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Abstract

An f-diagram, F, consists of the graphs {f],...,fn} of n
continuous functions Fiz[O,l] + R. We call the intersection graph of
F a function-graph (f-graph). It is shown that a graph G is an
f-graph if and only if its complement ¢ s a comparability graph.
If a function graph G represents an f-diagram which consists of
linear functions only, then G dtself is a comparability graph. Some

relations between f-graphs and dimensions of partial orders are given.



1. Introduction

A graph G consists of a vertex set V(G) and an edge set
E(G) of unordered pairs of vertices. We consider here only graphs
with no multiple edges or self loops. For two vertices x,y e V(G),
we denote by x g—y if (x,y) ¢ E(G) otherwise x gf—y. The set
re(v) = {x e V(6) | v 2 x}. Agraph D is a directed graph if its
edge set consists of ordered pairs <x,y>. We denote by x E y if
<X,y> ¢ E(D). For a vertex v e D, FB(V) = {x ¢ V(D) | x 2y and
FE(V) ={x e V(D) | v b x}. The cardinality of a set S 1is denoted
by |S|.

Let V' be a finite set of curves in the plane. A graph
G = (V,E) is the intersection graph of V' if for two curves
Vis Vj e V', Vs g—vj if and only if the curves v and Vj intersect.
Intersection graphs are useful in the solution of many problems such
as circuit layouts, traffic. control and information retrieval problems
[ 91. It is shown in [ 3 ] that the set of intersection graphs
of curves in the plane is a proper subset of the set of all graphs. In
this paper, we show that the family of all function-graphs (f-graphs)
(which are the intersection graphs of families of curves obtained from
sets of continuous functions Fi: [0,1] » R) is exactly the set of all
complements of comparability graphs. This result is interesting since,
in general, not all comparability graphs are intersection graphs of
curves in the plane as will be shown in Section 3. In the case that all

functions ’Fi are linear, their intersection graph is itself a

comparability graph and it is called a permutation graph ([8 J).



It is known that transitive orientations of permutation graphs
represent partial orders of dimension at most two [1]. In Section 4 we
study some connections between f-graphs, permutation graphs and

partially ordered sets.

2. Preliminaries and Definitions

Let P={P(1),...,P(n)} be a permutation of the numbers

1,2,...,n and let L, and L, be two parallel lines labelled from

1 2
bottom to top by 1',2',...,n" and P(1), P(2),...,P(n) respectively.
A permutation diagram D(P) of P consists of the labelled lines L]

and L, and a set of n segments of lines {1, 2,...,n} such that

2
segment 1 joins i' on L] with i on L2(1 <1i<n). Agraph G
represents D(P) if the vertices of G can be labelled by {1,2,...,n}
such that i g-j if and only if i and J intersect. A graph G s

called a permutation graph (PG) if G represents at least one per-

mutation diagram. (see figure 1(a))

In this paper the next definition of permutation diagrams
will be found more useful:

Let a and b be two different points connected by two
disjoint simple curves C, and CZ' We choose n points 1', 2',...,n'

1
on C] and P(1), P(2),...,P(n) on C2, and join 1i' on C] to i

. on C2 (1 <i<n)byacurve i, totally contained in the region
bounded by C; and C,, such that for i =], i and J intersect
- at most once  (See figure 1 (b)).. Clearly the intersection graphs

obtained from this type of permutation diagrams are the same as these

obtained from permutation_diagrams given by the first definition.



The class of PG was studied in Pnueli et al [8] and Even
et al [4] where they were applied to model and solve problems con-
cerning memory allocation and circuit layout. It has also been
shown in [8] that PG can be characterized as those graphs where
both the graph and its complement are comparability graphs. A graph
G 1is a comparability graph, ([5],[6],[8], also called transitively
orientable graph) if its edges can be oriented such that for

G
. XsYsZ € V(G) x § y and y § z implies x - z.

In this paper a new class of diagrams ( f - diagrams), and
their associated intersection graphs are introduced.
An f-diagram 1in R2 consists of two lines with equations

x=0and x =1, and a set '{f],fz,...,fn} of graphs of n continuous functions

Fi:[0,1] =R (1 < i <n) with the following properties:

For 1 =]
b) Fi(x) = Eﬁ(x) for only a finite number of points

c) If Fi(x) = Fj(x) , X e [0,1] there exists an € > 0 such
that for all w e (x-e,x) , and all z e (x,x+e)

[F 5 (w) -FJ-(W)] [7.(2) -Fj(z)] <0.

~condition (C) ensures that if the graphs of two functions intersect,

they cross each other at the intersection point. (See figure 2)



Clearly if all functions F, are Tinear, i.e. Fi(x) =a;x+ bi
then an f-diagram is simply a permutation diagram.

A graph G represents an f-diagram 1f4 V(G) can be labelled
with {1, 2, ..., n} such that 1 23 if and only i £, (x) = 75 (x)
for some x ¢ [0,1]. A graph G 1is called a function graph (f-graph)

if G represents at least one f-diagram.



Partially Ordered Sets (POSETS)

A set X 1is partially ordered by a relation "<<" over
X if "<" satisfies

(a) x<<y, y<<z implies x=<<z (transitivity)

(b) x~<<x (antisymmetry)
X dis totally ordered if in addition "< satisfies:

(c) For all x,y e X, x<<y or y<x

X together with "<<" will be called a partially
ordered set, and it will be denoted by (X,<<). If in addition "<
induces a total order on X, (X,<<) will be called a 1inear order
on X.

Given k Tinear orders L; = (X,<G)s L, = (X’<<é)""’Lk = (X],<<k)
on X, we define L] n L, ...l as the partial order L = (X,<X)
on X such that for x,y ¢ X, x<<y if and only if x<<ﬁ Y,
x-<(2y,...,x-<(ky, L 1is called the intersection of L]’LZ""’Lk'

It can be easily proved that every partial order can be
obtained as the intersection of a number of linear orders. Dushnik
and Miller [2] defined the dimension of a POSET (X,<<) (denoted
dim (X,<<)) as the smallest integer k for which there are k
lTinear orders L]’LZ""’Lk on X whose intersection is (X,<X).

A POSET has dimension 1 if it is a linear order. Dushnik

and Miller proved that the dimension of a POSET 1is at most 2 if



and only if it is isomorphic to a set of intervals on the real line
ordered by inclusion. Hiraguchi [ 7] showed that dim (X,<<) < 4 [X]
for |X| = 4.

Given the POSET (X,<<), a graph G can be obtained with
V(G) = X, and  x G y if and only if x~<y or y<x.

G is called the comparability graph of (X,<).

Clearly the elements of a partial order (X,<<) can be
labelled {1,2,...,n} such that, if x,y ¢ X, x<<y, then Xx gets
a label 1 which is smaller than the label Jj assigned to Y.

From now on, we shall assume that the elements of X are
labelled {1,2,...,n} such that if i j 4in (XX) then the integer
i is smaller than the integer j (notice that the opposite is
not necessarily true, since i and j may be incomparable
elements in (X,<<)).

If the elements of X are {1,2,...,n}, a linear order

L, = (X, k) on X, can be obtained from a permutation

k

T {ﬂk(l),wk(z),...,ﬂk(n)} on {1,2,...,n} such that i '<<kj “in

L, if and only if Trk—](i) < Trk_](j).

3. Comparability graphs and f-graphs.

2

The set of points (x,y) ¢ R® with 0 < x <1 will be

called S. Each fi divides S into two subsets S;‘ and

+ —
Si such that Si = {(x,y) € S: y < E}(x)} and S: = {(x,y) ¢ S:

E}(x) < y}. Let us write fo < fj (i #j) 1if and only if

$; < s; . This is equivalent to f, <-fj if and only if



Fi(x) < Fj(x) for all x ¢ [0,1] (Figure 3). Clearly " < " dinduces
an order relation on the set of curves {fl’fZ""’fn} of an f-diagram,
hence ({f1,f2,...,fn}, < )} is a POSET. We now study some properties
of ({fl’fZ"“’fn}’ < ) by analyzing the f-diagram obtained from

{f]’fZ”"’fn}'

Theorem 1: A graph G 1is an f-graph if and only if 6° (the

complement of G) 1is a comparability graph.

Proof: Let {f]’fZ""’fn} be the curves of an f-diagram represented

A

by G. Let H be the comparability graph of the POSET ({f],fz,...,fn},
H . .

Clearly fi —-fj if and only if fi < fj or fj < fi » hence for

all x e [0,1], Fi(x) # Fj(x) (by condition (c) of the definition of

an f-diagram). Clearly this implies that H = GC, hence G° is a

comparability graph.

Conversely, let G = (V,E) be a comparability graph and gc
a transitive orientation of it. We can assume without Toss of
generality that V is  labelled {1,2,...,n} such that if
i>3j in B then i < j.

Let (V,») be the partial order defined on y by the
orientation G° of G°. Then for some integer k there are k
linear orders L, = (V,—>]), L, = (V,->2),.--,Lk(Vs+'k) on vy

such that (V,») =L, nL

1 9 ..o Lk.
Each Lm (1 <m < k) defines a unique permutation M, on

. . . . -1,. -1,.
{1,2,...,n} such that is 3 on Lm if and only if ™ (i) < m (3)

Let us build an f-diagram F for G by using



TysToseeesT AS follows: Take k + 1 parallel lines LO’L1’L2""’L
i-1

such that L, has equation x = ¢— (as in Figure 4). In Lys we

k

choose n points labelled 1,2,...,n from bottom to top. For

1 <msk, choose n points in L~ Tabelled ﬂm(]),ﬂm(Z),...,ﬂm(n)

in this order from bottom to top. We now join the point i (1 < i < n)

on L to i on L

- ] with a 1ine segment for 0 <m < k-1.

Finally, we delete the 1ines L]’LZ""’Lk-1' We are now left with the
lines LO’Lk and a set of n piecewise linear curves {1,2,...,n} where

i Jjoins i on L0 to i on Lk (1 <4 <n). Clearly each i is

the graph of a continuous function Fiz[O,l] > R, furthermore
{Fl’FZ”"’Fn} satisfy conditions (a),(b) and (c) in the definition

of an f-diagram and therefore F 1is an f-diagram. We will now show

that F is represented by G. First we notice that each curve i in

Fis formed by the segments of lines joining the point i on Lm to
i on L (0 <m< k-=1). If i 9-j and i < j, then since

m+1

(V,») = L] n L2 N...n Lk, there exists a minimum integer m > 1 for

which ﬂm—](i) > ﬂm](j). Clearly the segments of lines joining the

points i and J on L to i and j on Lm intersect.

m-1 c

By using similar arguments, we can show that if i ) Js
then the curves ; and 3 do not intersect in F and therefore G
represents F. 0O

As a consequence of Theorem 1, we see that the complement
of any comparability graph is an intersection graph of at least one
family of plane curves. This is interesting since there are com-

parability graphs which are not intersection graphs of curves in the

plane.



Proposition 1: Not all comparability graphs are intersection graphs

of curves in the plane.

Proof: Let G be a non planar graph. Then the graph G obtained
from G by adding an extra vertex in the midpoint of each edge of (3
is not an intersection graph of curves in the plane, as shown in

[ 3, Section 2]. We note that G does not contain any odd cycle

and therefore it is a comparability graph [ 5 1. O

4. Permutation diagrams and f-diagrams.

In Theorem 1 we constructed an f-diagram from a family of

linear orders L]’LZ""’Lk’ This f-diagram can be viewed as a

superposition of k-1 permutation diagrams where the ith permutation

diagram consists of the Tines Li,L and the segments which connect

i+1
the points on Li with the points on L1+] .
This suggests the converse problem,i.e., that of finding the
minimum number of permutation diagrams, p(F), (permutation number of F)
into which a given f-diagram F can be decomposed. We refer here to
'permutation diagrams' according to the second definition. Clearly,

p(F) + 1 is an upper bound on the dimension of the partially ordered

set ({f],...,fn}, < ).
n
For a given f-diagram, F, we denote by S: =} S: and by
- n _ _ i=
S, = N Si' For u e S: and v e S_ acurve C totally
i=1

contained in S which joins u and v is called an f-curve if:
(a) C intersects every function fi e F exactly once.
(b) C does not intersect two functions at the same point.
A lense of F 1is a connected region bounded exactly by

a pair of functions fi’fj e F. Clearly if fi and fj intersect

in k =z 1 points, then they define k-1 lenses.



10.

It follows from this definition that an f-diagram which does
not contain any lenses is a permutation diagram. A set of f-curves
is called a lense cover of F if every lense in F 1is intersected by
- at least one f-curve. Let ¢(F) (lense number of F) be the
cardinality of a minimum lense cover of F (see figure 5).
Theorem 2: 4(F) is equal to p(F) -1
Proof: Assume that ¢(F) = k, then we can draw k f-curves which
intersect all lenses in F. If these f-curves do not intersect each
other then we have a permutation diagram between each pair of
successive curves and two additional permutation diagrams one
* between the leftmost f-curve and the 1ine x = 0 and the other between
the rightmost f-curve and the Tine x = 1. Hence p{F) < k+1 = g(F) + 1.
Also if any pair of f-curves Ci and Cj intersect each other, we can
always replace them by an equivalent pair C; and C; such that

Ci and C; are disjoint and intersect exactly the same lenses of F
cas C, and Cj (See Figure 6).

Conversely, if p(F) = m then since each permutation diagram
does not contain a lense it is possible to draw m-1 f-curves in F

such that all lenses of F are intersected and hence &(F) < m-1 = p(F)-1

which proves the theorem.
0

As a result of Theorem 2, we can find p(F) by constructing

a minimum lense cover for F. In [lI0] a good algorithm for finding

the lense number of an f-diagram is given. We note that each f-curve
Ci defines a linear order Li on {f1,f2,...,fn} according to the
order in which the fi's are intersected when moving from v to wu

along Ci' It is an open problem to find the minimum number, r , of



1.

f-curves C],...,Cr such that L] N L2 ... N Lr is equal to
({f]...fn}, < ). We call this minimal number, r, the dimension of
the f-diagram F denoted by dim (F). The following inequalities
can be easily verified:

2(F) + 1 = p(F) > dim(F) > dim({f]...fn}, < ).

5. Open Problems.

We now present an interesting open problem which is raised by
this work. Let F be an f-diagram, we define the intersection number
of F, I(F), to be the maximum number of intersections between any pair
of functions in F. For example, I(F) =1 1implies that F 1is a
permutation diagram and hence it represents a partial order of dimension
2. Conversely,every partial order of dimension 2 can be represented
as an f-diagram F with I(F) = 1. We observe that if every pair of
curves in an f-diagram F are either disjoint or have an odd number
of intersection points, then the representing graph of F 1is a per-
mutation graph. This follows since we can replace each curve fi by
a straight Tine zi between its endpoints and then 21 intersects Rj
if and only if fi intersects fj. Hence for a POSET of dimension 2
we can construct an f-diagram F with an unbounded I(F). Conversely
there are f-diagrams F with I(F) = 2 which represent POSETS of
arbitrary dimension as shown in Figure 7. The POSET which corresponds
to the f-diagram of Figure 7 has dimension [ %-] (see [2]).

This shows that except for permutation diagrams, the intersection
number of an f-diagram is not directly related to the dimension of its

corresponding POSET. It is natural to ask whether for a given POSET
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(X, <) and an integer m, is it possible to construct an f-diagram
F which represents (X, <<) such that I(F) = m. We conjecture that
for every integer m, there exists a partial order which cannot be

represented by an f-diagram whose intersection is smaller than m.
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4
1
f2
<>
fr-1
o
N0 W
Fo
fr-1 .
: S
£,
fl
>
{o 1 X
(a) (b)

Figure 7(a) - An f-diagram with 2n functions for a POSET of dimension n with
I(F) = 2. For every pair i,j (i#Jj) 1 =i, j=n
f. intersects fj and f% intersects fj. In addition fi

intersects f% but does not intersect fj, J#£i.

Figure 7(b) - The comparability graph of the POSET ({f1’f2"'

.,fn,fl,f2,. .. ,fn},<)
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