes the file named <filename> to be read in to the Maple session. The <filename>

may be one of two types as discussed in section 2.4,

3.1.4. Save Statement

The statement
save <filename>

causes the current Maple environment to be written into the file named <filename>. If
<filename> ends with the characters ‘.m’ then the environment is saved in Maple internal
format, otherwise the environment is saved in user format.

3.1.5. Solve Statement

The syntax of this statement is
solve(<equation>, <name>)
where <equation> has the form
<expression> = <expression>

(or simply <expression> in which case <expression> = 0 is understood). The result is to
solve (if possible) the <equation> for the variable <name>.

MAPLE User’s Manual 9

3.1.6. Selection Statement

The selection statement takes one of the following three general forms. Here
<bool> stands for a boolean expression and <statseq> stands for a sequence of
statements.

if <bool> then <statseq> fi
if <bool> then <statseq> else <statseq> fi
if <bool> then <statseq> elif <bool> then . . . etc.

The sequence of statements in the branch selected (if any) is executed and the value of the
selection statement is the value of the last statement executed.

3.1.7. Repetition Statement

The syntax of the repetition statement is as follows, where <bool> and <statseq>
are as in 3.1.6 and where <exp> stands for an algebraic expression.

for <name> from <exp> by <exp> to <exp> while <bool> do <statseq> od

where any of ‘for part’, ‘from part’, ‘by part’, ‘to part’, or ‘while part’ may be omitted.
The sequence of statements in <statseq> is executed zero or more times and the value of
the repetition statement is the value of the last statement executed. The ‘for part’ may be
omitted if the index of iteration is not required in the loop, in which case a ‘dummy index’
is used by the system. If ‘from part’ and/or ‘by part’ are omitted then the default values
‘from 1’ and/or ‘by 1’ are used. If ‘to part’ and/or ‘while part’ are present then the
corresponding tests for termination are checked at the beginning of each iteration, and if
neither is present then an infinite loop will occur.

3.1.8. Print Statement

The syntax of this statement is
print(<nameseq>)

where <nameseq> stands for a sequence of names. The result is that the value associated
with each name in <nameseq> is printed out.

3.1.9. Local Statement

The syntax of this statement is
local(<nameseq>)

where <nameseq> is a sequence of simple names not involving the concatenation
operator. The effect of this statement is to make the names in <nameseq> to be ‘local
from here to the end of the current statement sequence’. In other words, this statement
can be viewed as causing a syntactic renaming of every occurrence of the specified names
from the local statement to the end of the statement sequence in which the local statement
appears. A statement sequence must not contain more than one local statement. (The
primary use of this statement will be in a function definition).

10 Keith O. Geddes and Gaston H. Gonnet

3.1.10. Stop Statement

The syntax of the stop statement is any one of the following four forms:

quit
done
stop
end

The result of this statement is to terminate the Maple session and return the user to the
system level from which Maple was entered.

3.2. Expressions

The simplest expressions are called primaries and the simplest instance of a primary
is a <natural integer>. A <name> is also a primary and it has a value which may be
any expression or, if no value has been assigned to it, then the <name> simply stands for
itselff. A <name> may be simply a <string>, which was previously defined to be a letter
followed by zero or more letters, digits, and underscores (with a maximum length of 43
charactersy: Note that lower case letters and upper case letters are distinct, so that the
names

g
G

new__term
New__Term

are all distinct.

More generally, a <name> may be formed using the concatenation operator in one
of the following three forms:

<name> . <natural integer>
<name> . <string>
<name> . (<expression>)

Some more examples of valid <name>’s are:
P

This__is__an__extremely__long _name
x13A

v.5

p.n

a.(2%1)

V.(N.G—1))

r.i.j

The concatenation operator is a binary operator which requires a <name> as its left
operand. Its right operand is evaluated and then concatenated to the left operand. For
example if n has the value 4 then p.n evaluates to the name p4, while if n has no value

MAPLE User's Manual 11

then p.n evaluates to the name pn. Similarly if i has the value 5 then a.(2*i) evaluates to
the name al0. As a final example if N4 has the value 17 and i has the value 5 then
V.(N.(i—1)) evaluates to the name V17, while V.N.(i—1) evaluates to the name VN4
(assuming that N has no value).

The concatenation operator may be used in another construct to form a name
sequence, as follows:

<name> . (<range>)

where <range> takes the form <expression> .. <expression>. For example, to print out
the values of al, a2, . .., al0 one may use the statement

print(a.(1..10)).

This is equivalent to the statement print(al,a2,a3,a4,a5,a6,a7,a8,a9,a10).

Yet another construct for forming a <name> is the array notation which takes the
form

<name> [<expression sequence>] .

This construct is similar in principle to the concatenation construct. For example, the
name a[2,5] is simply a name which the system views as a concatenation of the symbol ‘a’
with the symbols ‘", 2°, <, ‘5°, and ‘J. Therefore for the case of single subscripts, the
constructs

ai,fori=12,...,n
afi},fori=1,2,...,n

are equally general. However when using two or more subscripts the array notation is
more powerful. For example ifi = 1,j = 27, m = 12, and n = 7 then

a[i,j}; a[m,n};
evaluate to the distinct names a[1,27] and a[12,7] while
a.lj; a.m.n;

both evaluate to the single name al27. Finally note that since a[l,27], for example, is a
valid name it follows that the construct

a[1,27][5]
is also valid. In general, the array notation may be freely combined with itself and with
the concatenation construct as desired.
A sequence of statements enclosed in single quotes is called an unevaluated statement
sequence. The three examples given in section 2.2 showing the use of single quotes:
x:='a+b;, x:='a'+b, g:="¢g"

are examples where the unevaluated statement sequence is a single expression. Here the
name x may be later used as an expression and the effect of evaluating x is to strip off the
quotes. The third case here is a special case which means that the name g no longer has

12 Keith O. Geddes and Gaston H. Gonnet

any value associated with it (g now stands for itself). A different situation arises if the
unevaluated statement sequence is not an expression (e.g. it may be an assignment
statement, or a sequence of statements, etc.), such as in

f:='a:= 1,
or
g:="t:=a; a:=b; b:=t a+ b

In these examples, the names f and g may not be later used as ordinary expressions
because they do not evaluate to valid expressions. These are instances of function
definitions and they are invoked by using the syntax

<name> (<expression sequence>)

which is another instance of a primary. For example with f and g defined as above, the
effect of the statement f() is that the statement a := 1 is executed, while the effect of the
statements

a:=7T b:=3 g

is that the value 10 is returned for the statement g() and the value of a is now 3, the value
of b is now 7. (A discussion of functions with parameters and local variables will be
postponed until section 5).

A primary may be formed from any arbitrary expression by enclosing the expression
in parentheses. A different type of primary is a set which takes the form

{ <expression sequence> } .

Other expressions are formed using operators. The nullary operator ” has as its value the
latest expression, the nullary operator ”” has as its value the penultimate expression, and
the nullary operator """ has as its value the expression preceding the penultimate
expression. The unary operator ! following any primary denotes the factorial function of
its operand.

All of the expressions discussed so far are classified as primaries. More general
expressions are formed from the primaries by using the algebraic operators +, —, *, /. and
**. + and — may be used as unary (prefix) operators and all five of these operators may
be used as binary operators. The usual rules of precedence apply, with ** having the
highest binding strength, then * and /, followed by + and —. When the order of
evaluation is not determined by the rules of precedence then the order of evaluation is
left-to-right. The operators +, —, and * may also be used as set operators in which case
they denote set union, set difference, and set intersection, respectively.

A boolean expression can appear only as the conditional in a selection statement or
in the while-part of a repetition statement. A boolean expression can be formed from
algebraic expressions by using the relational operators <, <=, =, >, >=. All of these
operators except = are invalid if the difference of their operands does not evaiuate toc a
constant. In the case of the relation

MAPLE User’'s Manual 13

opl = op2

the operands are arbitrary algebraic expressions. The expression opl — op2 is formed
and ‘simplified’ in the current ‘environment’ and if the result is zero then the boolean
expression is ‘true’, otherwise it is ‘false’. Another form of boolean expression is a
boolean function which is invoked using the syntax

<name> ? <expression sequence> ?

(i.e. the syntax is similar to the invocation of an algebraic function except that question
marks are used in place of left and right parentheses). More generally, a boolean
expression can be formed from the above relations and boolean functions by using the
logical operators

and
or
not

with parentheses used where necessary. A boolean expression is evaluated from left to
right and evaluation terminates as soon as the truth value of the entire expression can be
deduced. For example, the construct

if not(d=0) and f(d)/d > 1 then...fi

will not cause a division by zero because if d=0 then the left operand of ‘and’ becomes
false and the right operand of ‘and’ will not be evaluated.

3.3. Sample Maple Session

This section presents a sample interactive session using the Maple system. Maple is
initiated on the Honeywell TSS by entering the command ‘maple/sys’ to the system
prompt ‘*’, as illustrated below. In the following presentation of the Maple session, all
lines containing italic characters are user input lines and all other lines are system
responses. Each user input line must be terminated by <return>. Notice that one system
response is of the form:

if ————unable to print———— then

This is due to a current limitation of the output routine which is unable to print out a
relation in ‘user format’. Note that this limitation of the visible output in no way affects
the successful execution of the selection statement.

Exception: If the comments appearing below are entered in an interactive session,
the Maple system will respond to each comment line by echoing the comment. For
readability, the system response to each comment line has been suppressed in this
presentation.

14 Keith G. Geddes and Gaston H. Gonnet

*maple/sys
Integers and rational numbers.

254 + 5280*99999:;

527994974

31

6

311

720

1 +1/4+1/16 + 1/64 + 1/256;

341/256

(2**50 + 3**20) / 2%*]00;
1125903393627025/1267650600228229401496703205376
a:="
a 1= 1125903393627025/1267650600228229401496703205376
b ;= 2**]00;

b := 1267650600228229401496703205376

a*b;

1125903393627025

”.

Names, including the concatenation operator.

g:=52, G:=4

g:=152

G:=4

g*G’.

208

Jorito5 dop.i:=i**2od;
25

p3; pS;

9

25

print(p.(1..5));

1 4 9 16 25
x.:= 333 x:="'x';
X =333

X X

Polynomials and rational functions.

24¥x¥*2 — 2¥x + 7;
= 24*x¥*2—2%x+7

X*¥*¥3 + x¥*2 + x + I
= X¥*3+x*¥*¥2+x+1]

00 T
.. i

MAPLE User's Manual 15

o= " x II’.

ro= (24%x*¥*2=2*x+Ty*(x**3+x**2+x+1)
s:=plg

s 1= (24*x**2-2%x+T)/(x**3+x**2+x+1)
r*s‘.

(24*x**¥2—2*x+T7)**2
Unevaluated statements.
a b,

1125903393627025/1267650600228229401496703205376
1267650600228229401496703205376

f:="a¥b+5)";
f:= a*(b+5)
A

1427252112730298675135602957725914085087021525 /1267650600228229401496703205376
max = 'if a>b then a else b fi';

max := if ————unable to print———— then a else b fi

max();

1267650600228229401496703205376

a:=275/77; b := 1575/447;

a:= 25/7

b := 525/149

max();

25/17

Integers can be arbitrarily long. Here is one that almost fills one screen on a typical video
terminal. Recall from above the 3!! (i.e. 6!) is 720 so the following statement yields the
same result as 720! .

31

26012189435657951002049032270810436111915218750169457857275418378508356311569473
82240678577958130457082619920575892247259536641565162052015873791984587740832529
10524469038881188412376434119195104550534665861624327194019711390984553672727853
70993456298555867193697740700037004307837589974206767840169672078462806292290321
07161669867260548988445514257193985499448939594496064045132362140265986193073249
36977047760606768067017649166940303481996188145562519559256691883082551494294759
65372748456246288242345265977897377408964665539924359287862125159674832209760295
05696699927284670563747137533019248313587076125412683415860129447566011455420749
58995256354306828863463108496565068277155299625679084523570255218622235813001670
08345234432368219357931847019565107297818043541738905607274280485839959197290217
26612291298420516067579036232337699453964191475175567557695392233803056825308599
97744167578435281591346134039460490126954202883834710136373382448450666009334848
44407119312925376946573543373757247722301815340326471775319845373414786743270484
57983786618703257405938924215709695994630557521063203263493209220738320923356309

16 Keith O. Geddes and Gaston H. Gonnet

92326750440170176057202601082928804233560664308988871029738079757801305604957634
28386830571906622052911748225105366977566030295740433879834715185526028053338663
57139101046336419769097397432285994219837046979109956303389604675889865795711176
56667003915674815311594398004362539939973120306649060132531130471902889849185620
37666691644687911252491937544258458950003115616829743046411425380748972817233759
55380661719801404677935614793635266265683339509760000000000000006000000000000000
00G0000000CG000000000000006
000

quit
*

MAPLE User's Manual 17

i

4. DATA TYPES AND FORMAL SYNTAX

4.1. Data Types

There are currently six basic data types in Maple.

4.1.1. Name

The role of a <name> in Maple is similar to the role of identifiers in other common
programming languages except that in Maple a <name> may not have been assigned any
value in which case its value is its own name.

4.1.2. Rational number

Rational numbers are represented by a pair of integers (numerator and denominator)
with all common factors removed and with a positive denominator. A Maple integer is
represented as a rational number with unit denominator. Integers (and therefore rational
numbers) are of arbitrary length, restricted only by the address space of the host processor.

4.1.3. General algebraic expression

A general algebraic expression is any sequence of tokens which forms a valid
<expression> as defined by the Maple grammar. It is represented by an expression tree in
sum-of-products form.

4.1.4. Polynomial canonical form

The polynomial canonical form in Maple is a special data type for algebraic
expressions which represents the expression as a univariate polynomial in one specified
indeterminate. The Oth operand in the canonical form is the name of the indeterminate,
the Ist, 3rd, . . . operands are the coefficients (generally expressions), and the 2nd, 4th, . . .
operands are the corresponding exponents. The exponents are ordered from least to
greatest.

4.1.5. Boolean expression

A boolean expression is any sequence of tokens which forms a valid <boolean> as
defined by the Maple grammar. When fully evaluated, a boolean expression must yield
either the value 1 (true) or the value O (false).

4.1.6. Statement sequence

The sixth data type is simply a sequence of one or more valid <statement>’s as
defined by the Maple grammar.

18 Keith O. Geddes and Gaston H. Gonnet

4.2. Formal Syntax

This section presents the BNF grammar which describes the syntax accepted by
Maple. The non-terminal <name> corresponds to the ‘name’ data type, the non-terminal
<exp> corresponds to the ‘general algebraic expression’ data type, the non-terminal
<bool> corresponds to the ‘boolean expression’ data type, and the non-terminal
<statseq> corresponds to the ‘statement sequence’ data type. The other two data types —
‘rational number’ and ‘polynomial canonical form’ — do not correspond directly to non-
terminals in the grammar but rather are special instances of <expression>’s which are
treated as special data types for reasons of efficiency.

The non-terminal <filename> which appears in the definition of the read and save
statements is not further defined in the formal grammar. The naming conventions for
<filename>’s are the file naming conventions of the host system. When a sequence of
symbols is enclosed in a pair of daggers (as in tfor <name>t) it indicates that this
portion of the statement is optional. On the other hand, when the daggers are followed by
an asterisk (as in T.1*) it indicates that the enclosed sequence of symbols may appear zero
Or more times.

<session> n= <statseq>
<statseq> = <statseq> ; <statement> | <statement>
<statement> n= <name> := <exp> | <exp>| read <filename> |

save <filename> | solve (<equation>, <name>) |
tfor <name>t tfrom <exp>t tby <exp>t

tto <exp>t twhile <bool>t do <statseqg> od |
if <bool> then <statseq> <elsepart> |
print (<nameseq>) | local (<nameseq>)| <stop>

<exp> = <exp> + <term> | <exp> — <term> |
+ <term> | — <term> | <term>
<term> = <term> * <factor> | <term> / <factor> | <factor>
<factor> n= <primary> ** <primary>| <primary>
<primary> = <natural> | <name> | <primary> ! |

] (<exp>) | { t<expseq>t |
<name> (t<expseq>t) |

taylor (<exp> , <equation> , <exp>)|
diff (<exp> , <nameseq>) |

int (<exp> , <name>) |

int (<exp> , <name> = <range>) |
sum (<exp> , <name>) |

<expseq>
<range>
<equation>
<equatseq>
<bool>
<bterm>

<bfactor>

<relop>

<elsepart>

<stop>

<nameseq>

<name>

<string>

<natural>

<letter>

<digit>

MAPLE User's Manual

sum { <exp> , <name> = <range>) l
subs (<equation> , <exp>) |
simplify (<exp> . <equatseq>) |

op (<range> , <exp>) | ' <statseq> '
<expseq> , <exp> | <exp>

<exp> .1.1* <exp> | <exp>

<exp> = <exp>| <exp>

<equatseq> , <equation> | <equation>
<bool> or <bterm> | <bterm>
<bterm> and <bfactor> | <bfactor>

not <bfactor> | (<bool>) |

<exp> <relop> <exp> | <name> ? f<expseq>? ?

= |<|<= |>]|>=

fi | else <statseq> fi |
elif <bool> then <statseq> <elsepart>

quit| done | stop | end

<nameseq> , <name> | <name> | <name> . (<range>)

<string> | <name> . <string> |

<name> . <natural> | <name> . (<exp>)|

<name> [t<expseq>T |

<letter>| <string> <letter> |
<string> <digit> | <string> __

<digit> | <natural> <digit>

o

| |
| i | j
| |
| |

co—0n

!
!
|
l

- © -

N

~0nza»
N~ 3 o

NHZTw

| Alb |
g |Glh |
m | M|n |
[S 1t |
y Y|z |

0 |1]2 (3 |4 |516]7 (819

20 Keith O. Geddes and Gaston H. Gonnet

5. FUNCTIONS

One form of an algebraic expression is a function invocation which is generally of
the form

<name> (<expseq>)

although some exceptions to this general syntax are noted in section 5.2 below. One form
of a boolean expression is a boolean function invocation which has the special syntax

<name> ? <expseq> ?

Function names are, in general, not reserved words in Maple so that a user may define his
own function using the same name as one of the system-supplied functions. The exception
to this general rule is that the functions with special syntax in their parameter sequence (as
noted in section 5.2 below) have names which appear in the formal syntax and these names
are reserved words. There are seven such names and they are listed in section 2.2 as
reserved function names.

Functions may be ‘built-in functions’, ‘library functions’, or ‘user-defined functions’.
The built-in functions are part of the basic Maple system and need only to be invoked by
the user. The library functions are stored in files and, when invoked, are automatically
read in to the current Maple environment. The library functions currently available in
Maple are described in section 8 of this manual. Sections 5.1 and 5.2 describe the built-in
functions of the Maple system and section 5.3 describes how to write a user-defined
function.

5.1. Boolean Functions

There are currently eight built-in boolean functions in the Maple system.

5.1.1. has ? <expl>, <exp2>?

The value of this function is ‘true’ if <expl> contains <exp2> as an explicit
subexpression, ‘false’ otherwise. This function is most commonly used when <exp2>
evaluates to a <name> in which case the concept of ‘explicit subexpression’ needs no
further explanation. Three examples of the more general situation are:

has 2(a+b)**(4/3), a+b? evaluates to ‘true’ ;
has Aa+b)**(4/3), a? evaluates to ‘true’;
has 7a+b+c, a+b? evaluates to ‘false’ .

5.1.2. assigned ? <name> ?

The value of this function is ‘true’ if <name> has been assigned a value in the
current environment, ‘false’ otherwise.

MAPLE User's Manual 21

5.1.3. name ? <exp> ?

The value of this function is ‘true’ if <exp> evaluates to a name, ‘false’ otherwise.

5.1.4. constant ? <exp> ?

The value of this function is ‘true’ if <exp> evaluates to a constant (integer or
rational), ‘false’ otherwise.

5.1.5. integer ? <exp> ?

The value of this function is ‘true’ if <exp> evaluates to an integer, ‘false’ otherwise.

5.1.6. addition ? <exp> ?

The value of this function is ‘true’ if, after evaluation and simplification, <exp> is a
sum of two or more terms. Otherwise the value is ‘false’.

S.1.7. multiplication ? <exp> ?

The value of this function is ‘true’ if, after evaluation and simplification, <exp> is a
product of two or more factors. Otherwise the value is ‘false’.

5.1.8. power ? <exp> ?
The value of this function is ‘true’ if, after evaluation and simplification, <exp>
takes the form

<primary> ** <primary> .

Otherwise the value is ‘false’.

5.2. Algebraic Functions

The first nine built-in algebraic functions described below are functions which have a
special syntax in their parameter sequence. The syntax for each of these functions differs
from the general syntax

<name> (<expseq>)

in the manner indicated.

5.2.1. op(<range>, <exp>)

The purpose of this function is to extract one or more operands from the algebraic
expression <exp>. If <range> is a single expression which evaluates to a nonnegative
integer, say i, then the value of the function is the i-th operand in <exp>. General
algebraic expressions have operands indexed from 1 to n (for some positive integer n). A
function invocation

22 Keith O. Geddes and Gaston H. Gonnet

<name> (<expseq>)

is considered to have as its 0-th operand <name> and the expressions in the parameter
sequence <expseq> are operands 1 through n (for some integer n). If <exp> is an
expression in polynomial canonical form then the O-th operand of <exp> is the
indeterminate of the canonical form, the 1-st, 3-rd, . . . operands are the ‘coefficients’ and
the 2-nd. 4-th, . . . operands are the corresponding exponents (with the exponents ordered
from least to greatest). If <range> is not a single expression but is of the form 0..i where
i evaluates to an integer, then <exp> must be a function invocation and the result is a
new function invocation consisting of operands 0 through i of <exp>.

Example: Assuming that f, x, y, and z are names which stand for themselves, if the
following statements are executed:

g:= f(x,y, 2);

op0 := op(0, g); op2:= op(2, g);

op02 := op(0..2, g);

a = (3*sin(x**3) — (2/3)*x + y) / (2*x**2 — 1);
first ;= op(l, a); second := op(2, a);

term := op(2, op(1, first));

then

op0 has the value f

op2 has the value vy

op02 has the value f(x,y)

first has the value 3*sin(x**3)—2/3*x+y
second has the value (2*¥x**2+(—1))**(—1)
term has the value sin(x**3) .

If the following statements are executed:

b 1= 5/2*x*sin(x)**4 + 3*x**3*sin(x) — 13%¥sin(x) — 5;
p := expand(b, sin(x));

then p is a polynomial canonical form and

op(0,p) has the value sin(x)

op(l,p) has the value -5

op(2,p) has the value 0

op(3,p) has the value 3*x**3+(—13)
op(4.p) has the value 1

op(5,p) has the value 5/2*x

op(6,p) has the value 4 .

MAPLE User's Manual 23

5.2.2. subs(<equation>, <exp>)

The purpose of this function is to substitute <equation> into <exp>. Every
oceurrence in <exp> of the expression appearing on the left hand side of <equation> is
replaced by the expression appearing on the right hand side of <equation>.

Example: Assuming that a, b, x, and y are names which stand for themselves, if the
following statements are executed:

f = 3*x*In(x**3);

fnew := subs(x=1, f);

g 1= (a+b)**(4/3);

gnew := subs(a+b =y, g);

then
fnew has the value 0
and
gnew has the value y**(4/3) .

5.2.3. taylor(<expl>, <equation>, <exp2>)

The purpose of this function is to compute the Taylor series (more generally, Laurent
scries) expansion of <expl> with respect to the indeterminate given by the left hand side
of <equation> about the point given by the right hand side of <equation>. (If
<equation> is simply an <exp> then the equation <exp> = 0 is understood). The
‘truncation degree’ to be used in the computation of the series is given by <exp2>.

Example: Assuming that x is a name which stands for itself, if the following statements are
executed:
fr= (3*x**2 — 5*x) / (x**3 — x + 7);

taylor(exp(f), x, 3);
taylor(f, x=1, 2);

then the results of the two function invocations of ‘taylor’ are, respectively:
LH(=5/7)*x+57/98*x**2+(— 509 /2058)* x**3
and

(=2/D+11/49*(x—~1)+167/343*(x—1)**2 .

5.2.4. diff{ <exp>, <nameseq>)

The purpose of this function is to compute the partial derivative of <exp> with
respect to the indeterminates namel, name2, . . . where <nameseq> is namel, name2, . .

Example: Assuming that x and y are names which stand for themselves, if the following
statements are executed:

24 Keith O. Geddes and Gaston H. Gonnet

p 1= —30*x¥¥3*y + QO*xF*Q¥y**) 4 SXx**] — G*x*y:
diff(p, x, yx

then the result of the function invocation of ‘diff” is:
—90*x**24+360*x*y+(—6) .

This is equivalent to executing the statement diff{diff(p,x),y) .

5.2.5. int(<exp>, <name>)

The purpose of this function is to compute the indefinite integral of <exp> with
respect to <name>. Except for simple cases, this function will invoke Maple library
functions to be read in.

Example: If
fo= 1/2%x**(=2) + 3/2*x**(—1) + 2 — 5/2*%x + 7/2*x**2;
then
int(f,x) has the value —1/2*x**(—1) + 3/2¥*In(x) + 2*¥x ~5/4*x**2 + 7/6¥x**3 .

5.2.6. int(<exp>, <pame> = <range>)

The purpose of this function is to compute the definite integral of <exp> with
respect to <name> over the interval specified by <range>. Except for simple cases. this
function will invoke Maple library functions to be read in.

Example: If fis as in 5.2.5 above then
int(f, x=1..2) has the value 20/3 + 3/2*In(2).

5.2.7. sum(<exp>, <name>)

The purpose of this function is to compute the ‘indefinite’ sum of <exp> with
respect to <name>. Except for simple cases, this function will invoke Maple iibrary
functions to be read in.

Example:

sum(i**2, 1) has the value 1/2*i*(i—1) + 1/3*1*(—1)*(i—2)

5.2.8. sum{ <exp>, <name> = <range>)

The purpose of this function is to compute the sum of <exp> with respect to
<name> over the discrete interval specified by <range>. Except for simple cases, this
function will invoke Maple library functions to be read in.

Example: If
e = (5% — 3)*2* + 9):

then

MAPLE User's Manual 25

sum(e, i=1..50) has the the value 477625
sum(e, i=1..n) has the value —27*n + 49/2*(n+1)*n + 10/3*(n+1)*n*(n—1)
expand(”, n) has the value (—35/6)*n + 49/2*n**2 + 10/3*n**3.

5.2.9. simplify(<exp>, <equatseq>)

The purpose of this function is to ‘simplify’ <exp> with respect to <equatseq>.
The elements of <equatseq> are applied in order. An element in <equatseq> which is an
cquation (e.g. i**2 = —1) causes this equation to be applied as a side relation. An
clement in <equatseq> which is simply an <exp> is interpreted as the equation <exp> =
0 if <exp> is not simply a <name>. When a <name> is encountered as an element of
<equatseq> then the system attempts to perform simplification with respect to <name>.
(e.g. The <name> may be In, exp, sin, or cos in which case the standard system
simplifications with respect to the functions with these names are applied).

The remaining built-in algebraic functions conform to the normal syntax for
functions.

5.2.10. sin(<exp>)

This is the mathematical sine function and it is built-in in the sense that it is known
to the Maple simplifier.

5.2.11. cos(<exp>)

This is the mathematical cosine function and it is built-in in the sense that it is
known to the Maple simplifier.

5.2.12. exp(<exp>)

This is the exponential function and it is built-in in the sense that it is known to the
Maple simplifier.

5.2.13. In(<exp>)

This is the natural logarithm function (logarithm to the base exp(1)) and it is built-in
in the sense that it is known to the Maple simplifier.

5.2.14. trunc{ <exp>)

The value of this function when <exp> evaluates to a constant is the ‘integer part’
of <exp> when expanded in a decimal expansion. For example, trunc(8/3) is 2 and
trunc(—8/3) is —2.

26 Keith O. Geddes and Gaston H. Gonnet

5.2.15. iged(<expl>, <exp2>)

This is the ‘integer greatest common divisor’ function whose value when <expl> and
<exp2> evaluate to integers is the nonnegative greatest common divisor of the two
arguments.

5.2.16. expand(<expl>, <exp2>)

The purpose of this function is to expand <expl> into polynomial canonical form
with respect to the indeterminate <exp2>. For example,

p:i= (2*%x — 5) * (35*x**2 —x + 7);
expand(p, x);

yields the result
(—35)+H19*x+(—177)*x**24T0*x **3 |

As another example,
q = 3*sin(x) * (x*sin(x) — y*z) * 2*x**2 — 3);
expand(q, sin(x));

yields the result

(=3*2*y*(2*x** 24+ (= 3))*sin(x) + (3Ex*2*x** 24 (—3)))*sin(x)**2 .

5.2.17. coeff(<expl>, <exp2>, <exp3>)

For this function, the expression <expl> must be in polynomial canonical form with
respect to the indeterminate <exp2>. The value of this function is the coefficient in
<expl> of the term involving <exp2>**<exp3> . For example, let p and g be as in
5.2.16 above and let

expandp := expand(p, x);
expandq := expand(q, sin(x));

as computed in 5.2.16 above. Then
coeff(expandp, x, 2) yields —177
and

coeff(expandq, sin(x), 1) yields —3*z*y*(2*x**2+(-3)) .

5.2.18. degree(<expl>, <exp2>)

The purpose of this function is to determine the degree of <expl> with respect to
the indeterminate <exp2>. The result is the degree of the polynomial in <exp2> which
would be produced by the function call

expand(<expl>, <exp2>).

For example, if p and q are as in 5.2.16 above then

MAPLE User's Manual 27

degree(p, x) has the value 3
degree(q, sin(x)) has the value 2
degree(q, x) has the value 3
degree(q, z) has the value 1 .

5.2.19. nops(<exp>)

The purpose of this function is to determine the number of operands appearing in
<exp>. The manner in which <exp> is viewed by nops corresponds to the manner in
which an expression is viewed by the function op. If <exp> is a general algebraic
expression with operands indexed from | to n then nops(<exp>) is n. If <exp> is a
function invocation with operands indexed from O to n then nops(<exp>) is again n. If
<exp> is a polynomial canonical form with respect to an indeterminate x ‘and if <exp>
has m terms as a polynomial in x then nops(<exp>) is 2*m. (See section 4.1.4).

Example: Assuming that f, x, y, and z are names which stand for themselves, if the
following statements are executed:

g = f(x, y, 2);
a 1= (3*sin(x**3) — (2/3)*x +y) / Q*x**2 — 1);

as in the example in 5.2.1 then

nops(g) has the value 3
op(0..nops(g), g) has the value f(x,y,z)
nops(a) has the value 2
nops(op(l,a)) has the value 3
nops(op(2,a)) has the value 2.

Note that the latter result of 2 is not because the denominator of ‘a’ is the expression
2% x**2+(—1)

which is an addition of two terms but rather op(2,a) is the expression
@2+ (= 1)**(=1)

which is a power (and a power necessarily consists of exactly two operands). If expandp
and expandq are as in 5.2.17 above then

nops(expandp) has the value 8
nops(expandq) has the value 4.

If <exp> is a constant then nops(<exp>) = 2 even if <exp> is an integer, because
integers are stored as rational numbers. For example, if a := 3 then

nops(a) has the value 2
op(l,a) has the value 3
op(2,a) has the value 1.

28 Keith O. Geddes and Gaston H. Gonnet

5.2.20. indets(<exp>)

The purpose of this function is to determine the indeterminates which appear in
<exp>. The value of the function is a set whose elements are the indeterminates. The
concept of ‘indeterminate’ is that <exp> is viewed as a rational expression (i.e. an
expression formed by applying only the operations +, —, *, / to some given symbols) and
therefore unevaluated functions such as sin(x), exp(x**2), f(x,y), x**(1/2) are treated as
indeterminates.

[Note: As of this writing, the value of the indets function is not a set but rather an

ordered list using the construct LIST(el, . . . , en) where el, . . . , en are the
indeterminates. The name LIST is recognized by the system function REST such that the
value of REST(LIST(el, . . ., en))is LIST(e2, . . . , en). A switch to the use of sets will

be implemented soon.]

Example: If the following statements are executed:

p T= 3*x**3*y**4*z — z*x**z*z**z + y**3*z — 7*y + 5’
ri= (2¥x**2 — 5) * (x — 2)**(1/3) / (x*exp(x**2));

then

indets(p) has the value LIST(x, y, z)
indets(r) has the value LIST(x, (x—=2)**(1/3), exp(x**2)).

5.3. User-defined Functions
In Maple there is the concept of an unevaluated statement sequence:

" <statseq> '

as a valid expression in the language. The definition of a function in Maple flows very
naturally from this concept; namely, a function definition takes the form

<name> := ' <statseq> '

which we already know to be a valid statement in Maple. For functions which do not
require any parameters to be passed and which do not require any variables to be local to
the function, the above construction of a function needs no further explanation. Such a
function is invoked either as a boolean function using the construct

<name> 77
or as an algebraic function using the construct
<name> ()

which are function invocations with an empty <expseq> for the list of actual parameters.
A Maple function which is invoked as a boolean function must evaluate to the value I
(‘true’) or the value O (‘false’). TIn the special case where <statseq> is a single algebraic
expression, the two expressions

MAPLE User’s Manual 29

<name>

<name> ()

evaluate to precisely the same value. However if <statseq> is not a single valid
expression then the former is an invalid expression, while the latter is a function invocation
whose value is the value of the last statement in <statseq>.

An example of a simple function with no parameters and with no local variables was
seen in the sample Maple session of section 3.3. Namely, defining

max := 'if a>b then a else b fi';
then executing the statements
a:= 25/7, b:= 525/149; max();
yields 25/7 as the value of the function invocation max(). As an example of a boolean
function, let us define
a__greater := ' if a>b then lelse 0 fi';
if a and b have values as above then executing the statement
if a__greater?? then print(a) fi;

causes the value 25/7 to be printed out.

The mechanism for introducing parameters into a Maple function is as follows. A
function is defined by a statement of the form

<name> := '<statseq>' .

The following names have a special meaning when used within the statements in
<statseq>:

nargs
paraml, param2, param3, . . .

Specifically, when the function is invoked with actual parameters as in
<name> (<expl>, <exp2>, ..., <expn>)

then every occurrence in <statseq> of the special name nargs is replaced by the integer n,
where n is the number of actual parameters specified in the function invocation. Similarly,
every occurrence in <statseq> of the special name paraml is replaced by the result of
cvaluating the first actual parameter, every occurrence in <statseq> of the special name
param?2 is replaced by the result of evaluating the second actual parameter, and so on up
to param.nargs. There may be too many actual parameters, in which case the effect is that
the extra actual parameters are simply ignored. There may be too few actual parameters,
in which case the extra formal parameter names ‘parami’ remain unreplaced in the
function definition (and may show up in the result of the function invocation).

As an example of a function with parameters, let us change the above definition of

30 Keith O. Geddes and Gaston H. Gonnet

max so that the two values are passed in as parameters. Defining
max := " if paraml > param2 then paraml else param2 fi ’;
then executing the statements
r:=25/7; s:= 525/149; max(rs);

yields 25/7 as the value of the function invocation max(r,s). If we specify too many actual
parameters as in

max(25/7, 525/149, 9/2);

then the third actual parameter is simply ignored and the value returned is exactly as
before. If we specify too few actual parameters in this case, an execution error will resuit
because the relation > is invalid when the difference of its operands involves an
unevaluated name. (In this case the name param2 would remain as an unevaluated name).

Let us now make use of the special name nargs to generalize our function max so
that it will be defined to calculate the maximum of an arbitrary number of actual
parameters. Consider the following function definition:

max ;=
" result := paraml;
for i from 2 to nargs do
if param.i > result then result := param.i fi
od;
result ’;

With this definition of max we may find the maximum of any number of arguments.
Some examples are:

max(25/7, 525/149) has the value 25/7
max(25/7, 525/149, 9/2) has the value 9/2
max{25/7) has the value 25/7
max() has the value param!

where the latter case is an example of a function being called with too few actual
parameters. If we wish to change our definition of max so that the function invocation
max() with an empty parameter list will return no value (more precisely, it will return the
null value) then we may check for a positive value of nargs in a selection statement as in
the following definition of max.

MAPLE User’'s Manual 31

max :=

" if nargs > 0 then
result := paraml;
for i from 2 to nargs do

if param.i > result then result := param.i fi
od;
result
fi';

Let us now consider an example of a function where we may wish to return a value
into one (or more) of the actual parameters. Recall that the integer quotient q and the
integer remainder t of two integers a and b must satisfy the ‘Euclidean division property’

a=bq+r

where either r = 0 or abs(r) < abs(b) . This property does not uniquely define the
mtegers q and r, but let us impose uniqueness by choosing

q = trunc(a/b)

using the built-in Maple function trunc. The remainder r is then uniquely specified by the
above Euclidean division property. (Note: This choice of q and r can be characterized by
the condition that r will always have the same sign as a). The following definition of the
function rem returns as its value the remainder after division of the first parameter by the
sccond parameter, and it also returns the quotient as the value of the third parameter (if
present).

rem :=

* trunc(paraml /param2);
if nargs > 2 then param3 := " fi;
paraml — ” ¥ param2 ’;

I'he function rem as defined here may be invoked with either two or three parameters. In
cither case the value of the function will be the remainder of the first two parameters. The
yuotient will be returned as the value of the third parameter if it appears. At this point it
» crucial to understand that the parameter passing is ‘call by evaluated name’. That is to
say, the actual parameters are evaluated and then substituted for the formal parameters.
Therefore, an error will result if an actual parameter which is to receive a value does not
evaduate to a valid name. It follows that such an actual parameter should usually be
cxplicitly quoted (which effects a true ‘call by name’ parameter passing mechanism). The
following statements will serve to illustrate.

32 Keith O. Geddes and Gaston H. Gonnet

rem(5, 2);

yields the value 1
rem(5, 2, 'q"); q:

yields the values 1 and 2
rem(—8, 3,'q"), q;

yields the values —2 and -2
rem(8, —3);

yields the value 2
rem(8, 3, q);

yields error (in evalname)

The latter ‘error (in evalname)’ arises because the actual parameter g has the value —2
from a previous statement, and therefore the value —2 is substituted for the formal
parameter param3 in the function definition yielding an invalid assignment statement. The
solution to this problem is to change the actual parameter from q to 'q’.

The mechanism for introducing /ocal variables into a Maple function is to use the
local statement which was described in section 3.1. The syntax of the statement is

local(<nameseq>)

and the semantics are that the names appearing in <nameseq> are to be ‘local from here
to the end of the current statement sequence’. In other words, this statement can be
viewed as causing a syntactic renaming of every occurrence of the specified names from the
local statement to the end of the statement sequence in which the local statement appears.
The use of the local statement is not restricted to functions, but a typical use would be to
have a local statement as the first statement in a function and then its ‘range of locality’
would be the entire statement sequence which defines the function. As an example, let us
reconsider the latest definition of max appearing above. There are two global variables
appearing in the function definition which we would almost certainly want to make local:
result and i. This is effected by the following version of the function definition.

max =
" local(result, i);
if nargs > 0 then
result := paraml;
for i from 2 to nargs do
if param.i > result then result := param.i fi
od;
result
fi’;

We give one more version of the max function which will be more efficient in Maple.

MAPLE User’s Manual 33

max :=
"if nargs > 0 then
local(i);
paraml;
for i from 2 to nargs do
if param.i > ” then param.i fi
od;

fi’;

Here we have exploited the operator ” in order to avoid any assignments and thus improve
the efficiency of execution. Another factor in improving the efficiency is that the number
of variables declared to be local has been reduced from two to one. It is worth noting here
that the final ” appearing in the above function would be redundant in some contexts but is
necessary in this function. If it were left out then the value of the function invocation
would be the value of the last statement executed, which would be the value of the if-
statement inside the for-loop when i=nargs. This value will be null unless param.nargs is
greater than all of the other actual paremeters (in precisely the same way that the function
invocation max() returns the null value). However, the value of ” is never updated by a
null value and this fact is exploited in the above function definition.

Noting that a function definition for a boolean function is identical in form to a
function definition for an algebraic function (the only syntactic distinction arises in the
invocation of the function), it follows that a particular function definition could be invoked
as an algebraic function and as a boolean funcion in the same session. The important
semantic property of a boolean function is that it must return the value 1 (‘true’) or O
(*false’). Consider the following definition of a function integer__divide which divides a
two-component vector by an integer if the division is exact over the integers.

integer__divide :=

" if integer ?paraml.1/param2? and integer ?param1.2/param2? then
paraml.l := param!l.l/param2;
paraml.2 := paraml.2/param2;
1

else
0
fi’;
vl := 26 and v.2 := 39 then the construct
if integer__divide ?7v,13? then ... fi;

will cause the components of v to be changed to 2 and 3, respectively, and the statements
i the then-clause will be executed. If the components of v are 26 and 39 as before, the
statement

integer__divide(v,13);

will also cause the components of v to be changed as above.

34 Keith O. Geddes and Gaston H. Gonnet

As a final remark about functions, note that it is usually convenient to use a text
editor to develop a function definition and to write it into a file. The file can then be read
into a Maple session. For example. the max function might be written into a file named
/mlib/max . In a Maple session the statement

read /mlib/max;

will read in the function definition. Since this function is in ‘user format’ Maple will echo
the statements as they are read in. Once the function is debugged it is desirable to save it
in ‘Maple internal format’ so that whenever it is read into a Maple session the reading is
very fast (and no time is spent displaying the statements to the user). To accomplish this
one must use a file with a name ending in the characters “.m’ . Within Maple the ‘user
format’ file is read in and then Maple’s save statement is used to save the file in ‘Maple
internal format’. For example, suppose that we have saved our function definition in a file
named /mlib/max. If we then enter the Maple system and execute the statements

read /mlib/max;
save /mlib/max.m;
we will have saved the internal representation of the function in the second file. This file
may be read into a Maple session at any time in the future by executing the statement
read /mlib/max.m;

which will update the current Maple environment with the contents of the specified file.
The user will quickly discover the time-saving advantages of saving function definitions in
‘Maple internal format’.

6.

MAPLE User's Manual

INTERNAL REPRESENTATION AND MANIPULATION

This section is not yet written.

35

36 Keith O. Geddes and Gaston H. Gonnet
7. MISCELLANEOUS FACILITIES

7.1. Debugging Facilities

There are two names whose values determine the amount of information displayed to
the user during execution of a Maple session:

yydebug
printlevel.

The default value for both of these names is 0. If the user assigns the value 1 to yydebug
as in the statement

yydebug := 1;

then the system displays a very large amount of information which is trace of the Maple
session from the basic system viewpoint.

A more useful facility from the user viewpoint is the printlevel option. Any integer
may be assigned to the name printlevel and, in general, higher values of printlevel cause
more information to be displayed. Negative values indicate that no information is to be
displayed. More specifically, there are two levels of statements recognized within a
particular function (or in the main session): statements within selection or repetition
statements and ‘mainstream’ statements. Normally (with printlevel := 0) the following
statements within the main session

b:=2;
for i to 5 do a.i := b** od;

would cause the printout b:=2 after execution of the first statement and the printout 32
after execution of the for-statement (the value of the for-statement is the value of the last
statement executed). If the user assigns

printlevel := 1;

before the above statements are executed then, in addition, each statement within the for-
statement will be displayed as it is executed (in the same manner as if these statements
appeared sequentially in the ‘mainstream’), yielding the following printouts for the above
statements:

b:=2
al:=2
a2:=4
a3:=8§
a4d:=16
a5:=32
32

More generally, statements are nested to various levels by the nesting of functions.
The Maple system decrements the value of printlevel by 2 upon each entry into a function
and increments it by 2 upon exit, so that normally (with printlevel:=0) there is no

MAPLE User’'s Manual 37

mtormation displayed from statements within a function. If the user assigns
printlevel := 2;

m the main session then each statement within a function nested to one level only (but not
statements within loops in the function) will be displayed as it is executed (because the
cffective value of printlevel within the function is 0). If the user assigns

printlevel := 3;

tn the main session then, in addition, statements within selection and repetition statements
in the function will be displayed (because the effective value of printlevel within the
tunction is 1). Alternatively, the user may explicitly set the value of printlevel within the
tunction for which the information is desired.

It is often useful for debugging purposes to set a high value of printlevel in the main
sesston if information is desired from within functions to various levels of nesting. When
the cffective value of printlevel upon entry to a function is 15 or greater, the entry point
+nd exit point for that function are displayed in the printout. Thus if the user assigns

printlevel: =20;

m the main session then entry and exit points will be displayed for functions only up to
two levels deep (because for a function 3 or more levels deep the value of printlevel will
have been decremented by 6 or more, making its effective value less than 15). However
with this setting statements will be displayed from within functions nested up to 10 levels.
It s not uncommon to use a debug setting such as

printlevel := 100;

m which case all entry and exit points will be displayed for functions nested up to 42 levels
deep, and statements will displayed from within functions up to 50 levels deep. For more
selective debugging information, the value of printlevel should be assigned within specific
functions.

7.2. Fchoing and Timing

Another name known to the Maple system is the name echo. Its default value is 0.
I the user assigns

ccho ;= 1;

then the system creates a temporary file named .echo. into which it saves (in ‘user format’)
every input line entered into the Maple session from this point until the name echo is
assigned the value O (or until the Maple session is ended).

A common use of the echo facility would be to re-run a Maple session, perhaps after
some alterations. A standard procedure would be to use a text editor to alter the .echo.
fle before re-running it. Noting that the Maple system displays only system responses and
not user input lines, it is useful to use a text editor to create a comment line for each input
lme in a file before running it through Maple. For example, if a file contains the

38 Keith O. Geddes and Gaston H. Gonnet

statements

a:=4;
quit

then it might be altered by the ged or fred command
g/ " k() s/ #-->] za(V)

yielding
#-->a:=4,
a:=4;
#-->quit
quit

which could be written into a file, say /example. Then executing the command
maple/sys </example > /output

would run the file through Maple, putting the cutput into the file /output. and since Maple
echos comments the input preceding each system response wil! be seen when the /output
file is examined. (Note that often a user will create an input file initially using a text
editor, applying the above ideas, without requiring the echo facility).

The time command on Honeywell TSS may be used to obtain timing information for

a Maple run. To put this command into effect simply precede the maple/sys command by
the time command, as in

time maple/sys </example > /output

The timing information will be displayed at the terminal after execution has completed.

7.3. Facilities for Names

When a user is using Maple for an interactive session, he may wish to know at some
point which names he has used and whether they have been assigned values or simply stand
for themselves. There are two system functions for this purpose:

assigned_names()
unassigned__names() .

(Note: As of this writing, these two functions are called variables() and indeterminates(),
respectively, but these names are expected to change to the above in a later version of
maple/sys). The first function prints out all names in the current Maple environment
which have a value other than their own name, and the second function prints out all
names in the current Maple environment which stand for themselves.

Another facility relating to names is the keepdot option. If at the beginning of a
session the user specifies

MAPLE User's Manual 39

keepdot;

then the 7 operator will not disappear when names are formed using concatenation. For
evample, the statements

n := 4; a.sub.n,
i:=15,j:=3; p.ij;

normally yield the names asub4 and pl153 while if the keepdot option has been specified
then the above statements will yield the names a.sub.4 and p.15.3 .

7.4. Other Facilities

I'he character ! when it appears as the first character in a line is treated as an ‘escape
tu host” operator. This allows one to execute any command in the host system from within
4 Muaple session. For example, on Honeywell TSS one could list a file without leaving
Muple by using the command

1ist <filename> .

As of this writing, the Maple system has no garbage collection facility. It can be
wsetul to effect a manual garbage collection from the interactive level of Maple by using
the sequence

sive temp.m;
quit

tollowed by re-entering maple/sys and then
read temp.m;

This will restore the Maple environment but with all ‘garbage’ having disappeared. The
uner s piven an indication of the amount of core being used by the printout

core used = XXxXxx

which o randomly displayed. Note that on Honeywell TSS the effective maximum core
which ¢in be used is about 110000 words.

40 Keith O. Geddes and Gaston H. Gonnet

8. THE MAPLE LIBRARY

This section is not yet written.

	

