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ABSTRACT

Ehrenfeucht conjectured that each language L over a finite
alphabet £ possesses a test set, that is a finite subset F of L
such that every two morphisms on Z* agreeing on each string in F
- also agree on each string in L. We introduce the notion of deviation
of a string with respect to a language and use it to give a necessary
condition for the existence of such a test set. Moreover, we prove
that a test set effectively exists for each positive DOL language. The
well known open problem whether this holds for every DOL language

remains open.



1. Introduction

Ehrenfeucht conjectured (Problem 108 in [11]) that for every
language L S_Z* there exists a finite subset F of L such that for
any pair of morphisms on 7 g(x) = h(x) for each x 1in L if and
only if g(x) = h(x) for each x in F. Such a finite subset F has
been called a test set for L 1in [7] where it has been shown that
Ehrenfeucht’s conjecture holds for every language over a binary alpha-
bet. It is clear from arguments in [6] that a test set can be
effectively constructed for each regular language and this has been
extended to context free languages in [1]. The effective existence of
a test set for a language L clearly implies that we can test whether
any given morphisms g, h on Z* agree on L, 1i.e., whether or not
g(x) = h(x) for each x e L. Therefore a test set cannot effectively
exist for each context sensitive language since the testing of morphism
equivalence for them has been shown to be undecidable in [6].

Both the existence of a test set and the decidability of mor-
phism equivalence are open for all families of languages between DOL
and indexed languages, cf. [3] where positive answers are conjectured.
The proof of these conjectures is not expected to be easy since already
the weakest one of them, the decidability of morphism equivalence on
DOL languages, implies the decidability of the HDOL sequence equivalence

problem, cf. [3], a longstanding open problem.



Our main purpose is to provide a partial result in the direction
of these open problems, namely we show that a test set effectively exists
for each positive DOL language. A DOL system is positive - if each letter
can be derived from every other letter in one step.

In section 3 we introduce the deviation of a string with respect
to a language. It is a generalization of weighted difference from [7],
which for any pair of morphisms is linearly proportional to the balance of
the considered string. However, the situation in the case of an arbitrary
finite alphabet is essentially more cémp]icated than in the binary case.
We show that every language L with bounded prefix deviation and fair
distribution of letters possesses a test set.

In the next section we show that it is decidable whether a given
DOL Tanguage L has the above properties, and if so, that a test set for
L can be effectively constructed. For positive DOL languages the case
covered in section 4 is also covered in section 5, but we have included it
since the arguments in the case of bounded prefix deviation are more
intuitive (generalization of bounded weighted difference in [7]) and the
effective existence of a test set is, unlike in section 5, shown indepen-
dently of [5].

In section 5 we construct fora positive DOL language a "partial"
test set covering all pairs of morphisms agreeing on the language with
bounded balance. The part of a test set covering the pairs of morphisms

agreeing with unbounded balance is constructed in section 6.



In the last section we obtain our main result, the effective
existence of a test set for each positive DOL language, by combining the
partial test sets from the previous two sections. This immediately

implies the decidability of morphism equivalence for positive DOL

languages.



2. Preliminaries

This paper deals with basic properties of free monoids from
the point of view of formal language theory. As a general reference we
mention [9]. The basic properties and more background material on DOL
systems as well as DTOL systems can be found in [13].

A free monoid generated by a finite alphabet £ 1is denoted
by Z*. For the notational convenience we fix I ='{a1,...,at} if not
explicitly mentioned otherwise. The elements of z* are words or
strings and its subsets languages. The identity element of Z*, called
empty word, is denoted by A, and st = Z* - {1},

The length of a word x and the cardinality of a finite set
A is denoted by |x| and |A|, respectively. For we¢ 2*, the number

of a's in w 1is denoted by |w| When I =‘{a],...,at} we usually

ar
*
write |x|; instead of |x|, . The Parikh mapping ¢ : I - wt s

1 a

i
defined by ¥(x) = (|x|],...,|xlt). Consequently, the Parikh vector of

a word x 1is denoted by y(x). We call words x and y Parikh equi-
valent if ¢(x) = ¢(y). For a word x, alph(x) denotes the set of
letters occurring in x.

*
For x, y in & , the left (right) quotient of x by y is
1

denoted by y 'x (xy']). It is undefined if y is not a prefix (suffix)‘
of x. If x is a prefix of. y we write x prefy, while x Prefy
means that either x prefy or y pref x holds. By prefn(x) we

mean the prefix of x of length n. By definition, if |x| < n then
prefn(x) = x. For a word x (resp. language L) pref(x) (resp. pref(L))

denotes the set of all prefixes of x (resp. all prefixes of words in



L). Similarly for suffixes if "pref" is replaced by "suf". We say that
y is a subword of x if x = X1¥X, for some words Xq and Xo . The
set of all subwords of a language L 1is denoted by sub(L). The set of
all such words of length n 1is denoted by subn(L). We say that y s

a sparse subword of x if y 1is obtained from x by erasing some of

its occurrences of letters.

Throughout this paper our central notion is a morphism of a
free monoid. We say that a morphism h : Z* - A* is A-free if
h(a) = A for all a e %. The size of a morphism h, denoted by [hl,
is [h|| = max{|h(a)| | a € £}. Let h,q : Z* A be two morphisms

and L a language over Z. We say that h and g agree (resp. length-
L L

wise agree) on L, 1in symbols h =g (resp. h = g), if h(x) = g(x)

for a1l x in L (resp. [h(x)| = |g(x)] for all x din L). The set
of all pairs of morphisms agreeing on L (resp. agreeing on L Tlength-
wise) is denoted by H(L) (resp. HK(L))' We call a language L rich
if H(L) = {(h,h) | h : Z* - A* is a morphism}, i.e., only pairs with
identical components agree on L. By a test set for a language L we
mean any fini;e subset F ofL L satisfying: for any pair (h,g) of

morphisms h = g implies h = g. Ehrenfeucht conjecture states: Every

Tanguage has a test set.
* *
Let h and g be two morphisms £ -+ A and w a word. The

balance of a word w with respect to (h,g), in symbols B, g(w), or

shortly B(w) if h and g are known, is defined by

Bp,g™) = [h(w)| - |g(w)]| ;



cf. [3]. We say that a pair (h,g) has bounded balance on a language

L if there exists a constant ¢ such that [B(w)| = ¢ for all
w ¢ pref(L). ﬁoreover, we say that (h,g) agree on L with bounded
balance if h =g and (h,g) has bounded balance on L.

Next we introduce briefly bOL systems. A DOL system G is
a triple (1, f, x), where I 1is a finite alphabet, f 1is a morphism
Z* > 2* and x, called axiom of G, is a nonempty word of Z*. A

DOL system G defines a sequence of words : x, f(x), fz(x), ... A

language L(G) = {f"(x) | n =20} is the language generated by G. We

call a DOL system positive if a e f(G) for each pair (a,b) ¢ I x I,
i.e., any letter of I is derived from any other letter in one step.
Finally, we need some terminology concerning vectors over
rational numbers @ and nonnegative integers N . For two vectors z
and z' in Qt z =z' means that 2z 1is componentwise smaller or equal
than z' . If z<z' and z# z', we write z < 2 . By the absolute

t
value of a vector z = (z],...,zt) we mean the number [z| = 7§ |zi| .
i=1

Let M E_Qt . The vector space over Q dgenerated by M is
denoted by <M> . When M c N we call an element z of M minimal
if there does not exist in M any element z' such that z' <z . The

set of minimal elements of M 1is denoted by Min(M) . By the well-known

Konig Infinity Lemma, cf. [9], Min(M) is always finite. If M is a
finite set of numbers we denote the smallest and the largest number of M

by min(M) and max(M) , respectively.



3. Deviation

In this section we define and study our central notion:
deviation of a word with respect to a language. This notion is closely
related to the notion of balance of a word with respect to two morphisms,
however, our new notion depends on the considered language only.

Let L be a language over: {a],...,at} . We define a subset

of "N' induced by L , in symbols sp(L) , by setting
- -1 t
sp(L) = ¢~ {<y(L)> nN"}

Since y(sp(L)) is a subtractive submonoid of the additive monoid Nt

we have, see [8].

Lemma 3.1. For each language L over. {a],...,at}, v(sp(L)) is

finitely generated submonoid of ( Nt,+) .

By Lemma 3.1, there exists a finite set B of vectors in Nt,

say B = {e],...,ep} , such that

igl nie. | n;e N, for i-= 1,...,p}

wsp(t) = {
Now, we state our basic definition.

Definition 3.1. Let L be a language over I = {a],...,at} and

We Z* . The deviation of w with respect to L , in symbols dL(w)

or briefly d(w) when L 1is known, is the set

dL(w) = Min{z € Nt | v(w) e w(sp(L)) + z}



Example 3.1. Let L = ab*c . Then

sp(L) = {x e {a,b,c}* | lxla = [xlc} , and, in terms of Lemma 3.1,
y(sp(L)) = {n(1,0,1) + m(0,1,0) | n,m e N} . Further for each proper
prefix abi of aword in L, d(ab') = {(1,0,0)}-.

¢

Roughly speaking d(w) tells how far w is from the language
sp(L) . By the Konig Infinite Lemma, see [9]1, dL(w) is always finite.
The relation between the deviation and the balance is as follows. For

every pair (h, g) ¢ Hp(L) and every word w
(1) IBh,g(w)l s min{|z| | z e d(w)Imax{|lh]l,/lgli}.
We also have the following important Temma.

Lemma 3.2. Let L be a language and (h,g) a pair of morphisms in

HK(L) . If u and w are words such that y(u) e dL(w) , then

Bp,g(u) = By g(w) .

Proof. Immediate, since u(w) - ¥(u) e p(sp(L)) and h and g agree
lengthwise on sp(L) .

We continue with the following observation.

Theorem 3.1. Every language L over {a],...,at} containing t

linearly independent Parikh-vectors is rich.

t » and hence for any pair

Proof. In this case Y(sp(L)) = N
(h,g) « Hp(L) » [h(a;)] = Ig(ai)l for i=1,...,t . Consequently,

for any pair (h,g) e H(L) , h(ai) = g(ai) holds true for i = 1,...,t, too.



The problem of whether we can effectively find sp(L) for a
given language, or as a special case effectively decide whether L is
rich, depends, of course, on the way how L is given. For DOL languages,

which we are particularly interested in, this can be done by

Lemma 3.3. Let G = (Z, ¢, x) be a DOL system. There exists an
integer k < [Z| such that (L(G)) is included in the vector space
generated by {w(¢i(x)) | i < k}.

Lemma 3.3, as well as Lemma 3.4, follows easily from the

properties of vector spaces.

Lemma 3.4. Let L be a DOL Tanguage generated by a DOL system
(z, f, x) . If u e sp(L) , then also f(u) e sp(L) .

Definition 3.2. Let L and L' be languages over the same alphabet.

We say that L has bounded prefix deviation with respect to L' if

there exists a constant C such that for every prefix w of a word in

L
min{|z| | z ¢ d (W)} <C

If the above is satisfied for L = L' we say that L has bounded

prefix deviation.

It follows from (1) that if L has bounded prefix deviation,
then each pair (h,g) of morphisms in HK(L) has bounded balance on
L . However, the bound depends on the pair. On the other hand, a pair
(h,g) may have bounded balance on such a language which does not have

bounded prefix deviation, see Example 5.1.
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Qur notions of the deviation and the bounded prefix deviation
are generalizations of those of the weighted difference and the bounded
prefix difference defined in [7]. We can also generalize some arguments
of [7] to yield the following theorem. To be able to state it we still

need one notion. We say that a language L has a fair distribution of

letters if there exists a constant q such that every subword in L with

the length of least q contains all letters of the alphabet of L .

Theorem 3.2. Every language L over {a],...,at} with bounded prefix

deviation and fair distribution of letters has a test set.

Proof. Set the prefix deviation of L be bounded by C and let gq
be a constant giving a fair distribution of letters for L . We first

prove

Claim: There exists a constant N such that for any uv ¢ pref(L) ,
with |v| = N, the following holds true: For any pair (h,g) in

Hy (L)
min{|h(uv)|,|g(uv)|} = max{|h{u)}|,]|g(u)|}

The claim is proved as follows. Let 2z be a vector in d(u)
such that |z| < C . We start by showing that there exist a constant

D and a vector z, in P(sp(L)) such that
(2) z+Dnzz; 22

where n = (1,...,1) , i.e. all components of n equal 1. According to

Lemma 3.1 Tet y(sp(L)) be generated by {e1,...,ep} . We set
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D
21'91")” = Izyn >z

and

Z < lZlnSCn<'Z] s

where the last inequality follows since each letter a; occurs in a
word of L . Hence (2) has been proved.

Now, let N =1Dq . Since |v|] 2N, v contains as a sparse
subword a word v' such that ¢(v') =Dn . Assuming, without loss
of generality, that [h(u)| > |g(u)| we should show that

t

lg(uv)| = |h(u)| . For a vector y in N~ 1let y denote a word such

that Y(y) =y . Then, by Lemma 3.2 and the above, we obtain

lg(zv)| - |h(z)]
lg(zv*)] - |h(2)]
l9(z )| - |h(@)]
l9(z))] - In(z))]
0

lg(uv)| - |h(u)]

v

v

v

Thus, the proof of the claim is completed and we return to the proof of
the theorem.

We divide L 1into two parts F and L-F by setting
F={wel | |w <3N} . Moreover, for every w in L-F we choose a

fixed decomposition
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(3) WS Upe.aun with N < Iujl < 2N

For each such decomposition and for each j = 1,...,m we define pairs

(zj,uj) s Where zj is a fixed vector in d(u]...uj_]) satisfying

Izjl <C. Suchvpairs are called pieces. Clearly, the number of

different pieces is finite. We say that two pieces (z,x) and (z',x')

occur consecutively in L 1if there exists in L a word w such that

x and x' occur consecutively in its decomposition (3), say x = Uy
and x' ='uk+] , and moreover z ¢ d(u]...uk_]) and z' e d(u]...uk)
Now, we choose a finite subset L' of L such that for any pair of
pieces if they occur consecutively in L they occur consecutively already
in L'.

Finally, obviously there exists a finite subset F' of L
such that sp(Fu L' u F') = sp(L) . We infer that F u L' u F' 1is a
test set for L . We should show that for any pair (h,g) of morphisms

 FULLUF! L

g implies h =g . Let (h,g) e H(Fu L' v F') and w be

(Ful'uF') . Let the decomposition of w

an arbitrary word in L
according to (3) be w.= Up...u. . Since (hyg) e H{F u L' v F') and
sp(L) = sp(FulL'uF'), h and g agree lengthwise on L and

therefore by the claim and the choice of (3)

min{lh(u1...ui)|,Ig(u]...ui)l} > max{lh(u]...ui_])|,|g(u]...ui_])l}

for i =1,...,m . Consequently, the choice of L' and the fact
h [é g imply that if h(u]...ui_])Pref g(u]...ui_l) then also
h(u]...ui)Pref g(u1...ui) . So we derive inductively that h{(w) = g(w)

which completes the proof of the theorem.



13.

We note that not only the assumption that L has bounded
prefix deviation but also the assumption that L has fair distribution
of letters is essential for our above proof, i.e. for the piece

construction. This is seen as follows.

Example 3.1. (Continued). As already mentioned the language
L = ab*c has bounded prefix deviation. However, the pairs (hk,gk)

of morphisms, for k > 1 defined by

a - a(ba)k a - ab
hk : b~ ba S b+ ab
¢ > ba c > (ab)ka

show that the claim in the proof of Theorem 3.2 does not hold true for
L . Despite of that we, of course, believe that the theorem is true
without the assumption of fair distribution of letters. Indeed,

{ac,abc} is a test set for L .
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4. DOL Languages with Bounded Prefix Deviation

Whether the assumptions of Theorem 3.2 imply the effective exist-
ence of a test set depends,of course, on how L 1is given. In this section
we show that it is decidable whether a given DOL language satisfies the
assumptions of Theorem 3.2 and, moreover, if this is the case, that a test
set for it can be effectively found.

Lemma 4.1. Given a DOL language L, it is decidable whether it has
fair fdistribution of Tetters. Moreover, if this is the case a con-
stant q such that any subword u of L, with |lu| = q, contains all

Tetters of L can be effectively found.

Proof: Let L =L(G) for a DOL system G = (%, f, x) satisfying
Z'éisub(L(G)). For each a in z let G, = (z, f, a). We divide =
into two disjoint parts e and Z; by setting Ie = {acez| L(Ga)
is finite} and I, =L -Le If Z; # P, i.e., L(G) 1is finite,

we are done.

So, assume that I, = @. We claim that L has a fair
distribution of letters, if and only if, the following two conditions
are satisfied:

(i) there exists an o such that for every a 1in Zi
alph(f"(a)) =z for n= ngs and
(i1)  the language Zf* n pref(L(G,)) and Zf* n suf(L(G,)) are

finite for every a in I .
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Clearly, the conditions (i) and (ii) are necessary for a fair distribution
of Tetters in L . They are also sufficient since (ii) rules out the
possibility that L would contain arbitrarily long subwords from Z:'

and after that (i) guarantees that any long enough subword contains all
letters from X . Now, the first sentence of the lemma follows, since
the validity of (i) and (ii) for a DOL language can easily be checked.

Furthermore, if L satisfies the conditions (i) and (ii) then a bound

giving a fair distribution for L can be effectively found.

Lemma 4.2. Given a DOL language L , it is decidable whether it has
bounded prefix deviation. Moreover, if this is the case an upper bound
for it can be effectively found.

Proof. Let L = L(G) for a DOL system G = (T, f, w) with

I = {a],...,at} . By Lemma 3.3, we can effectively find sp(L) . Let

*
F:X =-N be a mapping defined by
t
F(w) = 121 "ilwli for some n. ¢ Z
and satisfying
(1) F(w) = 0 if and only if w e sp(L)

Such an F can be defined e.g. via a linear functional Qt + @ having
<p(sp(L))> as its kernel. Consequently, F can be computed from L .
Let h and g be morphisms of Z* satisfying |h(a1)| - Ig(ai)l =n; .
Therefore F(w) = Bh,g(w) for all w ¢ Z* .

We claim that L has bounded prefix deviation if and only if

the pair (h, g) has bounded balance on L . The implication "bounded
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prefix deviation implies bounded balance" is clear, see equation (1) in
Section 3. So assume that (h, g) has bounded balance on" L , i.e.
F(x) 1is bounded on  pref(L) . We show that
(2) F_](m)n( U d(w))
wepref(L)
is finite for each m e {F(v) | v e pref(L)} . If this is not the case,
then, by the Konig Infinite Lemma, cf. [9], there exist words Wy and
W, in pref(L) such that F(w]) = F(w2) , w(w]) < w(wz) and

w(w]), w(wz) € U dlw) . Let w' e w'](w(w]) - w(wz)) . Then
wepref (L)

F(w') = 0 and, hence, by (1), w' e sp(L) . Consequently, w(wz) can-
not be in d(w) for any Wy oa contradiction. So (2) is always finite,
and therefore L has bounded prefix deviation.

Now, the first sentence of Lemma 4.2 follows. Indeed, in [2]
it has been shown that it is decidable whether an arbitrary pair of
morphisms has bounded balance on a DOL language.

Knowing that the prefix deviation of L 1is bounded, an
upper bound for it can be effectively found as follows. Let xa e‘pref(L),
with a ¢ Zu {A} . HWe associate to xa a pair (d(x), a) where d(x)

is a fixed element in d(x) . Let Lo be the set of all such pairs.
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For each pair (d(x), a) we define a finite set S(d(x), a) of pairs
as follows. Let yb ¢ pref(f(a)) , where b e Z or if f(a) = A then
b=2Xx, and let x' be a fixed word in f(w'](aKx))) . S(d(x), a)
contains all pairs (d(x'y), b) where again d(x'y) denotes a fixed
vector in d(x'y) . Let the set of all pairs thus obtained be Li and
u Lq

let L1 =L 1 - We proceed inductively to define the sets Li for

0
i20 . Now, the important observation is that all the deviations (or
more precisely a representative of all the deviations) of prefixes of
words in {hi(w) | i =n} are obtained as first components of elements
of Ln . This follows easily from Lemma 3.4 by induction on n . From
the definition of L; - sets it follows that Lheslyel, ...
Moreover, since L has bounded prefix deviation we finally find an 10

such that Li - Li » and consequently, assuming that the fixation of

0 0
the value of deviation is always done in the same way, we have Li = Li
0
for each i = 10 . Hence, a bound for the prefix deviation has been
found.

Now, we are ready for the main result of this section.

Theorem 4.1. Given a DOL language L , it is decidable whether L has
bounded prefix deviation and uniform distribution of letters, and if this

is the case, then a test set for L can be effectively found.
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Proof': Let L =L(G) for a DOL system G = (£, f, w) . The first part
of the theorem is proved in Lemmas 4.1 and 4.2. The second part is

deduced from the proof of Theorem 3.2 as follows. Now, instead of using
pieces where the lengths of the second components are between N and 2N
it is preferable to use pieces of the length between N and 2KN , where

K 1is a constant satisfying: 1if u e sub(L) , with |u|l = KN , then

lhn(u)l >N for each n >0 . Such a constant K clearly exists.

Namely, this makes it possible to generate the "piece decomposition of L",
i.e., L with the information how its words are decomposed according to
(3) in Theorem 3.2 into pieces, as a DOL language. Let G_ = (Zp, f

P P

be such a system. Consequently, Zp consists of all second components

of pieces of L as well as short words, i.e., words in F , specified in

. xp)

the proof of Theorem 3.2.

We continue by showing that we can incorporate into each
occurrence of zp in L also the information about what is the deviation
at the beginning of this occurrence of a letter. More precisely, let
yxy' beaword in L such that x corresponds to a piece. We want
to put into x the information about d(y) . This can be done as
follows. First, we recall that the constant N was selected in the
proof of Theorem 3.2 such that if u e sub(L) , with |u] = N, then for
all w ¢ pref(L) there exists z 1in d{(w) such that u¢(u) >z .
Consequently, we can incorporate the information about d{(y) into x ,
for example, by using barred letters. (Observe that for short words

d(y) = 0 .) But can the sequence still be generated by a DOL system?

The answer is "yes", since, as we have already pointed out, sp(L) is
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closed under f (Lemma 3.4), and consequently the deviation at the

beginning of an occurrence of a piece obtained from x by applying fp

can be computed from f(x) and d(y) , i.e., from x and the barred

letters of x . So a new morphism, and also a DOL system, say

Ebv= (Eb, ?b, ?ﬁ) can be defined in such a way that it contains the

entire information about how words of L are decomposed into pieces.
The construction of a test set for L 1is now easy. The
requirement for L' in the proof of Theorem 3.2 is surely fulfilled

if we take from L(Cb) a finite subset Lp such that it contains all
the subwords of L(EE) of the length two, and choose L' equal to a
finite subset of L corresponding to Lp . By the definition of Lp

. - —n —_—
we can effectively find an nj, such that Lplg {fp(xp) | n< no}

Consequently, a finite set " (x) | n < no} is a test set for L .

s

Corollary 4.1. Given a positive DOL language L with bounded

prefix deviation a test set for L can be effectively found.

Proof: Clearly, positive DOL languages have fair distribution of

letters.
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5. Morphisms Agreeing on a Positive DOL Language with Bounded Balance

In this section we consider the case when two morphisms agree
on a given positive DOL language L with bounded balance. We show
that there exists a finite subset F of L such that any pair of
morphisms with bounded balance on L agree on L if and only if it
agrees on F . Thus the considerations of this section yields an
alternate proof for the existence of a test set (and hence also for the
effective existence of a test set, cf. Section 7) for positive DOL
language with bounded prefix deviation (cf. Corollary 4.1). Moreover,
this section takes also care of morphisms agreeing on a positive DOL
language with bounded balance although the language itself has unbounded
deviation. The reason why we included Section 4 is that the

considerations therein are, we believe, more intuitive and neater.

Example 5.1. Let G be a positive DOL system defined by the
morphism

a - aaabcd

b - abcbcd

¢ - acbcbd

d - acbhddd

and the axiom abcd . Clearly, y(L(G)) < {(k,k,k,k) | k =1} and
therefore w(sp(L(G))) = {(k,k,k,k) | k =1} . We claim that, for
- . fx n
each n21, x = prefsn(abcd)) satisfies |xn|a - |xn|d 22",
Since Xy = aaabcd the claim is true for n =1 . So the claim

follows from the relation Xo+] = f(xn) by induction on n . The claim
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immediately implies that L(G) has unbounded prefix deviation.
Consequently, a positive DOL language may possess unbounded prefix

deviation.

Consider now two morphisms defined by

a - ab a - ab

b » a b - aba
h g :

c - bab c - b

d - abab d - abab

Clearly, h and g agree on the language L = {a, bc, cb, d}* with
bounded balance (in fact, with balance 2). Since L(G)c< L, (h,q)
also agrees on L(G) with bounded balance. It is also

easy to give (periodic) pairs of morphisms agreeing on L with un-
bounded balance.

To cover the cases like in the above example, we have to

prove

Theorem 5.1. Let L be a positive DOL language. There exists a
finite subset F of L such that F 1is a test setfor all pairs (h,g)
of morphisms having bounded balance on L, i.e., for any pair (h,q),

L
g 1implies that either h = g or (h,g) has unbounded balance on

i =n

h
L.

Proof: Let L be generated by a positive DOL system G = (I, f, x)
with I = {a1,...,at} . As shown in [2] we can construct a DTOL system

G' and a morphism T such that
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pref(L) = t(L(G'))

Consequently, ¢(pref(L)) has a matrix representation, i.e., there exist
matrices M]""’Mk’M and a vector 7 over N such that y(pref(L))

coincides with the range of the function F : {1,...,k}* +INIZI defined

by

F(i]...iq) = Mi1"‘MiqM for q =0, ij e {1,...,k}.
Moreover,
(1) v(pref(f'(x))) = (F(y) | ly] =n + 1.

Now, let h and g be two morphisms of 2*. Clearly,
(2) {8, () | we pref(L)} = {F(y) sy o | ye (ki

where Th,g " (Ih(a])l - lg(a])l,..., Ih(at)l - Ig(at)l). We assume
that (2) is finite, i.e., (h,g) has bounded balance on L, and apply
results of Mandel and Simon, cf. [12] Section 5, in the following
form. There exists a constant ng. such that all the values of (2)
are obtained when y ranges over {ye {],...,k}* | |yl < ng}. More-
over, ng can be chgsen independently of Th,g° i.e., independently of
(h,g). Consequently, by (1), for any pair (h,g) of morphisms having
bounded balance on L, all possible values of the balance on L are

already obtained on the finite language L' = {£7(x) | n=< ngl-

Next we establish an analogy to the claim of the proof of

Theorem 3.2.
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Claim I. There exists a constant N such that for any
uv e pref(L) , with |v| = N, the following holds true: For any pair

(hy g) in HZ(L) having bounded balance on L

min{|h(uv)|, |g(uv)|} = max{|h(u)|, |g(u)|} .
Claim I is proved as follows. Let (h, g) be a pair of
morphisms satisfying the above assumptions and let K = max{|x| | x € L'}.

Then
IBh g(w)l < K max{]lh]l, ligll} for every w in pref(L) .

Consequently, if we show that there exists a constant N such that for

every v.e sub(L) , with |v]l =N,
(3) min{|h(v)|, |g(v)|} = K max{{hl,llgll}

then Claim I follows. To prove (3) we apply the length argument to a

fixed word of L containing all letters of T , i.e. we obtain that

for some positive values of Nyseeesly - Therefore

(4) Ih(z)| = lgll and  [g(z) ! =|hll

whenever y(z) 2 (n],...,nt) . Now, we use the positiveness of G .
This yields a constant N such that if v e sub(L) , with |v|[ =N,

then y(v) = K(n],...,nt) . Thus, (3) and also Claim I follows from (4).
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To complete the proof of Theorem 5.1 we have to show how Claim I
implies the existence of a finite subset of L such that it tests whether
arbitrary pair of morphisms having bounded balance on L agrees on L .

First we recall a result mentioned already in the proof of Theorem 4.1:
N .
There exists a DOL system G_= (¢, f_, , wh 1= U
er yste b ( 0> fp xp) where p= .Y for
N--I_i
some N' > N, such that the letters in U I occur only in a finite
i=1

subset of L(Gp) and w(L(Gp)) =L , where ¢ is the morphism mapping

*
each element of Zp into a corresponding word of I .

We make another claim,

Claim II. Let w', w" ¢ Zp and (h, g) be a pair of morphisms

in Hz

language L" E_L(Gp) , independent of (h, g) , such that

(L) having bounded balance on L . There exists a finite

*
{Bh,g(w(w]w')) | WiW'wW'w, e L"  for some wq,W, e Zb}

= {Bh’g(w(w]w')) | w]w'w“wz € L(Gp) for some WisW, € Z;} .

The proof of the Claim II is as follows. It is a simple modifi-
cation of the construction presented in [2] to see that there exist a DTOL

system G] and a morphism @3 such that

pref(L(Gp)) n Z; w'w' = T](L(G]))

Consequently, the ideas of the beginning of this proof became applicable,
and prove Claim II.
Now, we are ready to finish the proof of Theorem 5.1. Indeed,

Ctlaims I and II guarantee that the arguments of the proof of Theorem 3.2,
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e.g. the piece construction, can be modified in a obvious way to complete
the proof of Theorem 5.1.
Note that we do not require that F in Theorem 5.1 is found

effectively.
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6. Morphisms Agreeing on a Positive DOL Language with Unbounded Balance

Now, we turn to consider the case when two morphisms agree on
a positive DOL language L with unbounded balance. Necessarily, this
means that the DOL language must have unbounded prefix deviation. We
shall prove an anology to Theorem 5.1 for pairs of morphisms having
unbounded balance on L . In doing this we use ideas, especially the

“shifting argument", presented in [4].

Lemma 6.1. Let G= (¢, f, x) be a positive DOL system. For each

e > 0 there exists an integer ne such that

< slf"(x)l for every n zn_ and w e pref(f'(x)) ,

|d(w) |

where !d(w)lmin =min{|z| | z e d(w)} .

Proof: Let v be a word in L(G) such that alph(v) = I = {a],...,at}.

Since G 1is positive we find a constant s such that for all a in I

(1) (a) = a8y, with (o) >v(v) and ¥(v,) = (V)

a'a a

Now, for each a in I , we fix v_ to be a word obtained from fs(a)

a
by erasing from it a word Parikh-equivalent to v , and we define

f: Z* > Z* by f(a) = vy - This means that for each word y

v(£3(y)) - v(f(y)) belongs to y(sp(L)) . Let g be a constant satisfying
q

(2) o Ty S y(f5@))  forall aez.

We set ib = f'(x) where r satisfies

(3) W(F (x)) = (JFY(x) ] + 1)u(v)
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and define, for i = 0,...,s-1 , DOL systems

G. = (%, f, x.) where i} = fi(io) .

We first claim that for every prefix w e pref(f"5+r+i(x))

there exists a vector z in d(w) such that

() w(?"(i})) 2z for n=20.

We fix an i and prove (4) by inductionon n . The case n =0 is
clear since fo(ig) = fr+i(x) . Solet we pref(f("+])5+r+i(x)) , 1.e.,
WS Wy, where Wy = fs(wi) for some word wi and Wy € pref(fs(b))
for some b in I . By induction hypothesis, there exists a vector z;
in d(wi) such that w(?n(ik)) > z; . Now, since a e sub(f(a)) for

each a , we conclude from (3) that there exist a constant k and a

word u , with y(u) = 7 » such that
(5) w(?n(ik)) > w(uvk) where [uvk| > lfq(x)l .

By (2), (5) and the definition of Wy s |uvklw(v) - w(wz) contains only
positive components. Moreover, by the definition of f , the same holds
true for all vectors Y(f(y)) - |y|w(v) where y « Z* . Consequently,

we obtain

WF)) = vk u(v) + )
W) - Julp(v) + p(FER)) - WK ptv) + wuy)
PEW) - Julp(v) + vlwy)

W(F(uX))

[\

v
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Because of the relation ¢(f(u)) - |u|w(v) 2 0 there exists in d(f(u))
a vector, say z, , such that P(F(u)) - |uly(v) = z, . Now, remember
that ¢(u) € d(wi) . This implies, since sp{(L) is closed under f
(cf. Lemma 3.4) and hence also under f , that there exists in d(w]) a

vector, say Z3 » such that Z, 2 25 . In conclusion, we have
= .k
W(F(u™)) 2 z5 + (w,)  where  z5 e d(w;) ,

which, by (4) and the identity w = WiW, completes the induction.
By (4), to complete the proof of the lemma it is enough to show
that, for i = 0,...,s-1,
(%)

(6) Tim ———— -
e 15 (x;)|

Let M] and M2 denote the growth matrices of G and G] , respectively,

v

cf. [13]. By the definition of ¥ , we have M? > M2+I , where =

denotes the natural componentwise order. Let = = w(?}) and
n = (1,...,1)T . We have
N/~ n n n
ATG)E My men o en f
lfns(ig)l ﬂM?n ﬂ(M2+I)nn m(n M2_1)n n

where C is an upper bound for the values of entries in M, . So (6)
and hence also Lemma 6.1 follows.
We also need another lemma, a lemma on formal power series (as

a general reference of the topic we mention [14]).
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Lemma 6.2. Let F : Z* - Z be a Z-rational formal power series and

N a constant. There exists a constant ng depending on the cardinality
of Z and N only, such that F is unbounded if and only if there
exists a word u such that N < |u| < N+n, and

F(u) & {F(w) | |w] <N}

Proof: The proof of Lemma 6.2 can be derived as an application of the
theory of Hankel matrices, e.g. by using Corollary II.3.4 in [14].

Next we prove an analogy of Theorem 5.1.

Theorem 6.1. Let G = (X, f, x) be a positive DOL system and L = L(G)
There exists a finite subset F' of L such that F' 1is a test set for

all pairs of morphisms having unbounded balance on L , i.e., for each

—

pair (h, g) , h|; g implies that h =g or (h, g) has bounded

balance on L .

Proof: By the standard decomposition technique, cf. [12], we may
decompose G into a finite number of systems such that each such system
(T, f, x) satisfies: subz(?(a)) = subz(?(G)) for all (a, b) e T x I .
Consequently, we may assume that G shows this property.

We first assume that x ¢ T , say x = a . This means that
suby(L) = sub,(f(6)) for all bez . Let (h, g) bean arbitrary
pair of morphisms having unbounded balance on L . We show that there
exists an o such that if h and g agree on {fn(a) | n < no} » then
they agree on L , too. Since o is shown to be independent of (h, g)

the theorem follows from DOL languages generated by positive systems with

the axiom of length 1.
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From now on we consider a fixed, but arbitrary, pair of mor-
phisms having unbounded balance on L and agreeing on a later specified
finite language F' c L. Since h(f(a)) = g(f(a)), we have

) m |h(a)] = m  |g(a)| for some positive integers m, . Conse-

aecl ae2
quently, there exists a constant gq, independent of (h, g), such that

(7) min{[thll, fgll} = — max{[thll, llgll}.

o=

On the other hand, the positiveness of G implies the existence of a con-

stant K > 0, again independently of (h,g), such that

K- |w| IIhll = [h(w)]

A

% 1wl b, and
(8)

A

1
K {wl ligll = [g(w)| = ¢ Iwl| ligl
for every subword w of L containing all Tetters of 3. Consequently,

g9
setting K' = 2 we have
(9) %n lg(w)] = |h(w)] = K'|g(w)| for w € sub(L) with alph(w) = Z.

We choose a constant k such that

k-1

(10) | f (b)lb > K' +1 for each b € z.

Let now f"(a) = uv for some words u and v and large enough
n. Further let |u] = |v] (the other case is symmetric) and pref](v) = a.
We search for ancestors of o, 1i.e., occurrences Ops Ooseee of letters in
L such that fi(ai) contains the above mentioned occurrence of a. Clearly,
since G is positive, there exist a; and o5 i<j, and a constant N > 0O

such that oy = ay their right neighbours in L(G) are the same, say B8,

J!
and moreover
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(1) 70 = 16"

for all b in I, large enough n, and k defined in (10). Observe that

constant N can be chosen independently of u, v and n, while as and ass

of course, depend on u, v and n. This is because oy and “j can always
be chosen from the uniformly bounded initial part of the sequence generated
by G. (Here the assumption |v| = |u] is needed to guarantee the

existence of R).

Our next goal is to fix the integer n in the decomposition

(a) = uv. By (7), (8) and (11), we have

(e K B)) | = g 17"@) | maxtlinl, figl},  and
(12)
|9(F K O))| = g5 1£"(a) | maxtlnl, Jol3.

On the other hand, by Lemma 6.1, for every € > 0 there exists ne such

that
<< n >
|d(u)lmin < e|f (a)] for n=zn_,
and hence
(13) [B(u)] = e]fn(a)| max{[hll, llqll} fornzn_ .

By (12) and (13), if n is large enough, then for all letters b in I

(£ % (b)) |

A%

2|8

maxl i and

(14) ,
lg(£' "X (b)) |

v

ZIBmax'
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where Brax = max{|B(w)] | w e pref'(a) for some m <n} , i.e., we can
find for any decomposition f"(a) = uv , with |v] = |u| and n large

enough, o, (and aj) satisfying (14). So far we have not used the

assumption that (h, g) has unbounded balance on L . Now we do so. We
n

fix the decomposition. f 0(a) = uv requiring that n, 1is large enough to

0
yield (14) and that the balance Bh,g(u) is different from the balances
of the prefixes of {f"(a) | n< nO} u {u} , i.e., for any such prefix
w#u lBh,g(w)l # lsh,g(u)l . Observe here that we have two
possibilities: either |u] < |v| (handled in detail above) or [u] = |v|
(which is symmetric). Observe also that the above is the only point which
makes . ng dependent on (h, g) . However, by Lemma 6.2 and the
considerations of the beginning of the proof of Theorem 5.1, there exists
a uniform upper bound for ng - Consequently, ng can be after all
chosen independently of (h, g) . We further assume that Ny 2 lz| .

Now we set F' = {f"(a) | n < ng} and recall our assumption:

FI
= g. We have

n

Y

a) = ugu'v'vy
_j+1

o
f (a) = u2u'v'v2 ,

where u]u' =u, u'v'= f1(ai6)' The choice of o and oy can

be illustrated as in Figure 1.



33.

\ 17

Figure 1

Since the above specified o 1is in fi(ai), 1£1(8)] = |v'].

So using (10), (14) and (9) we deduce
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Ih(£(8))]

= |n(f KBy

218nax | + INCFTRCE(ER )|

2080, ] + K Ih(FTR(F(8))]

218 |+ max{|n(eK(£(e))) |, 1a(FK(F(BIN Y

(15) [h(v*)]

v

v

v

v

and that the same holds true when h and g are interchanged.

By our assumption h(fno(a)) = g(fno(a)). Therefore since
uv' ¢ pref (fno(a)) there exists a word y such that y h(v') Pref g(v')
or h(v') Pref y g(v') with |y| = [g(u)]. Similarly, since

no-j+i ng-J+i ) )
h(f (a)) = g(f (a)) there exists a word y' such that either
y'h(v') Pref g(v') or h(v') Pref y'g(v') with |y'| = |B(u2u')|. More-
over, by the choice of |B(u)|, ly| # |y'|]. Consequently,

we have the situation illustrated in Figure 2 (where we assume that

h(v') pref y g(v') and y'h(v') pref g(v'); the other three possibilities

can be handled with the very same manner).

Figure 2.
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That is to say, we have three representations for a prefix of h(v').

Consequently, the prefix w of h(v') with the length
(16) min{[h(v')|, |g(v')] - |Bmax!}

is quasiperiodic with the period p = yy', i.e., w e pref (p*). Pos-
sibly by choosing p shorter we may assume that p is primitive,
cf. [9].

Now let

c; = fl'k(c) for each ¢ € 3.

By (14),
(17) [h(c;)}] = 2[Byay ] = Il .

Let L, = {cd e 37 | cd e sub(L(G))}. We claim that h(c;d.) € sub(p*)
for every «cd € L,. Now, by (15), its symmetric form for g, (16)

and the fact L2 c sub(f(p)) we conclude that h(cidi) e sub(w) for
every cd € L,. Thus h(cidi) € sub(p*). Now, by (17) and the primitive-
ness of p, we conclude that h(fi'k(y)) e sub(p*) for every word y

in 2" such that suby(y) ¢ L,. In particular,
(18) h(f k(")) e sub(p*) forn=o0 .
Symmetrically, we find a primitive word p' such that
-k, n ¥
(19) g(f'""(f'(a))) € sub(p' ) forn=0.

So, by the primitiveness of p and p' and by the fact h(f1'k(a)) =
g(fi'k(a)), we must have p =p'.
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Finally, we are ready to finish the proof of Theorem 6.1 in
Fl

the case of one letter axiom. Since h = g and ng = |Z| we, by
Lemma 3.3, conclude that h éﬁ g. Moreover, ng = |=2] dimplies that
if L contains a word starting with some letter in 3, then also F'
contains such a word. Consequently, (18) and (19) guarantee that
=

The proof.for the general case, i.e., for the case when x
need not be of length one, is obtained as a modification of the above
in the following way. Let L, = {cd € 52 | c¢d € sub(L(G))} and
Lo' = {cd ¢ 52 | cd « sub( U {f"(a) | n = 0})}. Now, we cannot re-

aey
quire that, for each b ¢ =, f(b) contains as subwords all words from

L,, but we can require, as we did, that this is true for words from L .

Hence, by the arguments above, there exists a primitive word p such that

h(fi'k(fn(b)))e sub(p*) , and
(20) _ .
g(F17K (#"(b))) « sub(p”)

for all n=0 and b € 3.

Let x = a,...a, with a., € 2. As in the case x = a, we
I J L

FI
= g and h ;Z g, and we should show that h = g. This

have h

follows if we show that

(21) h(fn(a]...aj)) Pref g(fn(a]...a.)) forn=0and j =1,...

J

,r.
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2. We define for n=0

Let us consider (21) for
ao(n) = pref](fn(a])),a](n) = suf](fn(a1)) and az(n) = pref](fn(az)).
Clearly, the sequence (ao(n),a](n),az(n))n>0 is periodic, i.e., for

some integers T and p the following holds
(22) a;(t+eHmo) = a, (T+e+(m+l)p),

for i=0,1,2, £=0,...,p-1 and m= 0. We fix £ and show that
(21) holds for n = T+2+pm with m = 0.

T+£+mp ( a

For notational convenience let f 1) = v(m) and

+ .
fT+Z mp(az) = §(m). For t+Z+mp < i - k we are done: the required
equation is among our assumptions. So let m assume only values such

that t+&mp = 1 - k. Observe that, by (20) and (22),

h(y(m)) e p]p*pz,

(23) h(s(m)) e py' pref(P’),
g(y(m)  pyp Py
g(s(m)) ¢ ps3' pref(p’),

for some words p],pz',p3' e suf(p) and PosPs € pref(p).

Now, we assume that B g(y(m)) assumes at least two different
values, say Bh,g(v(m])) # Bh,g(v(mz)). Because (Bh,g(v(m)))mzo is
governed by a difference equation of order t, we may, possibly
enlarging ng» assume that my,M, < ny. By (23), IBh,g(Y(m])) -
By,glr(mp))| s a multiple of [p|. Let SUlemaJ(h(Y(m1))) =y =

| (h(r(my))) and pref,,  (h(s(m))) = &; = pref (h(5(my))).

suf
lBmax max IBmax
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. ™ ™ M2 "2 M
Since h(f "(x)) = g(f "(x}), h(f “(x)) = o(f “(x)) and |g, (f "(a;))] =

|8 for i = 1, 2, we have, by (23), the situation illustrated in

max|’

Figure 3 (where we assume that B, (y(m]))z 0 and Bh,g(Y(mZ))S 0;

»9
the other cases are similar)

§
A o

Ve
i

i g(s(m))

i g(v(m,)) E

H . i

] N
Figure 3.

So it follows from (23), from the primitives of p and from the fact
that IBh’gy(m]) - Bh,g Y(m2)| js larger than |p| that P3P3' = p.
It also follows from Figure 3 that p,p,' = p. Consequently, by (23),
the equation (21) follows in this case.

The other possibility, i.e., the case when Bh,g(Y(m))
assumes only one value is simpler. Clearly, (21) now follows from (23)
and from the fact that h(y(m) &(m)) = g(y(m) 6(m)) for some value of
m, say m',

Equation (21) for cases Jj > 2 can obviously be derived in
the very same manner. Indeed, to prove (21) for some j, only the be-
haviour of h and g near the occurrences of subwords suf]f"(aj_])

Pref1fn(aj) are needed. This, finally, completes our proof for Theorem 6.1.



39.

7. Test Sets for Positive DOL Languages

Now, we are ready for our main result concerning DOL languages.

Theorem 7.1.  Every positiveDOL language L. possesses a test set.

Moreover, a test set for L can be effectively found.

Proof: Let F and F' be subsets of L determined by Theorems 5.1
and 6.1. Clearly, F U F' 1is a test set for L proving the first sen-
tence of Theorem 7.1. The second sentence follows from Theorem 3.2 in
[5], which shows that if a test set for a DOL Tanguage exists it can be

effectively found.

In order to be able to state a corollary of Theorem 7.1 we
need the following definition. Let L be a family of languages. Mor-

phism equivalence problem for [ is to decide whether two given

morphisms agree string by string on a given language of L.

Corollary 7.1. Morphism equivalence problem for positive DOL languages

is decidable.
Proof: Immediate by Theorem 7.1.

As regards possibilities to generalize the above the following
remark is in order. Let L be a positive DOL language and (h,g) e H(L).
By the proof of Theorem 6.1, either (h,g) agree on L with bounded
balance or there exists a constant 1i (independent of (h,g)) and a

word p such that

(1) h(f(b)), g(f"(b)) ¢ sub(p’) for n=i and be 3,
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i.e., h and g are, in a sense, "very periodic on L". This is not

true for arbitrary DOL languages as seen from

Example 7.1. Let G be the DOL system defined by the morphism

a -+ abc

b -+ bb

c + C
f:

d + d

e > ee

f + cef

and the axiom abdef. Further let h and g:'{a,b,c,d,e,f}* -+
‘{1,2,3,4,5}* be the morphisms defined by

a -~ 1234 a - 1
b -+ 2323 b > 23
c > 4 X c > 4
h s g:
d > 24 d -~ 42
e + 32 e > 3232
f s 5 f > 4325

L(G)
It is straightforward to see that h = g, cf. [10]. It is also clear
that (1) is not satisfied for G, h and g. However, (h,g) has un-

In fact, for each w e L(G),

lwl.

~—

bounded balance on L(G).

w]—

Sh,g(preﬂI | (w)) =

'Z'W-l
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On the other hand, we believe that our considerations can be
generalized to cover all simple DOL languages, cf. [3], i.e. languages
generated by DOL systems satisfying: for each pair (a, b) of letters

a 1is generated from b in a number of steps. Indeed, we have

Theorem 7.2. Each simple DOL language containing a word of the length

one has effective]y a test set.

Proof: A DOL system generating such a language can be decomposed, cf.
,[]3]’ into a finite number of positive DOL systems. We leave the details
for the reader.

We conclude with a simple observation which somewhat extends

our main result.

Lemma 7.1. If a test set (effectively) exists for each language from

L than the same holds also for the morphic closure of L .
Proof: Obvious.

Corollary 7.2. Every HDOL language based on a positive DOL language

possesses (effectively) a test set.
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ABSTRACT

Ehrenfeucht'conjectured that each language L over a finite
a]phabét‘z possesses a test set, that is a finite subset F of L
such that every two morphisms on Z* agreeing on each string in F
- also agree on each string in L. We introduce the notion of deviation
of a string with respect to a language and use it to give a necessary
condition for the existence of such a test set. Moreover, we prove
that a test set effectively exists for each simple DOL language. The
well known open problem whéther this holds for every DOL language

remains open.



1. Introduction

Ehrenfeucht conjectured (Problem 108 in [11]) that for every
'1énguage L E_Z* there exists a finite subset F of L such that for .
any pafr of morphisms én a g(x) = h(x) for each x fn L if and
only if g(x) = h(x) for each x in F. Such a finite subset F has
been called a test set for L in [7] where it has been shown that
Ehrenfeucht's conjecture holds for every language over a binary alpha-
“bet. It is clear from arguments 1in [6] that a test set can be
effectively constructed for each regular language and this has been
extended to context free languages in [1]. The effective existence of
a test set for a language L _¢1ear1y implies that we can test whether
any given morphisms g, h on Z* agree on L; i.e., whether or not
g(x) = h(x) for each x € L. Therefore a test set cannot effectively
exist for each context sensitive language since the testing of morphism
equivalence for them has been shown to be undecidable in [6].

Both the existence of a test set and the decidability of mor-
phism equivalence are open for all families of languages between DOL
and indexed languages, cf. [3] where positive answers are conjectured.
The proof of these conjectures is not expected to be easy since already
the weakest one of them, the decidability of morphism equivalence on
DOL 1qnguages, implies the decidability of the HDOL sequence equivalence

problem, cf. [3], a Tongstanding open problem.



Our main purpose is to provide a partial result in thé direction
~ of these open problems, namely we show that a test set effectively exists
‘for each sihp]e DOL language. A DOL system is simple ([4]) if each letter
-can bé derived from evééy other letter.

In section 3 we introduce the deviation‘of a string with respect
to a Tanguage. -It is a generalization of weighted differencé from [7],
which for any pair of morphisms is linearly proportional to the balance of
“the considered string. However, the situation in the case of an arbitrary
finite alphabet is essentially more cémp]icated than in the binary case.
We show that every language L with bounded prefix deviation and uniform
distribution of letters possesses a test set.

In the next section we show that it is decidable whether a given
DOL language L has the above properties, and if so, that a test set for
L can be effectively constructed. For simple DOL Tanguages the case
covered in section 4 is also covered in section 5, but we have included it
since the arguments in fhe’case of bounded prefix deviation are more
intuitive (generalization of bounded weighted difference in [7]) and the
effective existence of a test set is, unlike in section 5, shown indepen-
dently of [5].

In section 5 we construct for a simple DOL language a "partial™®
test set covering all pairs of morphisms agreeing on the language with
bounded balance. The part of a test set covering the pairs of morphisms

agreeing with unbounded balance is constructed in section 6.



In the last section we obtain our main result, the effective
existence of a test set for each simple DOL language, by combining the
partial test sets from the previous two sections. This immediately

implies the decidability of morphism equivalence for simple DOL lan-

guages.



2. Preliminaries

This paper deals wfth basic prOpérties of free monoids from
the point of view of formal language theory. As a general reference we
mention [8]. The basic properties and more background material on DOL
systems can be found in [13].

A free monoid generated by a finite alphabet I 1is denoted
by Z*. For the notational convenience we fix I =‘{a1,...,at} if not
explicitly mentioned otherwise. The elements of Z* are words or
strings and its subsets languages. The identity element of 2*, called
empty word, is denoted by A, and 5= ol - {Al.

The length of a word x and the cardinality of a finite set
A 1is denoted by |x| and |A|, respectively. For w € 2*, the number

of a's in w 1is denoted by ]w[a. When I ='{a],...,at} we usually

write |x|; instead of |x|ai. The Parikh mapping v : D nt s -
defined by w(x) = (|x|1,...,|xlt). Consequently, the Parikh vector of
aword Xx 1is denoted by (x). We call words x and y Parikh equi-
valent if ¢(x) = ¢(y). For a word x, alph(x) denotes the set of
letters occurring in x.

*
For x, y in £ , the left (right) quotient of x by y is

denoted by y'1x (xy']). It is undefined if y 1is not a prefix (suffix)
of x. If.x 1is a prefix of. y we write x pref y, while x Prefy
means that either x prefy or y pref x holds. By prefn(x) we

mean the prefix of x of length n. By definition, if |[x] < n then
prefn(x) = x. For aword x (resp. language L) pref(x) (resp. pref(L))

denotes the set of all prefixes of x (resp. all prefixes of words in



L). Similarly for suffixes if "pref" is replaced by "suf". We say that
y is a subword of x if x = X1¥X, for some words X4 and Xy The
set of all subwords of a language L 1is denoted by sub(L). The set of
all such words of length n 1is denoted by subn(L). We say that y is

a sparse subword of x 1if y is obtained from x by erasing some of

its occurrences of Tetters. A shuffle of words x and y, denoted by
Xwd y, is the set of all words z such that x 1is obtained from =z
by erasing a sparse subword y and the other way around.

Throughout this paper our central notion is a morphism of a
free monoid. We say that a morphism h : i Ny is A-free if
h(a) = A for a]li a € Z. The size of a morphism h, denoted by |h],
is |In]l = max{|h(a)| | a € 2}. Let h,g : £¥ > A" be two morphisms
and L a language over Z. We say that h and g agree (resp. length-
wise agree) on L, "in symbols h ; g (resp. h ;K g), if h(x) = g(x)
|g(x)| for all x in L). The set

for all x in L (resp. |h(x)|
of all pairs of morphisms agreeing on L (resp. agreeing on L length-
wise) is denoted by H(L) (resp. HZ(L))‘ We call a language L rich
if H(L) = {(h,h) | h: 2 +A" is a morphism}, i.e., only pairs with
identical components agree on L. By a test set for a language L we
mean any finite subset F of L satisfying: for any pair (h,g) of

F L
morphisms h = g 1implies h =

g. Ehrenfeucht conjecture states: Every
language has a test set. ‘
* *
Let h and g be two morphisms © =+ A and w a word. The

balance of a word w with respect to (h,g), in symbols By g(w), or’



shortly B(w) if h and g are known, is defined by
Bp,g) = [h(w)| - [gw)] 3

cf. [3]. We say that a pair (h,g) has bounded balance on a language

L 1if there exists a constant c¢ such that |[B(w)| = c¢ for all
w € pref(L). Moreover, we say that (h,g) agree on L with bounded
balance if h é g and (h,g) has bounded balance on L.

Next we introduce briefly DOL systems. A DOL system G is
a triple (I, f, x), where I s a finite alphabet, f 1is a morphism
Z* - Z* and x, called axiom of G, dis a nonempty word of Z*. A
DOL system G defines a sequence of words : x, f(x), fz(x), ... A
language L(G) = {f"(x) | n = 0} 1is the language generated by G. We
call a DOL system simple if

a € sub {f'(b) | n=1}

for each pair (a,b) € z x £, 1di.e., any letter of I 1is derived from
any other letter in some number of steps. A simple DOL system is called
positive if a € sub'{f(b)} fof each pair (a,b) €I x 1.

We shall need some elementary properties of linear vector
spaces, all of which can be found from any text book of the area. For

t

two vectors z and z' 1in IN- the notation z < z' means that 2z'

is componentwise larger than or equal to z. If z=<2z' and z = z'

[ ne o 2
——t

we write z< z'. Finally if z = (21""’Zt) then |z] = _

1 lzil.



3. Deviation .

In this section we define and study our central notion: devia-
tion of a word with respect to a language. This notion is closely related
to the notion of balance of a word with respect to two morphisms; however,
it depends on the considered language only.

Let L be a language over I ='{a],...,at} and (h,g) € HZ(L)'

Then necessarily
t
(1) Z n; |x], =0 for all x € L,

where n. = Ih(ai)l - Ig(ai)[. Hence, to find such (h,g) we have, in

general, an infinite system of linear equations with n;'s as unknowns.

Let the maximal number of linearly independent equations in (1) be k.
Then (1) is equivalent to

t
(2) P

1 n; Ilei =0  for some X;,....x, €L, k=t.

1
Consequently, (2) and hence also (1) has t - k 1linearly independent
solutions, say n(j) = (n](j),...,nt(j)) for g =1,...,t - k. It follows
that every pair (h,g) of morphisms agreeing on L 1lengthwise does so

also on the Tanguage determined by the following system of equations

(3) n(3) Ix]; =0 for j=1,...,t - k.

1 1

i o1t

i
Let us denote by sp(L) the (commutative) language defined by (3). From
the algebraic point of view. sp(L) (or, more precisely, its Parikh-image)

is an additively closed subset of a vector space.



Now, we are ready to state our basic definition.

Definition 3.1. Let L be a language over ¥ and w evz*. The devia-

tion of w with respect to L, in symbols dL(w) or shortﬂy d(w) when

L is known, is the seﬁ of all vectors z 1in Nt sétisfying the follow-
ing two conditions:

(i) v(u) + z = p(w) for some u € sp(L),

(i) {v e sp(L) | w(v) <z} is empty.

Roughly speaking d(w) tells how much larger y(w) is compared
to its closest smaller neighbour in sp(L), i.e., how far w is from
sp(L). Although there can be several vectors in d(w) the number of them
is bounded by a constant depending on t only. Moreover, by the defini-
tion of deviation and the basic properties of vector spaces, if
d(w) c d(w'), then d(w) = d(w'). It also follows that if (h,g) € HK(L)’
d(w) = d{w'), z € d(w) and z' ¢ d(w'), then B(w) = B(w') = B(z) = B(z'").
The above justifies that we may, since we are interested in balances of mor-
phisms, identify the deviation d(w) to any of its elements. So for
notational convenience we may consider d(w) as a single vector.

The relation between the deviation and the balance is as follows.
For ev;ry (h,g) € HK(L) and every word w
min

(4) 18y, g() | = [dw)[p 5, max{lihll, ligil}s

where |d(w)] = min{|z| | z € d(w)}.

min



Qur first observation is-

Theorem 3.1. Every language L over ‘{a],...,at} containing t

linearly independent Parikh-vectors is rich.

Proof: In this case (2) has the trivial solution only, i.e., for any
(h,g) in HK(L), Ih(ai)l = lg(ai)l for i = 1,...,t. Consequently,
for any (h,g) 1in H(L), h(ai) = g(ai) holds true for i = 1,...,t.

The problem whether we can effectively find sp(L) for a
given language L, or as a special case effectively decide whether L
is rich, depends, of course, on the way how L is givén. For DOL
languages, which we are particularly interested in, this can be done

by the following simple Temma.

Lemma 3.1. Let G= (2, f, x) be a DOL system. There exists an
integer k < |Z| such that ¢(L(G)) 1is included in a vector space gen-

erated by {w(fl(x))l i < k}.
Proof: Follows easily from the properties of vector spaces.

Definition 3.2. Let L and L' be languages over the same alphabet.

We say that L has bounded prefix deviation with respect to L' if

there exists a constant c¢ such that for every prefix w of a wprd in
L max{|z] | z ¢ du,(w) =c}.If the above is satisfied for L = L'

we say that L has bounded prefix deviation.
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By (4), it follows that if (h,g) € HZ(L) and L has bounded
prefix deviation, then (h,g) has bounded ba]ance on L. However, the
bound depends on the pajr (h,g). |

Our notions of the deviation and the bounded prefix deviation
are generalizations of those of the weighted difference and the bounded
prefix difference . defined in [7]. Ue can also generalize some arguments
of [7] to yield the following theorem. To be able to state it we need
the following definition. We say that a Tanguage L has a uniform dis-

tribution of letters if there exists a constant q such that every sub-

word in L with the length at least q contains all letters of the

alphabet of L.

Theorenm 3.2. Every language L over '{a1,...,at} with bounded pre-

fix deviation and uniform distribution of letters has a test set.

Proof: Let the prefix deviation of L be bounded by ¢ and let ¢
be a constant giving a uniform distribution of letters for L. We first

prove

Claim: There exists a constant N such that for any uv € pref(L),

with |v| = N, the following holds true: For any (h,g) ¢ HK(L)
min{|h(uv)|, |g(uv)|} = max{|h(u)|, |g(u)|}.
The claim is proved as follows. Let u' and u" be words sat-

jsfying ¢(u') € d(u) and u € u'wiy u". By the choice of ¢ we have

for some words u and u
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p(u') +,w((a1...at)c)= P(u'a) +p(u)  with u'd € sp(L).

Let now N = cq. Since |v] =N, v contains as a sparse subword a word
v' such that ¢(v') = w((a]...at)c). We assume without Toss of generality
that [h(u)] > [g(u)|. We should show that [g(uv)| > |h(u)|. But this

follows directly:

[g(uv)| - [n(u)]

v

lg(utu"v)| - [h(u'u")]

lgCu'v)| - [h(u")]

lglu'vi)] - [h{u")]

lg(u'@u)| - |h(u'D)]

lg(u)]. -

v

tv

Thus, the proof of the claim is completed and we return to the proof of

Theorem 3.2.

We divide L into two parts F and L-F by setting
F={welL | |w =3N}. Moreover, for every w in L-F we choose a
fixed decomposition

(5) WS Xy e X with N =< Xj < 2N.

For each such decomposition we define pairs (nj, xj), where
ng = d(u1 .. uj_1), for j = 1,...,m. We call these pairs pieces.
Clearly, the number of different pieces is finite. We say that two

pieces (n,x) and (m,y) occur consecutively in L if there :exists in L

a word w such that x and y occur consecutively in its decomposi-

tion (5), say x = Uy and y = Ups1> and moreover d(u]...uk_1) =n
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and d(u]..,uk) = m. Now, we choose a finite subset L' of L such that
for any pair of pieces if they occur consecutively in L they occur con-
secutively already in L'.

Finally, by the considerations at the beginning of this section
there exists a finite subset F' of L such that sp(FU L' UF') = sp(L).
We infer that FUL'UF' is a test set for L. We-should show that for

FUL'"UF! L
any pair. (h,g) of morphisms h = g implies h

g. Let
(h,g) ¢ H(FU L' UF') and w be an arbitrary word in L=(FU L' U F").
Let the decomposition of w according to (5) be w = Upeoolp. Since
(h,g) € H(F U L' UF') and sp(L) =sp(FUL'UF'), h and g agree
lengthwise on L and therefore by Claim and the choice of (5)

min{lh(u1...ui)|, IQ(U1---U1)I} > max{lh(u]...ui_i)], !g(u]...u1_1)]}
Ll

for i =1,...,m. Consequently, the choice of L' and the fact h g
imply that if h(u]}..ui_]) Pref g(u]...u1_1) then also
h(u]...ui) Pref g(u]...ui). So we derive inductively that h(w) = g(w)
which completes the proof of the theorem.

Note that not only the assumption that L has bounded prefix
deviation but also the assumption that L has uniform distribution of
letters is essential for our above proof, i.e., for the piece construction.

This is seen from the following example.
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: *
Example 3.1. Let L =ab c. Then
sp(L) = w']({w € {a,b,c}* l lwla = lwlc}). Hence all the words ab" have
the deviation (1,0,0) épd so L has bounded prefix deviation. However,

the pairs (hk,gk), “for k =1, of morphisms defined by

a - a(ba)k a »ab
hk : b - ba 9 ° b-+ab
c + ba c > (ab)ka

show that the claim in the proof of Theorem 3.2 does not hold true for
L. Despite of that we believe that the theorem is true without the
assumption of the uniform distribution of letters. Indeed, {ac, abc}

is a test set for L.



14.

4, DOL Languages with Bounded Prefix Deviation

Whether the assumptions of Theorem 3.2 imply the effective exist-
ence of a test set depends,of course, on how L 1s given. In this section
we show that it is decidable whether a given DOL language satisfies the
assumptions of Theorem 3.2 and, moreover, if this is the case, that a test
set can be effectively found.

Lemma 4.1. Given a DOL Tanguage L, it is decidable whether it has
~ dniform distribution of letters. Moreover, if this is the case a con-
stant q such that any subword u of L, with |u| = q, contains all

letters of L can be effectively found.

Erggf: Let L = L(G) for a DOL system G = (T, f, x) éatisfying

T & sub(L(B)). For each a in 1§ Tet 6, = (£, f, a). We divide =
into two disjoint parts I and Z; by setting I = {a €1 | L(Ga)
is finite} and Z{ =L-ZIe If Z,=p, d.e., L(G) is finite,
we are done.

So, assume that Zi #z @. We claim that L has a uniform
distribution of letters, if and oﬁ]y if, the following two conditions
are satisfied:

(i) " there exists an g such that for every a in ¥
alph(f"(a)) =z  for n= ngs and
(i1)  the language Zf* n pref(L(G,)) and Zf* n suf(L(G,)) are

finite for every a 1in Zf.
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Clearly, the conditions (i) and (ii) are necessary for a uniform dis-
tribution of letters in L. They are also sufficient since (ii) rules
out the possibility that L would cohfain arbitrari]y long subwords from
Zf* and after that (i) guarantees that any long enough subword contains
all letters from Z. Hence, the first sentence of the lemma follows,
since the validity of (i) and (ii) for a DOL language can easily be

checked. Furthermore, if L satisfies the conditions (i) and (ii)

then a bound for prefix deviation can be effectfve]y‘found.

Lemma 4.2. Given a DOL Tanguage L, it is decidable whether it
has bounded prefix deviation.. ‘ Moreover, if this is the case an upper

bound for it can be effectively found.

Proof: Let L = L(G) for a DOL system G = (z, f, m) with
= {aT,...,at}. By Lemma 3.1, we can effectively describe sp(L) as
the commutative language defined by the system of k Tlinearly independ-

ent equations, say

(1) ni(j) |X|i =0 for j = 1,...,k.

[l ne B o
)

1

Let sp(J), for J <{1,...,k}, be the commutative language defined by

n.(J) |x|]; =0 for j € J.
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Then, clearly,

~sp(L) = sp({1,...,k}) < sp({1,...,k=-1}) c ... < sp({1})

and

sp({1,....k=-1}) n sp({k}).

sp(L)

Now, by basic properties of vector spaces, L has bounded prefix deviation
(with respect to L or sp({1,...,k})) if and only if it has bounded prefix
deviation with respect to sp({1,...,k-1}) and to sp({k}). So we conclude
inductively that L has bounded prefix deviation with respect to L 1if
and only if it has such with respect to sp({j}) for j = 1,...,k.

Next we observe that L has bounded prefix deviation yith res-

) . * B
pect to sp({j}) if and only if the mapping fj : I 3% defined by

X

n; (3) fxli

It ™ e+
—

fj(X) = i

is bounded on pref(L), i.e., any pair (h,g) of morphisms satisfying
n;(3) = [h(a;)| - |g(a;)| has bounded balance on L. In conclusion,
to decide whether L has bounded prefix deviation it is enough to de-
cide whether k pairs of morphisms have bounded balance on L. This
latter problem is shown in [2] to be reducable to the boundedness
problem of Z-rational formal power series, and hence decidable, cf. [12].
(As a general reference about formal power series we mention [14].)

After knowing that the prefix deviation of L 1is bounded an
upper bound for it can be effectively found as follows. Let xa € preflw),

with a € 2 U {x}. We associate to xa a pair (d(x),a), where the
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value of d(x) 1is chosen fixed. Let L0 be the set of all such pairs.
For each pair (d(x),a) we define a finite set S(d(xi,a) of pairs as

follows. Let yb € pref(f(a)), where b € = or if f(a) = A then |
b=2X, and let x' be a fixed word in w'](d(X)). S(d(x),a) contains

all pairs (d(x'y),b) where again the value of the deviation is assumed
fixed. Let the set of all pairs thus obtained be L]' and let

L, =L, UL,". We proceed inductively to define the sets Li for

1 0 1

i 2 0. Now, the important observation is that all the deviations (or
more precisely a representative of all the deviations) of prefixes of
words in {hi(w) | i =n } are obtained as first components of elements
of Ln' This is easily seen by induction after the observation that
sp(L) dis closed under f, i.e., whenever u € sp(L) then also

f(u) € sp(L). From the definition of Li - sets it follows that

Lo g_L] S-LZ g;... . Moreover, since L has bounded prefix deviation
we finally find an 10 such that Lid+1 = Lio, and consequently,
assuming that the fixation of the value of deviation is always done in

the same way, we have Li = Li for each i = io. Hence, a bound for

0o -
the prefix deviation has been found.

Now, we are ready for the main result of this section.

Theorem 4.1. Given a DOL language L, it is decidable whether L
has bounded prefix deviation and uniform distribution of letters, and if

this is the case, then a test set for L can be effectively found.
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Proof:  Let L = L(G) for a DOL system G = (I, f, w). The first part
of the theorem is proved in Lemmas 4.1 and 4.2. The second part is deduced
from the proof of Theorem 3.2 as follows. Now, instead of using pieces of
the length between N and 2N it is preferable to use pieces of the
length between N and 2KN, where K 1is a constant satisfying:

if u € sub(L), with Ju| = KN, then |h"(u)] = N for each n= 0. Such
a constant K clearly exists. Namely, this makes it possible to generate
the "piece decomposition of L", i.e., L with the information how its
words are decomposed according to (5) in Theorem 3.2 into pieces, as a DOL
language. Let G_ = (zp, f

p p p
consists of all second components of pieces of L as well as short words,

s xp) be such a system. Consequently, 3

i.e., words in F, specified in the proof of Theorem 3.2.

We continue by showing that we can incorporate into each
occurrence of Zp in L also the information about what is the devi-
ation at the beginning of this occurrence of a ]etter. More precisely,
let y xy' be aword in L such that x corresponds to a piece. We
want to put into x the information about d(y). This can be done as
follows. First, we recall that the constant N was selected in the
proof of Theorem 3.2 such that whenever u € sub{L), with |u|] =N,
then y(u) = z for any z € d(w) and w € pref(L). Consequently, we
can incorporate the information about d(y) dinto x, for example, by
using barred letters. (Observe that for short words d(y) = 0.) But

can the sequence still be generated by a DOL system? The answer is

"yes", since, as we have already pointed out, sp(L) 1is closed under
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f, and consequently the deviation at the beginning of an occurrence of
a piece obtained from x by applying fp can be computed from f(x)
and d(y), 1i.e., from x and the barred letters of x. So a new mor-

phism, and also a DOL system, say G = (Zp, f, ;p) can be defined in

p p
such a way that it contains the entire information about how words of

L are decomposed into pigces.

The construction of a test set for L 1is now easy. The
requirement for L' in the proof of Theorem 3.2 - is surely fulfilled
if we take from L(ép) a finite subset Lp such that it contains all
the subwords of L(ap) of the length two, and choose L' equal to a
finite subset of L corrgsponding to Lp. By the definition of L_,

P

we can effectively find an nj such that Lp g_{?p" (ip) | n = not-

Consequently, a finite set {£1(x) | n = ng} is a test set for L.

Corollary 4.1. Given a simple DOL Tanguage L with bounded prefix

deviation - a test set for L can be effectively found.

Proof: Let L =1L(G) for a simple DOL system G = (&, f, X). Using
the standard decomposition technique we find integers t and p and
DOL systems Gj = (zj, fj, xj), j=0,..., p~-1, such that

p-1 _

L(G) = U L(G,) U {f(x) | n<t}

j0
and moreover each Gj is positive, i.e., alph (fj(a)) = Zj for all
j=0,..., p-1 and a ¢ Zj. Clearly, the languages L(Gj) are DOL

languages with uniform distribution of letters and, by our assumption,
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also bounded prefix deviation with respect to the Tanguage L and hence
also with respect to the language L(GJ.). Hence, by Theorem 4.1, we can
fi?d a test set, say Tj’ for each L(GJ.), and therefore

pr TJ. U-{f-n(_x) | n< t} is a test set for L.

j=0
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5. Morphisms Agreeing on a Simple DOL Language with Bounded Balance

In this section we consider the case when two morphisms agree
on a given simple DOL language L with bounded balance. We show that
there exists a finite subset F of L such that any pair of morphisms
with bounded balance on L agree on L if and only if it agrees on
F. Thus the considerations of this section yields an alternate proof
for the existence of a test set (and hence also for the effective exist-
ence of a test set, cf. section 7) for a simple DOL language with
bounded prefix deviation (cf. Corollary 4.1). Moreover, this section
takes also care of morphisms agreeing on a simple DOL language with
bounded balance although the language itse]f‘has unbounded deviation.
The reason why we included section 4 is that the considerations therein

are, we believe, more intuitive and neater.

Example 5.1. Let G be a simple DOL system defined by the morphism

a 7 aaabcd
bf =+ abcbced
€ ~*+ acbchd

d -+ acbddd

and the axiom abed. Clearly, y(L(G)) c {(k,k,k) | k = 1} and therefore
sp(L(G)) = {(k,k,k) | k= 1}. We claim that, for each n=>1,

= n . . n
X, = pref6n (f"(abcd)) satisfies |[x | - Ix 4z 2.

Since Xy = aaabcd
the claim is true for n = 1. So the claim follows from the relation

Xpp = f(xn) by induction on n. The claim immediately implies that
L(G) has unbounded prefix deviation. Consequently, a simple DOL language

may possess unbounded prefix deviation.
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Consider now two morphisms defined by

a -~ ab . a - ab

b » a ' b - aba
h g ,

c -  bab c - b

d - abab d - abab

Clearly, h and g agree on the language L = {a, bc, cb, d}* with
bounded balance (in fact, with balance 2). Since L(G)c L, (h,qg)
also agree on L(G) with bounded balance. On the other hand, it is
easy to give (periodic) pairs of morphisms agreeing on L with un-
bounded balance.

To cover the cases 1ike in the above example, we have to

prove

Theorem 5.1. Lét L be a simple DOL language. There exists a

finite subset F of L such that F 1is a test set for all pairs (h,q)
of morphisms having bounded balance on L, 1i.e., for any pair (h,q),
h ; g implies that either h’é g or (h,g) has unbounded balance on

L.

Proof: By the arguments of the proof of Corollary 3.1 . we may assume
that L s generated by a positive DOL system, say L = L(G) for
G=(z, f, x) with ¢ ='{a],...,at}. As shown in [2] we can construct

a DTOL system G' and a morphism T such that

pref(L) = t(L(G")).
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Consequently, p(pref(L)) has a matrix representation, i.e., there exist
matricies M;,....M  and a vector = over W such that y(pref(L))

R . R *
coincides with the range of the function F : {1,...,k} =~ lNlZI

defined by

F(i, 1q)-1TM1.]..M1q for g2 0, i; € {l,...,k}
Moreover,
(1) w(pref(f'(x))) = {F(y) | ly| =n + 1}.

Now, 1Tet h and g be two morphisms of Z*. Clearly,
. *
(2) {8, W) | wepref(L)} = (Fly) » ny o |y €{1,....k}],

where Mh,g (Ih(a;)] - Jg(a])l,..., |n(a )| - lgla)[). We assume
that (2) is finite, i.e., (h,g) has bounded balance on L, and apply
results of Mandel and Simon, cf. [12] Section 5, in the following
form. There exists a constant n; such that all the values of (2)
are obtained when y ranges over {y € {T,...,k}* | ly] < ng}. More-
over, n. can be chasen independently of h, g’ i.e., independently of
(h,g). Consequently, by (1), for any pair (h,g) of morphisms having
bounded balance on L, all possible values of the balance on L are
already obtained on the finite language L' = {f(x) | n= ngl-

~ Next we show that the claim in the proof of Thebrem 3.2 is
satisfied for pairs of morphisms having bounded balance on L. From
this the theorem immediately follows. Indeed, as shown in the proof

of Theorem 3.2  this claim implies the "piece construction" and hence
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a finite test set. Now, of course, a test set is obtained for pairs of
morphisms having bounded balance on L.
Let (h,g) € HE(L) be an arbitrary pair of morphisms having

bounded balance on L and let K = max{|[x] | x € L'}. Then
lBh g(_w) | = K max{|thl|, [lg}|} for every prefix w in L.

Consequently, if we prove : there exists a constant N such that for

every z € sub(L) with |z|] =N
(3) min{[h(z)|, |a(z)|} = K max{lihll, ligll},

then the desired analogy of the claim in the proof of Theorem 3.2 has
been established. We prove (3) as follows. We apply the length argu-
ment to a fixed word of L containing all letters of I, i.e., we
conclude that

ni Ih(ai)l = .

i=1 i=1]

3 ni lg(ai)l

0o et
0 D™ ot

for some positive values of NyseeesNy. Consequently,
(4) [h(v)| = Il and  [g(v)]| = [h]|

whenever y(v) = (n],...,nt). Now, we use the positiveness of G. This
yields a constant N such that if z € sub(L) with |[z] = N, then
v(z) = K(n1,...,nt). Thus, (3) follows from (4), and so our proof for
Theorem 4.1 is complete.

Observe that we do not require that F 1in Theorem 5.1 is

found effectively.
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6. Morphisms Agreeing on a Simple DOL Language with Unbounded Balance

Now, we turn to consider the case when two morphisms agree on
a simple DOL language L with unbounded balance. Necessarily, this
means that the DOL language must have unbounded prefix deviation. We
shall prove an anology to Theorem 5.1 for pairs of morphisms having
unbounded balance on L. In doing this we use ideas, especially the
"shifting argument", presented in [4].

We start with

Lemma 6.1. Let G = (z, f, x) be a positive DOL system. For

each €>0 there exists an integer n. such that

|d(w) |

min S € [f"(x)| for every n = n. and w ¢ pref(f"(x)),

where ld(W)lmin = min{le | z € d(w)}.

Proof: Let v be a word in L(G) such that alph(v) = ¢ ='{a],...,at}.

(The positiviness is needed only here.) Since G is simple we find a

constant s such that for all a in %

(1) f(a) = a, B, v, with (o) = 9(v) and y(v,) = b(v).

Now, for each a 1in I, we fix vy to be a word obtained from fs(a)

by erasing from it a word Parikh-equivalent to v, and we define

- * * -
f:Z +~2 by f(a)=v,. Let q be a constant satisfying

a

0 1

(2) Y(v W(f(a)) for all a € 2.

v
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We set io = f7(x) where r satisfies

(3) W(f7(x)) = (190 + 1) w(v)
and define, for 1 =0,..., s - 1, DOL systems |

- - .;_-i.'
G, = (z, f, xi) where X; = f'(X;) .

We first claim that for every prefix w e»pref(fn5+r+1(x))

there exists a vector z in d(w) such that
(4) w(?"(ii)) >z for n = 0.

We fix an 1 and prove (4) by induction on n. The case n =0 is
é]ear since fo(ii) = ftjl(x). So let w ¢ pref(f(n+])5+r+i(x)), i.e.,
W= Wy Wy where Wy = fg(w]') for some word w1' and W, € pref(fs(b))
for some B/.in 5. By 1nduction hypothesis, there exists a vector z'

in d(wl') such that
W(F"(x;)) = 2",

Now, since a € sub(Ff(a)) for each. a, we conclude from (3) that there

exist a constant k and a word U, with y(u) = z', such that

(5) PE ) 2w ) where  [w¥] = [1900)]

Clearly, d(Wi') = d(uvk) and, consequently, since sp(L(G)) is closed
under f, we also have d(w) = d(?(uvk) wb'). This implies, by (2),
(5) and the definition of f and W,', that there exists in d(w) a

vector z" such that w(?(uvk)) > z". Consequently, (4) follows from (5).
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By (4), to complete the proof of the Temma it is enough to show

that, for i =0,...,8s - 1,

(6) | vim R

n- |fnS(§i) ]

>

Let M] and M2 denote the growth matrices of_ G and Gi’ respectively,

cf. [¥3]. By the definition of ?, we have M]S > M2 + I, where =

denotes the natural componentwise order. Let = = ¢(§.) and n = (1,...,1)T.
’ i
We have
N, n
Ifns()-(.i )I m M] Snﬂ
n n
s M2 n T M2 n _ t2

"
IA

T (M2+I)"n T (n Mzn'])n

where C is an upper bound for the values of entries in M,. So (6)
and hence also Lemma 6.1 follows.

Next we prove the analogy of Theorem 5.1.

Theorem 6.7. Let G= (& f, x) be a simple DOL system and L = L(G).

There exists a finite subset F' of L such that F' 1is a-test set for all
pairs of morphisms having unbounded balance on L, i.e., for each pair

F' L -
(h,g), h = g dimplies that h =g or (h,g) has bounded balance on L.
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Proof: We first assume that x € &, say x = a.' Moreover, we assume
that G = (2, f, a) satisfies the condition: for each w € 22 if W

is a subword of L(G), then it is also a subword of f(b) for all

b € . Observe that this latter assumption is no restriction in general-
ity, since we may, using thebstandard decomposition technique (cf. the
proof of Corollary 4.1), decompose G info a finite number of systems

satisfying the above condition.

Let (h,g) be an arbitrary pair of morphisms having unbounded
balance on L. We show that there exists an Ny such that if h and g
agree on {f'(a) | n < ngt, then they agree on L, too. Since ng is
shown to be independent of (h,g) the theorem follows for DOL languages
generated by simple systems with the axiom of length 1.

From now on we consider a fixed, but arbitrary, pair of mor-
phisms having Gnbounded balance on L and agreeing on a later specified
finite language F' c L. Since h(f(a)) = g(f(a)), we have

. m |h(a)] = J m [g(a)] for some positive integers m_. Conse-

aéz aéx a
quently, there exists a constant q, independent of (h, g), such that

(7) min{[thll, lgll} = = max{|[hll, llgll}.

O f—

On the other hand, the simplicity of G 1implies the existence of a con-

stant K > 0, again independently of (h,g), such that

K fw| finll = [h(w)]

1A

]KIWI Ihl, and
(8)

1A

K wl flgll < [gw)] = & [w] ligl
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for every subword w of L containing all letters of . Consequently,

setting K' = i%' we have

(9) %u lg(w)] = |h(w)] = K" |g(w)] ‘for w € sub(L) with alph(w) = =.
We choose a constant k such that

(10) 17T () =K'+ 1 for each b € .

Let now f"(a) = uv for some words u and v and large enough
n. Further let [u] = |v] (the other case is symmetric) and pref](v) = q.
We search for ancestors of a, i.e., occurrences Qg5 Ooseen ~of letters in
L such that fi(ai) contains the above mentioned occurrence’ of a. Clearly,
since G is simple, there exist o, and a., i < j, and a constant N> O

1 J

such that o, = a;, their right neighbours in L(G) are the same, say B8,

i 3’
and moreover

(1) 17K )] = § 1)

for all b 1in I, large enough n, and k defined in (10). Observe that

constant N can be chesen independently of u, v and n, while oy and L

of course, depend on u, v and n. This is because oy and aj can always
be chosen from the uniformly bounded initial part of the sequence generated
by G. (Here the assumption |[v]| = |u]| is needed to guarantee the

existence of B8).
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Our next goal is to fix the integer n 1in the decomposition

fn(a)r= uv. By (7), (8) and (11), we have

(1K) | 2 KL 1 a) | maxtinl, Ngly,  and

lg(fi-k(b))l > %ﬁ'lfn(a)l max{[[hll, llgll}.

On- the other hand, by Lemma 6.1, for every e > 0 there exists ng such

that
ld(u)] o, = elf"(a)] for nzn_,
.and hence
(13) [8(u)| = e[f"(a) | max{lInll, g} forn=n_ .

By (12) and (13), if n 1is large enough, then

v

I Kmb)) | = 208(w)| . and
(14)

EICON

v

2|8(u)

for all letters b in I, i.e., we can find for any decomposition

f"(a) = uv, with |v| = [u| and n large enough, a; (and aj) satis-

fying (14). So far we have not used the assumption that (h,g) has

unbounded balance on L. Now we do so. We fix the decomposition
n

f O(a) = uv requiring that ng is large enough to yield (14) and



that the balance Bh,g(u) is strictly maximal among the prefixes of
{fN(a) | n< ngt U {u}, i.e., for any such prefix w = u
IBh’g(w)l < lBh’g(UXI. Observe here that we have two possibilities:
either [u] = |v| (hand]éd in detail above) or |u| = |v| (which is
symmetric). Observe also that the above is the only point which makes
Ng dependent on b(h,g). However, it can be derived from a result of
Jacob, cf. [9], that there exists a uniform upper bound for ng- Con-
sequently, ny can be after all chosen independently of (h,g). We
assume that nj = Iz]. |
' Now we set F' = {f'(a) | n = ng} and recall our assumption:

Z g. We have

"o

f “(a) = uqu'v'vy ,

-j+i

'nO
f (a) = u2u‘v'v2 .

where u1u' =u, u'v' = f1(ai8). The choice of a3 and “j can now

be illustrated as in Figure 1.
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\ A

Figure 1

Since the above specified o 1is in f(a,), [f(8)]

So using (10), (14)4énd (9) we deduce




33.

In(£(8))]

n(e k(e ()]

2(8(u)] + [n(F K (F(ER) )]

2[8(u)| + K* |n(FK(f(8))]

208(u)| + max{[n(FIKERNI]L Ja(FREEMNIT S

—
a—
(8]

~—
-

—~
<

-

IV

v v [}

v

and that the same holds true when h and g are interchanged.
n n
By our assumption h(f 0(a)) = g(f 0(a)). Therefore since
n
uv' € pref (f O(a)) there exists a word y such that y h(v') Pref g(v')

or h{(v') Pref y g(v') with [y| = |g(u)]|. Similarly, since

ng-J+i ng-J+i
h(f (a)) = g(f (a)) there exists a word y' such that either
y'h(v') Pref g(v') or h(v') Pref y'g(v') with |[y'] = lB(uzu')l. More-
over, by the strict maximality of |8(u)|, |y| # |y'|. Consequently,

we have the situation illustrated in Figure 2 (where we assume that
h(v') pref y g(v') and y'h(v') pref g(v'); the other three possibilities

can be handled with the very same manner).

y' h(v')
Lo i a(y')
i N
: g(v')
' A
:f

Figure 2.
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That is to say, we have three representations for a prefix of h(v').

Consequently, the prefix w of h(v') with the length
(16) min{[h(v')|, |g(v')| - [B(u)]}

is quasiperiodic with the period p = yy', i.e., w € pref (p*). Pos-
sibly by choosing p shorter we may assume that p is primitive,
cf. [8].

Now let

c; = f"k(c) for each ¢ € 3.

By (14),
(17) , Ih(e;) | = 2]g(u)] = Ip| .

Let L, = {cd ¢ Zz'l cd € sub(L(G))}. We claim that h(cidi) € sub(p*)
for every cd € Lo. Now, by (15), its symmetric form for g, (16)

and the fact L, c sub(f(g)) we conclude that c.d, ¢ sub(w) for

every cd € L,. Thus h(cidi) ¢ sub(p*). Now, by (17) and the primitive-
ness of p, we conclude that h(fi-k(y)) € sub(p*) for every word y

*
in = such that subz(y) ¢ L,. In particular,
(18) h(f7%(f"(a))) ¢ sub(p*) forn=0 .
Symmetrically, we find a primitive word p' such that
i-k,n *
(19) g(f " (f'(a))) € sub{p*) forn=0.

So, by the primitiveness of p and p' and by the fact h(f1'k(a)) =

g(f1'k(a)), we must have p = p'.
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Finally, we are ready to finish the proof of Theorem 6.1 in
Fl
the case of one letter axiom. Since h = g and ny = [z| we, by
L : :
Lemma 3.1, conclude that h =, 9. Moreover, ny = |z] dimplies that

if L contains a word starting with some letter in 3, then also F'

contains such a word. Consequently, (18) and (19) guarantee that

h

g.
The proof.for the general case, i.e., for the case when x

need not be of length one, is obtained as a modification of the above

in the following wa&. Let L, = {cd ¢ 22 | cd € sub(L(G))} and

Ly' = {cd ¢ 52 | cd € sub( U {f"(a) | n = 0})}. Now, we cannot re-

quire that, for each b ¢ gfz f(b) contains as subwords all words from

L2, but we can require that this is true for words from L2'. Hence,

by the arguments above, there exists a primitive word p such that

h(mci"k (b)) ¢ sub(p*) , and
(20) ,
g(F1 7% (F"(b))) € sub(p™)

for all n=0 and b € 3.
Let x =a;...a, with a. € 2. As in the case x = a, we
W J L

Fl
= g and h ;E g, and we should show that h = g. This

have h

follows if we show that

(21) h(f"(a]...aj)) Pref g(fn(a1...aj)) form=0and j =1,...,r.
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1]

Let us consider (21) for j = 2. We define for n=> 0

ao(n) = pref](fn(a])),a](n) = suf](fn(a])) and az(n) = pref](fn(az)).

Clearly, the sequence (ao(n),al(n),az(n)) is periodic, i.e., for

n=0
some integers T and p the following holds

(22) a;(THltmp) = a, (T+e+(mtl)p),

for 1=0,1,2, £=0,...,0-1 and m= 0. We fix £ and show that

(21) holds for n = T+2+pm with m = 0.

T+E+mp ( a

For notational convenience let f ]) = y(m) and

fT+£+mp(a2) = 8(m). For t+l+mp < i - k we are done: the required

equation is among our assumptions. So let m assume only values such

that t+&mp = i - k. Observe that, by (20) and (22),

h(y(m)) € pp py,

(23) h(s(m)) € p,' pref(P*),
g(y(m)) ¢ P1D*p3,
g(8(m)) € py' pref(p ),

for some words p],pz',p3' € suf(p) and PosPg € pref(p).

Now, we assume that B g(y(m)) assumes at least two different
values, say Bh,g(v(m])) = Bh,g(v(mz)). Because (Bh’g(v(m)))mzo is
governed by a difference equation of order t, we may, possibly
enlarging n,, assume that my M, < ng. By (23), ‘,Bh,g(Y(m])) -
Bh,q(r(my))| is a multiple of |p|. Let SUfIB(UM(h(Y(m1))) =y =
SUle(u)l(h(‘Y‘(mz))) and prEle(u),(h(ﬁ(m]))) = 6] = pref,B(u))l(h(ﬁ(mz))).
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m, m, m, m, m, '

Since h(f "(x)) = g(f "(x)), h(f “(x)) = g(f “(x)) and lBh,g(f (a))] =
|18(u)|, for i = 1, 2, we have, by (23), the situation illustrated in
Figure 3 (where we assume that Bh,g(Y(m1) =0 and Bh,g(Y(mZ) < 03

the other cases are similar)

N

y

ot o ] ]

a(s(m,))
A

Figure 3.

So it follows from'(23), from the primitives of p and from the fact
that lBh,gY(m]) - Bh,g Y(m2)| is larger than |p]| that‘ P3P3’ = p.
It also follows from Figure 3 that p2p2' = p. Consequently, by (23),
the equation (21) follows in this case.

The othervpossibility, i.e., the case when Bh,g(y(m))
assumes only one value is simpler. Clearly, (21) now follows from (23)
and from the fact that h(y(m) s(m)) = g(y(m) &(m)) for some value of
m, say m',

Equation (21) for cases j > 2 can obviously be derived in
the very same manner. Indeed, to prove (21) for some Jj, only the be-
haviour of h and g near the occurrences of subwords suf]fn(aj_])

pref1fn(aj) are needed. This, finally, completes our proof for Theorem 6.1.
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7. Test Sets for Simple DOL Languages

Now, we are ready for our main result concerning DOL languages.

Theorem 7.1. Every simple DOL language L possesses a test set.

Moreover, a test set for L can be effectively found.

Proof: Let F and F' be subsets of L determined by Theorems 5.1
and 6.1. Clearly, F U F' 1is a test set for L proving the first sen-
tence of Theorem 7.1. The second sentence follows from Theorem 3.2 in
[56], which shows that if a test set for a DOL language exists it can be

effectively found.

In order to be able to state a corollary of Theorem 7.1 we

need the following definition. Let L be a family of languages. Mor-

phism equivalence prob]em for L 1is to decide whether two given

morphisms agree string by string on a given language of L.

Corollary 7.1. Morphism equivalence problem for simple DOL Tlanguages

is decidable.
Proof: Immediate by Theorem 7.1.

As regards possibilities to generalize the above the following
remark is in order. Let L be a simple DOL Tanguage and (h,g) ¢ H(L).
By the proof of Theorem 6.1, either (h,g) agree on L with bounded
balance or there exists a constant i (independent of (h,g)) and a

word p such that

(1 h(f"(b)), g(f"(b)) ¢ sub(p’) for n=1i and b €z,
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i.e., h and g are, in a sense, "very periodic on L". This is not

true for arbitrary DOL languages as seen from

Example 7.1.

and the axiom abdef. Further let h

Let G be the DOL system defined by the morphism

abc
bb
c

d
ee

cef

and g:'{a,b,c,d,e,f}* -

. *
{1,2,3,4,5} be the morphisms defined by

a - 1234

b -~ 2323
o + 4
h:
d +~ 24
e - 32
f - 5

It is straightforward to see that
that (1) is not satisfied for G,
bounded balance on L(G).

B, q(Pref, W) = 5wl

>3 :ﬂwl'1

h and gq. However,

a > 1
b + 23
c - 4
g:
d -~ 42
e > 3232
f - 4325 .
L(G)
= g, cf. [10]. It is also clear

(h,g) has un-

In fact, for each w € L(G),
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We conclude with a simple observation which somewhat extends
our main result.

Lemma 7.1. If a test set (effectively) exists for each language

from L than the same holds also for the morphic closure of L.
Proof: Obvious.

Corollary 7.2. Every HDOL Tanguage based on a simple DOL Tanguage

possesses (effectively) a test set.
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