MENT
MENT

1|
2 1
EPARTMENT

EPAR
EPAR

ER SEENEE B
cE SCRNGE

]
ur
UT

T

o

Y

ITY OF WATERLOO

Y
ITY

II

An Analysis
of
2-3 Trees and B-trees

Gaston H. Gonnet
Nivio Ziviani
Derick Wood

CS-81-21

June, 1981

An Analysis of 2-3 Trees and B-trees

Gaston H. Gonnet
Nivio Ziviani
Department of Computer Science

University of Waterloo, Waterloo
Ontario N2L 3G1, Canada

Derick Wood

Unit for Computer Science
McMaster University, Hamilton
Ontario 1L8S 4K 1, Canada

ABSTRACT

We present a new way of describing the composition of a fringe in
terms of tree collections. This enables us to answer an open problem
posed by Knuth, and improve upon previous results. We give sharp
bounds on the expected number of splits and on the expected depth of
the deepest safe node on a particular insertion path in 2-3 trees and B-
trees, and drastically improve the bounds on the expected number of
nodes in 2-3 trees. Finally, we give bounds on the expected number of
internal nodes, on the expected number of splits, and on the expected
depth of the deepest safe node for both 2-3 trees and B-trees using an
overflow technique.

Key phrases: Analysis of algorithms, 2-3 trees, B-trees, expected
number of nodes, expected number of splits, storage
used, overflow technique, deepest safe node.

CR Categories: 3.73, 3.74, 5.25

The work of the first author was supported by a Natural Sciences and Engineering
Research Council of Canada Grant No. A-3353, the second by a Brazilian Coordenagao do
Aperfeicoamento de Pessoal de Nivel Superior Contract No. 4799/77 and by the Universi-
dade Federal de Minas Gerais (Brazil), and the third by a Natural Sciences and Engineer-
ing Research Council of Canada Grant No. A-7700.

June 1, 1981

An Analysis of 2-3 Trees and B-trees

Gaston H. Gonnet
Nivio Ziviani
Department of Computer Science

University of Waterloo, Waterloo
Ontario N2L 3G1, Canada

Derick Wood

Unit for Computer Science
McMaster University, Hamilton
Ontario L8S 4K1, Canada

1. Introduction

B-trees were presented by Bayer and McCreight (1972) as a dictionary structure
primarily for secondary store. In a B-tree of order m each node has between m +1
and 2m +1 subtrees, and all external nodes (henceforth called leaves) appear at the
same level. A special class of B-trees called 2-3 trees, more appropriate for primary
store, were introduced by John Hopcroft in 1970 (see Knuth, 1973, p. 468). A 2-3 tree
is a B-tree of order m =1, as shown in Figure 1.

DO G G W
Figure 1 A 2-3 tree with 11 keys

In the intervening years B-trees have gained in popularity as regards both prac-
tice and theory, to the extend that Comer (1979a) has referred to them as ubiquitous.
Comer (1979a, 1979b) described several systems which use B-trees. At the same time
2-3 trees have become equal contenders with AVL trees, often being the preferred data
structure. (See the recent work of Huddleston and Mehlhorn (1980), and Guibas,
McCreight, Plass and Roberts (1977).)

In spite of this interest, no analytical results were known about the performance
of B-trees and 2-3 trees prior to the pioneering work of Yao (1978). Yao (1978)
presented a technique of analysis now known as fringe analysis, which he used to find
bounds on the expected number of nodes in a B-tree after n "random” insertions.
Although his results were slightly extended by Brown (1979b), many questions of
interest were left open. Let us consider some of the basic questions.

First, the expected number of nodes in a B-tree after V random insertions is
certainly of interest, since each node is usually represented as a page. Thus this meas-
ure indicates how well storage is used in practice, when the assumptions of the model

2 G. H. Gonnet, N. Ziviani and D. Wood

are met. We extended and refine the results of Yao (1978) with regard to this measure.

Second, when considering insertions, the costliest operation is surely that of
splitting an overfull node, since this involves not only the creation of a new node but
also an insertion into the next higher level of the tree. Knuth (see Chvatal, Klarner,
and Knuth, 1972, problem 37) raised the following question related to 2-3 trees: "..
how many splittings will occur on the n' random insertion, on the average, ...". We
present the first analysis of this measure for both 2-3 trees and B-trees, albeit only a
partial one.

Third, a different insertion algorithm for B-trees, which uses a technique called
overflow, was presented by Bayer and McCreight (1972, p.183) and also by Knuth
(1973, pp. 477-478). In the overflow technique, instead of splitting an overfull node,
we look first at its brother nodes and make a rearrangement of keys when possible.
The effect of the overflow technique is to produce trees with less internal nodes on the
average, which means a better storage utilization. We present an analysis of the
expected number of internal nodes and the expected number of splitting operations for
both B-trees and 2-3 trees using an overflow technique. Rosenberg and Snyder (1981)
presented a study of B-trees with minimal number of internal nodes (and consequently
optimal space utilization), and recently Eisenbarth and Mehlhorn (1980) have
considered the application of fringe analysis to B-trees using overflow technique.

Fourth, consider B-trees in a concurrent environment; see Kwong and Wood
(1980) for a survey of the technique used. One basic technique identified there was first
used by Bayer and Schkolnick (1977), namely lock the deepest safe node on the
insertion path. A node is insertion safe if it contains less than the maximum number
of keys allowed. Then a safe node is the deepest one in a particular insertion path if
there are no safe nodes below it. Since locking the deepest safe node effectively
prevents access by other processes it is of interest to determine how deep the deepest
safe node can be expected to be. Our results enble us to provide some insight into this
question also.

Finally, we should point out that our results do have a basic limitation, namely
we do not consider the effect of deletions. Note that both Yao (1978) and Brown
(1979b) also ignored deletions. The reasons for this are twofold: firstly deletions do
not preserve randomness, and secondly it is not clear how to incorporate them in the
analysis.

. In this work we assume that all trees are random trees. Consider a B-tree tree T
with NV keys and consequently N +1 leaves. These N keys divide all possible key
values into N +1 intervals. An insertion into 7 is said to be a random insertion if it
has an equal probability of being in any of the N +1 intervals defined above. A
random B —tree with N keys is a B-tree tree constructed by making /N successive
random insertions into an initially empty tree. Random 2-3 trees are defined in the
same way as random B-trees are defined.

In Section 2 we present the basic technique used to perform the analysis of 2-3
trees and B-trees. In Section 3 we perform the analysis of 2-3 trees and derive results
related the four basic questions considered above. In Section 4 we perform the
analysis of B-trees and also derive results related to the four basic questions mentioned
above.

An Analysis of 2-3 trees and B-trees 3

2. Fringe Analysis Technique

The fringe of a tree consists of subtrees that are isomorphic to members of a
tree collection, which is a finite collection of trees that satisfy an specific constraint
(e.g. the collection of 2-3 trees of height k, £ >0). Figure 2 displays the two types of
trees in a 2-3 tree collection of height 1. The fringe of a 2-3 tree is obtained by
deleting all nodes at a distance greater than k (k >0) from the leaves.

/N

type 1 type 2
Figure 2 Tree collection of 2-3 trees of height 1

The composition of the fringe can be described in several ways. One possible
way is to consider the probability that a leaf of the tree belongs to each of the
members of the corresponding tree collection. In other words, the probability P is

Expected number of leaves of type i in an N —key tree
Py = 2 L feaves_of e . [1]

Transitions between trees of a tree collection can be used to model the insertion
process. Table 1 shows the transitions between the trees of the 2-3 tree collection
shown in Figure 2, where values represent the number of leaves lost and obtained
under a transition. (e.g. an insertion of a key into the type 2 tree shown in Figure 2,
three leaves of the type 2 tree are lost and four leaves of the type | tree are obtained.)
The probability of an insertion occurring in each of the subtrees of the fringe can be
obtained from the steady state solution of a matrix recurrence relation in a Markov
chain. This is the procedure used by Yao (1978). One main difference between the
procedure presented in this paper and Yao’s procedure lies on the way we have
described the composition of the fringe. (Yao’s description of the composition of the
fringe considers the expected number of trees of type i, while we describe it in terms of
leaves as in [1] above.)

-2 4
3-3

Table 1 Transition matrix corresponding to the tree collection
of 2-3 trees of height 1

Let P(N) be an m-component column vector containing P;(N). Then
P(N) = (I+%)P(N—1) 2]

where I is the m Xm identity matrix, and T is the transition matrix. To solve P(NV)
from [2] we define an m-component column vector p (V) containing p;(/V) by

Pi(N)
N+1
In terms of p (N), [2] can be transformed to

pilN) =

PINXN+1) = (I1+5)p(V =DN

4 G. H. Gonnet, N. Ziviani and D. Wood

= (NI+T)p(N—=1)

= (NI+I+T-I)p(N-1)

or
T—-1
= (1 +—= —
pN) = (T+57T (V=1 3]
The matrix T has eigenvalues A, Ay, - -, Ay, where Aj=1 and
RelX,,, <Rer,, 1< - - - <ReAy<]. (The eigenvalues are considered in decreasing order

of their real part.)) Considering also that the matrix 7 is independent of N (by
construction) then it is well known that p (/V), which is the solution of [2], converges
to the solution of

(T-1)q(N) = 0, as N> [4]
where ¢ (V) is also an m-component column vector (Knuth, 1973, pp.679-680).
Lemma 2.1. Let T be an m Xm real matrix with eigenvalues Ay, A3, ..., Ay, , where

A1t =1 and Rel,<Rer, —1<...KReAx<). If p(N) is an m-component vector

o _ T-1 _
satisfying p(N) = (I+ N1)p (N —1), then
o NPt
PNy = axi+ 2 I | = |ajx 5]
j=2i=3 | 141
or
& 2I(N+1+))
p(N) = Ajo# =2, =3, -4,

aix) + aix;,
Ez T(N+2T(\j+2) 7
Proof: It is known that
TXj = ijj

where A; and x; are respectively an eigenvalue and an eigenvector of the matrix T.
Then

T-1
(7 X = \jx;

+___
N+1
or
N Tx; N Ajx; N+>\j
I + = + = y
N+t T N+ N+177 T N+ N+1

Let 4 (V) = (I+—T—i)‘ Then
N+1

A(N)xj = A}N)Xj
and
N+7\j
N+1~’

AJ(N) = where)\I(N)= 1.

Thus

An Analysis of 2-3 trees and B-trees S

N .
p(N) = I A9 1)

i=2
where
p(l) = aixy +amxz+ - + amxm
N) N R N X
p(N) = H{" Ip) = apxi+ [IMaxs+ -+ [INDamxm
= i=2 i=2
or
m N[N
rNy = 211 | |
j=1i=2 i+
144} i+Xj
= a1+ - a X
jz=2 i=2 i+1 7
z 2D(N +1+4X))
_ + x. O
ax1 j2=2 T(NV +2)T(;+2)
Corollary: p(N) ® aix| + O(N)\z_l) (6]

Proof: [5] can be approximated by Stirling’s formula
N
N! = V2xN (%)

and considering
T(N +e) (N+e¥ e "N =V2x(N +¢)
(V) NNe"N2xN

Ne(1+£eth ;;{1 +0(N 7))

Thus
Ar—1
p(N) ® axi+O(N) O

As an example consider the tree collection shown in Figure 2 for values of
N=1, 2., 6,... . For expression [3] consider P(1) = {(1)] (A 2-3 tree with only one
key is a type 1 2-3 tree with probability 1.) For the ex[pression [5], the eigenvalues of T

1
are A=1 and A;=—6, with eigenvectors [3} 4] and -1 respectively, and the values

)

for a1 and «ay are obtained from

3] = alle] + o

where a; = 4/7 and ap = 3/7.

6 G. H. Gonnet, N. Ziviani and D. Wood

3. Partial Analysis of 2-3 Trees

In a 2-3 tree every internal node contains cither 1 or 2 keys. To insert a new
key into a node that contains only one key, we insert it as the second key. If the node
already contains two keys, we split it into two one-key nodes, and insert the middle
key into the parent node. This process may propagate up if the parent node already
contains two keys. When there is no node above we create a new root node to insert
the middle key.

We now define certain complexity measures. Let 71(/NV) be the expected number
of nodes in a 2-3 tree after the random insertion of N keys into the initially empty
tree. Let Pr{j splits} be the probability that j splits occur on the (N + 1) random
insertion into a random 2-3 tree with N keys. Let Pr{j or more splits} be the proba-
bility that j or more splits occur on the (N+1)’h random insertion into a random 2-3
tree with V keys. Let 5(V) be the expected number of splits that occur in a 2-3 tree
during the random insertion of N keys into the initially empty tree. Let E[s(/N)] be
the expected number of splits that will occur on the (N+1)’h insertion into a random
2-3 tree with N keys. Let Pridsn at j" lowest level} be the probability that the
deepest safe node is located at the j’h (j 21) lowest level of a random N-key 2-3 tree.
Let Pridsn above j™ lowest level} be the probability that the deepest safe node is
located above the j’h lowest level of a random N-key 2-3 tree.

In Sections 3.1, 3.2, and 3.3 we shall derive exact values for Pri{0 splits},
Pr{l split}, Pr{2 splits}, Pr{l or more splits}, Pr{2 or more splits}, Pr{3 or more
splits }, and bounds on 5(N), E[s(N)], and improve Yao’s previous results on A(N).
In Section 3.4 we shall derive exact values for Pri{0splits}, Pr{l split},
Pr{2 or more splits}, and bounds on (N), 5(N), and E[s (N)] for an insertion algo-
rithm that uses an overflow technique. In Section 3.5 we shall derive exact values for
Pridsn at 15 lowest level}, Pridsn at 2" lowest level}, Pridsn at 3 Jowest level },
and Pr{dsn above 3" Jowest level} for the normal insertion algorithm, and
Pridsn at 15! lowest level}, Pridsn at 2" lowest level}, and Pridsn above 2™ [owest
level } for the insertion algorithm using an overflow technique. In Section 3.6 we dis-
cuss the possibilities of higher order analyses.

Table 2 shows the summary of the results related to 2-3 trees using the normal
insertion algorithm, and Table 3 shows the summary of the results related to 2-3 trees
using the overflow technique.

3.1. First Order Analysis

The analysis of the lowest level of the 2-3 tree to estimate 7 (V), Pri{0 splits},
Pr{l or more splits}, S(N), and E[s(N)] can be carried out in the following way.
The tree collection shown in Figure 2 contains two members and Table 1 shows that
its corresponding transition matrix is

. -2 4
= | 3-3

From [4] we have (T—1)p (V) = 0, and therefore p j(©) = 4/7, and p o) = 3/7.
Since the eigenvalues of 7 are 1 and —6, we observe that p(N) = 4/7 and
pAN) = 3/7 for N >6.

An Analysis of 2-3 Trees and B-trees

First order
analysis (N >6)

Second order T
analysis (V=)

Third order §
analysis (V=)

A(N) [0.64+0.14/v, | [070+020/N, | [0.73+0.23/N,

N 0.86—0.14/N] 0.79-0.21/N | 0.77-0.23/N |
Pr{0 splits } 4/7 4/7 4/7
Pr{lor more splits } 3/7 3/7 3/7
Pril split) - 0.25 0.25
Pr{2or more splits } - 0.18 0.18
Pr{2 splits } - - 0.10
Pr{3or more splits } - - 0.08

[0.64 + 0.14/N -

[0.70 + 0.20/N -

[0.73 + 0.23/N -

(V) [logy(N+DI/N , | [loga(N+D/N, | [logsN+1))/N ,
0.86 — 0.14/N— | 0.79 —021/N— | 0.77 — 0.23/N—
loga(N+1)J/N] | lloga(N+1)J/N] | llogaN +1)J/N
E[s(N)] [043, [061, 025 + [0.69, 0.46 +
0.43[logAN +1))] | 0.18lloga(N +1))] | 0.08llogAN +1))]
Pr{dsn at 1*'Llevel } 4/7 4/7 4/7
Pridsn at 2™ |level } - 0.25 0.25
Pridsn at 3 1.level } - - 0.10
Pridsn above 3™ - - 0.08

lowest level }

t Results are approximated to O(N_6~55)
1 Results are approximated to O(N “4-37)

Table 2 Summary of the 2-3 tree results

Second order analysis (N—>w) %
n(N
ﬂN—l [0.63+0.13/N , 0.71~0.29/N]
Pr{0 splits } 0.61
Pr{l split} 0.23
Pr{2 or more splits} 0.16
T(N) [0.6340.13/N —[logs (N + 1)} /N ,
0.71-0.29/N — [log2(N +1)J /N]
E[s(N)] [0.55, 0.23+0.16logy (N +1))]
Pridsn at 1% lowest level } 0.61
Pridsn at 2™ lowest level } 0.23
Pri{dsn above 2" lowest level } 0.16

t Results are approximated to O (N “6-81)

Table 3 Summary of the 2-3 tree results using an overflow technique

8 G. H. Gonnet, N. Ziviani and D. Wood

Let A;(N) indicate the expected number of trees of type 7 in a random N-key 2-
3 tree. Let L; indicate the number of leaves of the type i tree. We observe that [1] can
be written as

Ai(N)L;

N+1 7l

Pi(N) =

Let nl indicate the number of nodes at level / of a 2-3 tree with IV keys. Let nal
indicate the number of nodes above the level / of a 2-3 tree.

nl—1

2

Proof: Consider the level [as being the NV +1 leaves of a 2-3 tree with N keys. (Each

leaf represents a node.) The minimum and the maximum number of nodes above the

level / is obtained when each node above level / contains 2 keys and 1 key respectively.

(That is 2nal = nl —1 and nal = nl—1 respectively.) O

Lemma 3.1. < nal € nl—1

Lemma 3.1 and expression [7] lead to the following theorem:
Theorem 3.2.

L\ (P1, P2 L P P2
(N T+ N+ D=5 <A < AT+ 7N +D=1 for N1

Corollary. 1—94_+71]\7 < n}]\)/) < 76]——-—,717\,— for N »6

The remaining results are contained in the lemmas that follow.
Lemma 3.3. Pr{0splits} = —‘7}— for N »6

Proof: An insertion into a type 1 tree shown in Figure 2 causes no split, and the
probability that a random insertion into a random 2-3 tree falls into a type | tree is
pi1- O

Lemma 3.4. Pr{l or more splits} = % for N >6

Proof: Similar to the proof of Lemma 3.3. O
Let 7(N) indicate the expected height of a random 2-3 tree with NV keys.

Lemma 3.5. 5(N) = ﬂ]y—)_ﬂg_)

Proof: From the insertion algorithm we can see that each time a node split occur one
new node is created, except when the node is a root, in which case two nodes are
created. O]

Corollary. [logz(N+1)] < A(N) < llogy (N +1))
Lemma 3.5 leads to the following theorem:

Theorem 3.6.
9 1 [log3(N+1)] 6 1 tlogaN+D
L FIN) : - for N 3¢
14 IN N SN <5735 N ord

Lemma 3.7. E[s(N)] > Pr{l or more splits}
Proof : Similar to the proof of Lemma 3.3. O

An Analysis of 2-3 trees and B-trees 9

3
7
Lemma3.8. E[s(N)] < Pr{l or more splits }|loga(N +1)]

Proof: The upper bound on E[s(N)] is equal to the number of splits/insertion in the
fringe plus all splits that might occur in the nodes above the lowest level, which might
be equal to the height of the tree with all nodes binary but the nodes on the path of
splitting. O

Lemmas 3.7 and 3.8 lead to the following theorem:

Theorem 3.9. -:;— < E[s(N)] < %llogz(N+l)J for N >6

Corollary. E[s(N)] > for N 6

It is interesting to note that the expected value for E [s (V)] probably converges
to the value of (V). However, we cannot prove this; E [s (V)] may oscillate between
a lower bound and an upper bound, where the lower bound is the number of splits per
insertion in the fringe, and the upper bound is the number of splits per insertion in the
fringe plus the number of splits per insertion outside the fringe. (The upper bound is a
function of loga NV)

3.2. Second Order Analysis

The analysis for the two lowest levels of 2-3 trees leads to better bounds for
#(N), $(N), E[s(N)], and exact results for Pr{l split}, and Pr{2 or more splits}.
Yao (1978) showed that there are 12 possible trees in the tree collection of 2-3 trees of
height 2, which are grouped into 7 types, as shown in Figure 3. The corresponding
transition matrix is shown in Table 4.

Again using [4] we obtain

p1 = 1656/7991

P2 = 1980/7991

p3 = 5472/55937

pa = 7128/55937 8]
ps = 1575/7991

pe = 800/7991

p7 = 180/7991.

Since the eigenvalues of 7 are 1, —5.55+£6.25i, —6, 8.23£1.37i, and —12.44, using 31
the asymptotic values of p (V) obtained from [6] are approximated to the O (¥ —6.33),

Lemma 3.1 and expression [7] lead to the following theorem:

1y | Pi 1y [~a Pi 1
Theorem 3.10. (3+2) zlLf +(4+2) E—Li (N +1)=
_ S Pi L Pi
AN (41 D= 1+5] 22— | |[(N+D)-1
=1L =aLi

Corollary.

78501 + 11282

A(N) _ 44343 11594
111874 © 55937N

—6.5
N 55937 55937N+0(N)

+O(N78%)

10 G. H. Gonnet, N. Ziviani and D. Wood

o Lo S

type 1 type 2 type 3 type 4
D) D C 2 ¢ 2 a, G2
% ~ J L ~) \“W—,
type 5 type 6 type 7

Figure 3 Tree collection of 2-3 trees of height 2

-4 83/7 46/8 46/9
5 -5 56/8 56/9
62/5 -6 66/9
63/5 -6
7 7 -7
84/7 -8
i 92/8 -9 |

Table 4 Transition matrix corresponding to the tree collection of 2-3 trees of height 2
(values represent the number of leaves lost and obtained under a transition)

S S S S oD

type 4 type 5 type 6
¢ D, ¢ 2 ‘ ¢ o) D) 2),
i ~ J o\ - § I N —
type 7 type 8 type 9

Figure 4 Tree collection of 2-3 trees of height 2 obtained by grouping type 3
and type 4 shown in Figure 3 into type 6 above

An Analysis of 2-3 trees and B-trees 11

To five place decimals we have

0.70169+94201—69+0(N“6-55) < n(N) < 0.79273— 0.20727 +O (N5 |
N N N
. _ 13788 —6.55
Lemma 3.11. Pr{l split} 55037 +0O(N)

Proof: An insertion into the type 2 tree shown in Figure 3 causes one split in 3/5 of
the times, and an insertion into the type 3 shown in Figure 3 always causes one split.
Since the probability that a random insertion into a random 2-3 tree falls into a type 2
or type 3 tree are p; and p 3 respectively, then Pr{l split} = 3/5p,+p3. O

Lemma 3.12. Pr{2 or more splits} = %%+O(N —6.53)

Proof: Similar to the proof of Lemma 3.11. O
Lemma 3.5 leads to the following theorem:
78501 11282 _ [logs(N +1)]

Theorem 3.13. +0O(N %3 < T(N) <

111874 © 5593TN N
44343 11594 llog2(N+1)) —6.5
55937 55937N N +O(NT%)

To five place decimals we have
0.20169 [log3(V +1)]
N N
0.20727 _ lloga(N +1))

N N
Lemma 3.14. E[s(N)] > Pr{i split |+2Pr{2 or more splits}
Proof: Similar to the proof of Lemma 3.3. O
Lemma 3.15. E{[s(N)] < Pr{l split }+Pr{2 or more splits }|log2(N +1))
Proof: Similar to the proof of Lemma 3.8. O

Lemmas 3.14 and 3.15 lead to the following theorem:

Theorem 3.16.

34158
55937

+O(N %) <F(N) <

0.70169+

+O(N 765

0.79273—

13788 , 1455 -6.5
55937 T 7001 llog2(N +1)) +O (N ~35

+O0(N~%%) < E[s(N)] <

To five place decimals we have

0.61065+0 (N ~5%%) < E[s(IV)] < 0.24649+0.18208 [loga(N +1)} +O (N ~655) .

3.3. Third Order Analysis

" In this section we present the analysis of the three lowest levels of 2-3 trees.
Brown (1979b) performed a three level analysis using a transition matrix of 978X978
elements, and obtained asymptotic values for the number of nodes with one key and
the number of nodes with two keys at each of the three lowest levels. However an
equivalent three level analysis can be performed on a smaller matrix by grouping trees
into types, in the same way the two level matrix in the previous section was reduced

12 G. H. Gonnet, N. Ziviani and D. Wood

from 12X12 to 7X7. If we consider combinations of the 7 types of the two level tree
collection as subtrees of nodes with one and two keys then it is possible to obtain a
three level tree collection with 224 types. Yet it is possible to reduce the 224 types to
147 types, as we shall see in the following.

The idea behind our approach is to group all trees with the same number of
leaves into types. Thus the tree collection shown in Figure 3 is reduced from 7 types to
6 types by grouping the types 3 and 4 into one unique type, as shown in Figure 4. In
this new tree collection the types are numbered sequentially from 4 to 9, where the
type 4 tree has 4 leaves, the type 5 tree has 5 leaves, ..., and the type 9 tree has 9
leaves. Of course the probability related to the type 6 shown in Figure 4 is the sum of
the probabilities related to the types 3 and 4 shown in Figure 3, and the probabilities
of the other types remain as before. (Types 4, 5, 7, 8, and 9 shown in Figure 4 have
the same probabilities as types 1, 2, 5, 6, and 7 shown in Figure 3 respectively.)

Lemma 3.17. The 6 types of the tree collection shown in Figure 4 can be used as
subtrees of nodes with one or two keys in order to obtain a three level tree collection.

Proof: From the trees shown in Figure 3, the ones with the same number of leaves
appear as subtrees of nodes with one or two keys having the same probability, simply
because they belong to the same type. O

Lemma 3.18. The two level tree collection with 6 types shown in Figure 4 can be used
to form a three level 2-3 tree collection with 147 types.

Proof: Following the notation presented in Figure S, the 147 types of the three level
tree collection are represented either as type ij (4<i <9 and i <j<9) for the tree types
with binary roots, or as type ijk (4<k <9, 4<i <k, and 4<j <9) for the tree types with
ternary roots., The number of tree types with binary roots is 21, and the number of
tree types with ternary roots is 126, which gives a total of 147 types. O

Lemma 3.19. The transitions related to the 6 types of the tree collection shown in
Figure 4 are equivalent to the transitions related to the 7 types of the tree collection
shown in Figure 3 when both are used as subtrees of nodes with one or two keys in
order to obtain a three level tree collection.

Proof: Figures 6(a) and 6(b) show the transitions related to the tree collections shown
in Figure 3 and Figure 4 respectively. It is indifferent whether we use the 6 types of
the tree collection shown in Figure 4 or the 7 types of the tree collection shown in
Figure 3 as subtrees of nodes with one or two keys. In the case we choose the former
types we have to remember that (i) the type 6 shown in Figure 6(b) is composed by
types 3 and 4 shown in Figure 6(a), and (i) from [8] that types 3 and 4 shown in
Figure 6(a) occur with probabilities 5472/55937 and 7128/55937 respectively. O

Using [4] for the 147X 147 transition matrix T we obtain a linear system of 147
unknowns, which was solved using an algebraic manipulation language called
MAPLE, developed by Gonnet and Geddes (1981). An advantage of using such a
system is that we obtain rationals instead of real numbers, avoiding computational
errors. The 147 p;’s obtained contain integer numbers in the numerator and in the
denominator, each one with approximately 90 digits each. Since the eigenvalues of 7'
are 1, —3.37£8.23/, - - -, —30.49+2.92i, and —32.27, the asymptotic values for p (V)
obtained from [6] are approximated to the O (V _4‘37).

We shall see that the analysis for the three lowest levels of 2-3 trees leads to
better results for 7(N), S(N), E[s(N)], and exact results for Pri2spiits}, and

An Analysis of 2-3 Trees and B-trees 13

&, <,) 2
R QY CACH CIED €I ¢ () SHRDEOEBDEOED,
“ J . N} [J
B " I g

type 44 type 45 type 99

(a) Types formed by 2 height 2 subtrees under binary roots
(there are 21 types in this case)

<D
Ced <>, (o2

(e G S G €

(- J
—_

type 444 type 999

(b) Types formed by 3 height 2 subtrees under ternary roots
(there are 126 types in this case)

Figure 5 Tree collection of 2-3 trees of height 3 (type 44 is formed by two subtrees
with 4 leaves each, type 45 is formed by two subtrees with 4 and 5 leaves
each, etc)

(a) Transitions related to the tree collection shown in Figure 3

3/7

6/8

A s e 7 47 3 2/8 3

3/9
T 6/9]

(b) Transitions related to the tree collection shown in Figure 4

Figure 6 Diagrams for transitions

14 G. H. Gonnet, N. Ziviani and D. Wood

Pri3 or more splits}.

Let nn (i) indicate the number of nodes of the type i tree in the tree collection
shown in Figure 4.

Lemma 3.20.
nn(@)=13 for 4<ig5
5472 7128
6) = 3. .
mn(8) = 315600 T 12600
nn(i) = 4 for 7€i<9

Proof: Fori =4, 5, 7, 8, 9, from Figure 4 the values for nn (i) are immediate. For
i = 6, consider the two trees of type 6 shown in Figure 4. We know from [8] that the
tree with 3 nodes occur with probability 5472/55937, and the tree with 4 nodes occur
with probability 7128/55937. Normalizing the probabilities we obtain

_ o 5472 . 7128
mn(6) = 377600 +4 12600
Let L;; indicate the number of leaves of the type ij tree (4<i<9, i<j<9) shown
in Figure 5. Let L;x indicate the number of leaves of the type ijk tree
(4<k €9, 4<i<k, 4<j<9) shown in Figure 5. The proof of the following theorem is
similar to the proof of theorems 3.2 and 3.10.

Theorem 3.21. [Ez(nn(z)+nn(/)+l+ 1)(Dij) +

4j =i

> 22(nn(z)+nn(;)+nn(k)+1+)(p”") (N +1)=—
k=4i=4;=
<N < EE(nn D+ (+2)(FE) +
i=4j =]
9 k 9 Pijk
D2 X () +nn(H+rn(k)+2) () (N +1D)-1
2442, Lijk

Corollary.t

012683+ L2082 4 (v =457y ¢ IWV) ¢ g 76556~ 222484 1 (y47)

Lemma 3.22. Pr{2 splits} = 0.10462+0 (N ~*%)

Proof: For the type 6 tree shown in Figure 4 two splits occur with probability
5472/12600, for the same reasons pointed out in the proof of Lemma 3.20. For the

t All the results of this section are presented as real numbers because the exact rationals are too long to be
printed. As a curiosity, the exact lower bound on (V) is

7798599314290913080528407272219562346225636732529793818193768842065373374529713557457734066
10729604856083907760988691252514032168089885375054384827047705340026365840593873897782021229

= 0.72683 00574 80536 - - -

An Analysis of 2-3 trees and B-trees 15

rest, the proof is similar to the proof of Lemma 3.11. O
Lemma 3.23. Pr{3 or more splits} = 0.07745 + O(N_4'37)
Proof: Similar to the proof of Lemma 3.22. O
Lemma 3.5 leads to the following theorem:
0.22683 [log3(N +1)]

i . + —4.37
Theorem 3.24. 0.72683+ N m 0N)
44 logy(N +1
< F(N) < 0.76556— 0‘213\;* _L gZ(N Vo=

Lemma 3.25. E[s(N)] > Pri{l split} + 2Pr{2 splits} + 3Pr{3 or more splits)
Proof: Similar to the proof of Lemma 3.3. O
Lemma 3.26.

Els(N)} < Pri{l split} + 2Pr{2 splits} + Pr{3 or more splits }{logr(N +1))
Proof: Similar to the proof of Lemma 3.8. O

Lemmas 3.25 and 3.26 lead to the following theorem:
Theorem 3.27.

0.68810+0 (N =%y < E[s(IN)] < 0.45575+0.07745 - - - {loga(N + 1)) +0 (N ~437)

It is important to note that the values for #(N), T(N), E[s(N)], Pr{j splits},
and Pr{j or more splits} for one and two level analysis can be obtained using the 147
probabilities we obtained from the three level analysis. Among other verifications, this
is- what we did in order to check the results of this section.

3.4. 2-3 Trees with Overflow Technique

The overflow technique was first presented by Bayer and McCreight (1972,
p.183). The idea, when applied to 2-3 trees, is the following: Assume that a key must
be inserted in a node already full because it contains 2 keys; instead of splitting it, we
look first at its brother node on the right. If this node has only one key, a simple
rearrangement of keys makes splitting unnecessary. If the right brother node is also
full (or does not exist), we can look at its left brother in essentially the same way.

The object of this section is to present a second order analysis of the 2-3 tree
insertion algorithm using the overflow technique as described above, applied to the
lowest level of the tree only. Figure 7 shows the two level tree collection, and Table 5
shows its corresponding transition matrix.

Using [4] we obtain

p1 = 1584/15949
P2 = 2970/15949
p3 = 3600/15949
pa = 3150/15949
ps = 2000/15949
pe = 800/15949
p7 = 45/389

Since the eigenvalues of 7 are 1, —5.81+5.96/, —7.51+£2.97i, —8.0, and —13.37, the

16 G. H. Gonnet, N. Ziviani and D. Wood

Gt

type 1 type 2 type 3 type 4
@

=R SR
type 5 type 6 type

Figure 7 Tree collection of 2-3 trees of height 2 using overflow technique

-4 43/8 46/9
5 -5 5-3/8 10-3/9
6 -6 66/9
7 —7
85/7 -8
8-2/7 -8
| 95/8 9 ~9 |

Table 5 Transition matrix corresponding to the tree collection of 2-3 trees
of height 2 shown in Figure 7

An Analysis of 2-3 trees and B-trees 17

asymptotic values of p (V) obtained from [6] are approximated to the O (N _6'81).
Lemma 3.1 and expression [7] lead to the following theorem:

3 . 7 .
Theorem 3.28. |(3+=) |3 2L l+(a+L) | D 21| [+1)-L
& Di & pi
SAN)K 4| = |+5| X —| |(W+D~1
=1L f=aL;
20175 2113 —6.81 a(N) 11385 4564 —6.81
Corollary. - 31g08 ¥ Tssaon TON ") € TN < 5529 " Tsoasw OV T
To five place decimals we have
0.63248+-0‘1]3Vﬂ+0(N_6'8') < ﬂ}il_\’l < 0.71384—0'—2§,6ﬂ+0(1v —6.8L)

which should be compared to the

0.72683+0'212vﬂ+0(N_4'37) < —’T%Vl < 0.76556_0-2%+0(N —43)

which are the third order approximation of ﬂNll for the normal algorithm.

Lemma 3.29.
(@) Pr{0splits} = 1157%+0(N~6.81)
(b) Pr{l split} = S0 +0 (N 6%
(¢) Pr{2or more splits} = —12559—9459-+0(N—6.81)

Proof: The proofs of (a), (b), and (c) are similar to those of Lemmas 3.3, 3.11, and
3.12, respectively. O

Lemma 3.5 leads to the following theorem:
20175 | 2113 [log3(N +1)]

Theorem 3.30. +O(N 88 < F(V) <

31898 ' 15949N N
11385 4564 lloga(N +1)) _6381
15949 15949N N FONT)

To five place decimals we have

0.13248 _ [log3(N +1)]

N N

0.28616 Lloga(N +1))

N N

which should be compared to the bounds

0.22683 _ [log3(N +1))
N

0.23444 |loga(N +1)]
N N

+ON 88 <F(V) <

0.63248+

0.71384— +0o (N 68l

0.72683+ +O(N 43 <N <

0.76556— +O(N 43,

18 G. H. Gonnet, N. Ziviani and D. Wood

which are the third order approximation of (V) for the normal algorithm.

Lemma 3.31. E[s(N)] > Pr{l split}+2Pr{2 or more splits}
Proof: Similar to the proof of Lemma 3.3. OJ
Lemma 3.32. E[s(N)] < Pr{lsplit}+Pr{2 or more splits}|log2(N +1)}
Proof: Similar to the proof of Lemma 3.8. O
Lemmas 3.31 and 3.32 lead to the following theorem:
Theorem 3.33.

8790
15949

3600 3600 2595

lo —6.81
15049 T 135049 Lom2(N +DJFOWN T

———+O0(N ") < E[s(V)] €

To five place decimals we have

0.55113+0 (N ~%81) < E[s(IV)] < 0.22572+0.16270 [log2(N +1)] +0 (N ~68) |

3.5. 2-3 Trees in a Concurrent Environment

A 2-3 tree node is insertion-safe if it contains only one key. When considering
2-3 trees in a concurrent environment, one possible technique to permit simultaneous
access to the tree by more than one process is to lock the deepest safe node on the
insertion path. (A safe node is the deepest one in a particular insertion path if there
are no safe nodes below it.) The object of this section is to give a probability
distribution of the depth of the deepest safe node.

3.5.1. Deepest Safe Node in 2-3 Trees with Normal Insertion Algorithm
In the following lemma we use the p’s obtained in Sections 3.1, 3.2, and 3.3.
Lemma 3.34.

(a) Pridsn at 1°" lowest level} = %

13788
55937

(¢) Pridsn at 3 lowest level} = 0.10462+0 (N ~*37)
(d) Pridsn above 3™ lowest level} = 0.07745+0 (N ~*%7)

Proof: It 1s not difficult to see that the probability that the deepest safe node is
located at j* (1>1) lowest level is equal to the probability that exactly j—1 splits
occur on the (N-H)t random insertion (see Lemmas 3.3, 3.11, 3.22, and 3.23 for the
proof of items (a), (b). (c¢), and (d) respectively.) O

From Lemma 3.34 we can see that by locking the deepest safe node on the
insertion path we lock at most height 3 fringe subtrees 92% of the time.

(b) Pridsn at 2™ Jowest level} = ——==+0 (N ~6%)

3.5.2. Deepest Safe Node in 2-3 Trees with Overflow Technique

In the following lemma we use the p’s obtained in Section 3.4.

An Analysis of 2-3 trees and B-trees 19

Lemma 3.35.
9754 _
P st = + 6.81)
(a) ridsn at 1% lowest level } 15949 O(N)
nd _ 3600 —6.81
(b) Pridsn ar 2" lowest level} 15949 +0O(N)
nd 2595 —6.81
(c) Pridsn above 2" lowest level} = 15949 +0O(N)

Proof: Similar to the proof of Lemma 3.34 (see Lemma 3.29 in Section 3.4 for the
proof of items (a), (b), and (c)) O

3.6. Higher Order Analysis

Yao (1978, p. 165) predicted that an analysis for the k lowest levels would be
difficult to carry out for k=3 and virtually impossible to carry out for k>4.
However, if we apply the same technique used to obtain the three level tree collection
with 147 types then it might be possible to think about fourth order analysis.

In order to obtain a four level tree collection we define a 20 types three level tree
collection containing trees with 8, 9, 10, ... , 27 leaves, in a way similar to the way we
obtained the 6 types two level tree collection shown in Figure 4. This three level tree
collection can be used to obtain a four level tree collection with 4410 types, by
considering combinations of the 20 types as subtrees of nodes with one and two keys.
Thus the fourth order analysis implies in the solution of a 4410X4410 linear system.

Again if we apply the same technique it is possible to obtain a five level tree
collection with 148137 types, which is practically impossible to handle nowadays.
Table 6 shows the sizes of the tree collections used by Yao, Brown, and in this paper,
in various levels of analysis.

Analysis Brown Yao Ours
First order - 2 2
Second order - 7 6
Third order 978 & 200 147
Fourth order - = 10° 4410
Fifth order - - 148137

Table 6 Sizes of the tree collections used by Brown (1979a,p.57),
Yao (1978, p.165), and in this paper

20 G. H. Gonnet, N. Ziviani and D. Wood

4. Partial Analysis of B-trees

According to Bayer and McCreight (1972) a B —tree of order m is a balanced
multiway tree with the following properties: (a) The leaves are null nodes which all
appear at the same depth. (b) Every node has at most 2m +1 sons. (c) Every node
except the root and the leaves has at least m +1 sons; the root is either a leaf or has at
least two sons ¥ . To insert a new key into a node that contains less than 2m keys we
just insert it into the other keys. If the node already contains 2m keys, we split it into
two m-keys nodes, and insert the middle key into the parent node, repeating the
process again with the parent node. When there is no node above we create a new
root node to insert the middle key.

Let 7,,(N) be the average number of nodes in a B-tree of order m after the
random insertion of N keys into the initiallz empty tree. Let Pr{j splits},, be the
probability that j splits occur on the (V +1)" random insertion into a random B-tree
of order m with N keys. Let Pr{j or more splits},, be the probability that j or more
splits occur on the (V +1)’h random insertion into a random B-tree of order m with V
keys. Let 7,,(IV)/[N /(2m)] be the storage used by a B-tree T of order m, where
N/(2m) represents the number of nodes when all the nodes of T contain 2m keys.
Let Pridsn at j lowest level},, be the probability that the deepest safe node is
located at the j* (J>1) lowest level of a random N-key B-tree of order m. Let
Pridsn above]’h lowest level},, be the probability that the deepest safe node is
located above the j* lowest level of a random N-key B-tree of order m.

In section 4.1 we shall derive exact values for Pr{0 splits},,
Pr{l or more splits },, and bounds on 7,,(N) by considering the lowest level of a
random N key B-tree of order m obtained using the insertion algorithm described
above. In section 4.2 we shall derive exact values for Pr{0 splits},,. Pr{l split},,,
Pr{l or more splits},,, Pr{2or more splits},,, and bounds on 7, (N) for an
insertion algorithm for B-trees that uses an overflow technique, by considering the
lowest two levels of a random N key B-tree of order m. In Section 4.3 we shall derive
exact values for Pridsn at 1°' lowest level},, and Pr{dsn above 1°' lowest level }, for
the normal insertion algorithm, and Pridsn at 1°! lowest level},, Pridsn at 2™
lowest level },,, and Pr{dsn above 2™ lowest level },, for the insertion algorithm using
an overflow technique.

Table 7 shows the summary of the results related to B-trees using the normal
insertion algorithm, and Table 8 shows the summary of the results related to B-trees
using an overflow technique.

t Knuth (1973, p.473) presented a slightly different definition of B-trees. In Knuth’'s definition every node in
a B-tree of order m has at most m —~1 keys and at least [m/2—1] keys. Knuth’s definition considers B-
trees of order 2/, i »2 (B-trees containing at least i keys and at most 2i —1 keys), while the above definition
does not consider such trees. However, these trees present a disadvantage: the split operation divides the node
into two nodes with a different number of keys in each one, which implies that a decision about which node
will contain more keys has to be taken.

An Analysis of 2-3 Trees and B-trees

21
First order analysis (/N—>)
2m+1 1 -7
_ +0 ,
i (N) @m>+4m)In2m+2) 22m+2) (m)
N 1 1 _
amn@m+2) 2@m+2) O™)
) 1 T 1] 5
P —_ —_ —_—
r{Osplits },,, Glndym (82 2 Un ym? +0(m ™)
. 1 1 | 1 -
Pr{1 or more splits },, Cind)m (81n2 5 (n o +0(m™?)
Storage used %4'0(_1)
Pr{dsn at 1°' lowest level }, - (2]n12)m —(811112)(1 Nm +0(m~3)
Pr{dsn above 1*! lowest level },, l + I _1 1 +0(m ™
Cin2)m “8In2 27 (In2ym?

Table 7 Summary of the B-tree results

Second order analysis (N —)
fim (N) “l_ 81312 4)—+0(m,
) %n_+(8li2—% 12+0('" R
Pr{0splits } —‘il;— 81:12 "% ——+0(_3)
Pri{lsplit}m —21;+(81:12 % 1 —+0(m"~
Pr{lor more splits }, ~21;+(81312 _T)?+O(m '3)
Pr{2or more splits },, m"'o(m)
Storage used (4]?]2 —%)#+O(m ~2)
Pridsn at 1*'lowest level }, —ﬁ— ﬁ“i)‘l_‘*'o(m)
Pridsn at 2" lowest level b -217+(81:1 >)—+0(m)
Pridsn above 2™ lowest level }, m+0(m =3

Table 8 Summary of the B-trees results using an overflow technique

22 G. H. Gonnet, N. Ziviani and D. Wood

4.1. First Order Analysis

The tree collection of B-trees of order m and height | contains m +1 types.
Figure 8 shows the one level tree collection of B-trees of order m =3.

type m+1 type m +2 type 2m +1

Figure 8 Tree collection of B-trees of order m =3 and height 1

The transition matrix T corresponding to the one level tree collection of B-trees
of order m is
—(m+1) 2(m+1) 1
m+2 —(m+2) ‘
m+3 —(m+3) |
T — [} o]‘

=} o

2m +1 —(2m +1)

Let H, be the function H, 2~ for n>1. From [4] we have
i=11

(T—-1)p(N) = 0, and therefore
1

Pm+1 = (
(m+2) [Hams2=Hn+1
1
Pm+2 = [9]
(m +3) H2m+2—Hm+1]
1
Pom+1 =

2m +2) {HZN’I +2—Hpy 41 J
i
@m +2) [Homsr=Hpn e

Lemma 4.1. Pr{l or more splits}; =

Proof: In the lowest level of a B-tree of order m a split occur when an iansertion
happens in a node with already 2m keys, and such nodes correspond to the type 2m +1
of the tree collection of B-trees of order m and height 1. Thus,

Pri{l or more splitsly, = pam+1 O

~

1

Lemma 4.2. Pr{0 splits},, = 1-
(2m +2) {H o 4=H o o1

|
J

Proof: Similar to the proof of lerama 4.1. O

An Analysis of 2-3 trees and B-trees 23

It is well known that H,, = In m + 7+L— 1 5
2m 12m

where ¥ = 0.57721... is Euler’s constant (Knuth, 1968, p.74). Then

+0(m ™%,

+0(m 73

Corollary. Pr{l or more splits}m = (21n12) mt [811112 .__21— (in 21) m?

Let niy, be the number of nodes at level / of an order m B-tree. Let nal,, be the
number of nodes above the level / of an order m B-tree.
nly—1 < naly, < nly—1
2m »
Proof: Consider the level / as being the N +1 leaves of a B-tree with N keys. (Each
leaf represents a node.) The minimum and the maximum number of nodes above the
level / is obtained when each node above the level / contains 2m and m keys
respectively. (That is 2m Xnal,, = nly,—1 and m Xnal,, = nl,,—1 respectively.) O

Lemma 4.3.

Lemma 4.3 and expression [7] lead to the following theorem:

Theorem 4.4,
1 2m+1 Di 1 1 ! Ll
1+ — |(N+1)== < Aim(N) <(1+— W +D)-1
(2m)[z‘=§+1Li () 5 (V) <(m) ,-=§+1Li ()
2m +1 1y__1 22y o AmN)
Corollary. 1-—=)—==+O(N < <
orollary (4m2+4m)(H2m+2—Hm'+1) (N) 2N () N
1 1 1 A1
1—-——)})—-—+0(N
[Zm(H2m+2—Hm+1) (=)= +ot)
where Ay < 1.
2m+1 1 1 4 T M)
Corollary. - o < <
oroiiary (4m2+4m)1n(2m+2) 22m +2) 12(2m+2)2) N
i 1 ! 4
+ - +
2mIn(2m+2) © 22m+2) 12(2m +2)? o

Corollary. Storage used = ﬁ+0(m _1)

4.2. B-trees with Overflow Technique

One possible variant of the overflow technique presented in Section 3.4 is the
following: Assume that a key must be inserted in a node already full because it
contains 2m keys; instead of splitting it, we look first at all its brother nodes. If one
of its brother nodes has less than 2m keys then a rearrangement of keys is performed,
otherwise the split is performed. In this section we present a second order analysis of
the B-tree insertion algorithm using the overflow technique as described above, applied
to the lowest level of the tree only.

Any tree collection of B-trees of order m using the overflow technique described
above contains (m+1)(2m +1) types. Figure 9 shows the transition diagram
corresponding to the two level tree collection of B-trees of order m =2. The transition
matrix T corresponding to the two level tree collection of B-trees of order m using the
overflow technique described above is shown in Table 9.

G. H. Gonnet, N. Ziviani and D. Wood

Figure 9 Transition diagram representing the two level tree collection for B-trees of
order m =2 using overflow technique (e.g. type 335 corresponds to the height
2 type tree containing a root node with 3 descendants, the first one with 3
leaves, the second one also with 3 leaves, and the third one with 5 leaves)

-

—[m+D+(m+1)
+(m —=1)2m +1)]
—[(m+DH+2m+
(m—=1D02m+1)]

[(m +1)+ —[(m+D)+
mQ2m+D] m@2m+1)]

o

o

—[2m+
m(2m +1)]

[(m+1)X
2m +1]

—[(m +1)X
2m +1)]

(m +D)+(m+1)
+m 2m+1)]

o

2m +
2m(2m +1)]

~

2m /(2m +1)X
[(m+D+(m+1)
+(m —=1)2m +1)]

2/@m+1D)[(m +1)
+m(2m +1)]

2m /2m+1)X
[(m+1)(2m +1)]

—2m+
2m(2m +1)]

Qm +D)2m +1) —Cm+D)2m + 1))

" Table 9 Transition matrix corresponding to the tree collection of B-trees
of order m and height 2 using an overflow technique

An Analysis of 2-3 Trees and B-trees 25

In order to obtain the vector p(IN) from [4], we make Pem+1)2m+1)=1 t and
solve for all the other p's. After this we normalize the p's by dividing each one by
their sum. Then

POm+1)2m+1) = 1

_ CmADCmAD+1 | _ Am2+d4m+2
P @m)+2m(2m+1) C2m+1)(2m +1) Cm+1)2m +1)
dm+4m +2

POm-D+2m(2m+1) = Cm)+2m 2m +1)

_ _4m’+am+2
Pam@m+h = o Om +1)+1
_ 4m’+am+2 0
D2m)+2m—-1)2m+1) = am@m A1) [10]
4m2+4m +2

P+ DRm+h = G 0 @2m + 1) +1

i 2 2m
= L lamiram+a-
Pamyrm@m+) = Cne Ty (A HAm e

(m+DC2m+1)

_ _2m*Mom+2
(m +1)2m +1)

_ 2m24+2m +2
Pm+)+m@2m+1) = (m +2)+m (2m +1)

1
Pm+D+@m+m =D@m+1) =y ey X

2
2m +1

2m 2+2m +2- (m+1+m@2m+1)

(@Am3+2m2+2m)/2m +1)
m+D)+m(2m+1)

TP 2m+1)2m +1) Means p(2m +1)+(2m + 1)+...+(2m + 1), where (2m +1) appear 2m +1 times. Applying
this notation to the B-tree of order m =2 shown in Figure 9, p 55555 is equivalent to P2m+1)2m+1), P335

is equivalent 10 p (m + 1)+(m + 1)+(m — 1)(2m +1)» €tC.

26 G. H. Gonnet, N. Ziviani and D. Wood

_ (Am3+2m>+2m)/Q2m +1)
Pm+D+(m+D+m~H2m+1) = (m + D)t (7 £ 3) 4 (m — 1)2m +1)

B (Am 3+ 2m >+ 2m)/2m +1)
P+ DG+ D =DRm D7 Dy (m +2)+(m = D(2m +1)

Let S be the sum of all p's above. Then

Am>3+2m2+2m
S = ('_“—2m+1)[H2m2+2m+1—H2m2+m+l] +
(2m2+2m+2) [H2mz+3m+1_H2m2+2m+lJ + (1

((2m +1(2m +1)+1) [H4m2+4m+2—_H2m2+3m +l]

To obtain the final probabilities all the above p’s have to be divided by S.

Let y(Z) be the function ¢(Z)=L@ (Abramowitz and Stegun, 1972, § 6.3.1).

Z)
Lemma 4.5. Pr{l or more splits},, =
1] @mA)2m +1)+] 1\ 1
S 2m +1 ¢(2m+2+2m+1) ¢(m+1+2m+1)

where S is as defined in [11].
Proof: Pri{l or more splits}m = Pm+D02m+0)FP m+202m+1)FFP 2m+D)2m +1)

1 Cm+1D)em+D)+1 ST 1
S 2m+1 i=1 .
+i)+
R
mt1
1 1 1
= - +1+ O
where) ' ¢(2m+2+2m+1) ¢(m 2m+1)
=h(m+i)+
2m +1

It is well known (Abramowitz and Stegun, 1972, § 6.3.18) that

1 i —4
Y(m) Inm ot Tam? (m™)
Corollary. Pri{l or more splits}, = —l—+ ! —L!L+O(m 3
2m n2 4 j m? ‘
Lemma 4.6.
. 1 [em+nem+n+1 || 1 I
Pril = — +1+ —y(m+1+———
ri split} S{ 21 [x#(Zm ryrwd AR

where S is as defined in [11].

Proof: The only difference from the proof of lemma 4.5 is that

Pril splitin, = pm+0@m+0FP m+2@m+ 040 @m)+2my2m +1y O
1 1 1 1

. Usplit}y = —+
Corollary. Pril split},, -

An Analysis of 2-3 Trees and B-trees

Lemma 4.7. Pr{2 or more splits},, =

1 [Qm +1)2m +1)+1
3

1
o ¢(2m+2+2 +1) \b(2m+1+2 +1)

where S is as defined in [11].

Proof:. Pr{2or more splits},, = Pri{l or more splits},,—Pr{l split},, O

Corollary. Pr{2 or more splits},, = m+0(m =3

Lemma 4.8. Pr{0splits}, =

| L [@mtnemtn+
S 2m +1

where § is as defined in [11].
Proof: Pr{0splits},, = 1—Pr{l or more splits},,. O
T +0()

1
m+1

y(2m+2+

)- ¢(m+1+

2+1

sl = |t _1
Corollary. Pr{0 splits},, = 1 2'm 8in2 4

Lemma 4.3 and expression [7] lead to the following theorem:

Theorem 4.9. A(2m)(N+1)——%— < Ty(N) < A(m)(N+1)—1

where

D(m+D)+(m+1)+m—1)2m+1)
m+D)+(m+H+(m—-D2m+1)

A@®) = {(m +2+—)

D(m+D+m+2)+(m—-1)2m +1) D (m+1)(2m+1)
(m+D+(m+2)+(m—-1)2m+1) (m+1)(2m+1)

+

DPm+D+m+D)+mQ@2m+1) P (m+D+(m+2)+mQ2m +1)
m+D+m+D)+m(2m+1) (m+D+(m+2)+m(2m +1)

(m +3+%)

P (m+2)2m+1) P(m+D)+m+D)+C2m—1)2m+1)

)

+-+ (2m +2+—é—)

(m+2)2m +1) m+D)+(m+1)+C2m -1)2m +

|

D (m+1)+(m+2)+2m ~1)2m +1) L _Pem+nem+)
(m+D+(m+2)+C2m—-1)(2m +1) Cm+1H2m+1)

where S is as defined in [11].
Substituting [10] in the expression of theorem 4.9 gives:

Corollary.

Bem(1-L)-ro) « T ¢

B(m)(l—ﬁ)—%+0(N M <l

where

1)

+

27

28 G. H. Gonnet, N. Ziviani and D. Wood

X

am3+2mi42m
2m +1

B(t) = %{(m +2+%)

1 1
(m+D+m+D+m—-D2m +1) a (m+1)+m(Q2m+1)

I I
(m+D)+m2m+1) (m+D2m+1)

2m+2m +2
2

2 I : :
(4m > +-4m +2)[(m+1)(2m+1) (m +D2m +1)+]1

K

'm+3+—é— 2m+2+%
4m>+4m +2 -
(4m >+)(m+1)+(m+1)+m(2m+l) Qm+D2m+D)+1
!
¢(2m+1+2m+1) ¢(m+2+2m+1)

2m +1

where S is as defined in [11].
Corollary.
ﬁm(N)

P
y/

32In2 m

! 311 9o 1|1 ~4
—t |5+ |- +— | —+0 <
2m {81n2 4 } m> 8 } 7HO0n)

1 3 1] s 1] 4
—_— —_— .__+ — | —
2m {81n2 4 | 'm? { * }mﬁo(’")

m? | 322 8
_ 3 [)
Corollary. Storage used = 1+ | ————"—+0(m)
4n2 2 |m

4.3. B-trees in a Concurrent Environment

A node of a B-tree of order m is insertion safe if it contains less than 2m keys.
A safe node is the deepest one in a particular insertion path if there are no safe nodes
below it. The object of this section is to derive probabilities related to the depth of
the deepest safe node.

4.3.1. Deepest Safe Node in B-trees with Normal Insertion Algorithm
Lemma 4.10.
1

@m+2) | H o +2=H 41

(a) Pridsn at 1" lowest level} = 1—

1
(2m +2) [H o +2-Hon 41

(b) Pridsn above 1°" lowest level} =

Proof: Similar to the proof of lemma 3.34. O

An Analysis of 2-3 Trees and B-trees 29

Corollary.
o 1 1 1 -3
= —_ —_ —— +
(@) Pridsn at 1* lowest level} = 1 2n2)]8]n2 5] (n2) m? o(m™7)
. N WS I W I 3
(b) Pridsn above 1°! lowest level }) 8in2 2 | (n2) m? +0(m ™)

This analysis shows that complicated solutions for the use of B-trees in a
concurrent environment are of merely academic interest, since the solution analysed in
this paper will lock height 1 fringe subtrees most of the time.

4.3.2. Deepest Safe Node in B-trees with Overflow Technique
Lemma 4.11.

(@) Pridsn at 1% lowest level} =

1| @m+DEm+D+1] 1\ 1
! S[2m +1 _ {‘0(2’"+2+ T A1))
(b) Pridsn at 2™ lowestlevel } =

1 em+nyem+n+1]| 1\

S[2m +1 _¢(2m+1+2m+1) Vi)

(c) Pridsn above 2™ lowest level } =

1 1 Cm+DH2m+1D+1
S 2m +1

where S is as defined in [11].
Proof: Similar to the proof of Lemma 3.34. O

1
2m +1

1
)y (2m +14——)

v (2m+2+

Corollary.
st = ———1—— 1 _L ._1_ -3
(@) Pridsn at 1*" lowest level } 1 . 82 2 J m2+0(m)
(b) Pridsn ar 2™ lowest level} = —i-+ L L —1—+0(m =3
2m 8In2 4 | m?2

() Pridsn above 2" lowest level} = l 7+0(m =3

@In2) m

30 G. H. Gonnet, N. Ziviani and D. Wood

References

Abramowitz, M. and Stegun, I.A. Handbook of Mathematical Functions, {New York:
Dover, 1972).

Bayer, R. and McCreight, E. “Organization and Maintenance of Large Ordered
Indexes”, Acta Informatica 1, 3 (1972), 173-189.

Bayer, R. and Schkolnick, M. “Concurrency of Operations on B-trees”, Acta
Informatica 9, 1(1977), 1-21.

Brown, M. “A Partial Analysis of Random Height-Balanced Trees”, SIAM Journal
of Computing 8, 1 (Feb. 1979a), 33-41.

Brown, M. “Some Observations on Random 2-3 Trees”, Information Processing
Letters 9, 2 (Aug. 1979b), 57-59.

Chvatal, V., Klarner, D.A. and Knuth, D.E. “Selected Combinatorial Research
Problems”, Technical Report STAN-CS-72-292, Computer Science Department,
Stanford University, 1972.

Comer, D. “The Ubiquitous B-tree”, Computing Surveys 11, 11 (June 1979a), 121-
137.

Comer, D. “The Tree Branches”, Computing Surveys 11, 4 (Dec. 1979b), 412.

Eisenbarth, B. and Mehlhorn, K. “Allgemeine Fringe-analysis und ihre Anwendung

zur Untersuchung der Overflowtechnik bei B-Bdumen”, Universitdt des
Saarlandes, Saarbrucken, West Germany, Oct. 1980.

Gonnet, G.H. and Geddes, K.O. “MAPLE User’s Manual”, Department of Computer
Science, University of Waterloo, Waterloo, Canada, 1981.

Guibas, L.J., McCreight, E., Plass, M. and Roberts, J. “A New Representation for
Linear Lists”, 9th ACM Symposium on Theory of Computing, (1977), 49-60.

Huddleston, S. and Mehlhorn, K. “A New Data Structure for Representing Sorted
Lists”, Universitdt des Saarlandes, Saarbrucken, West Germany, Dec. 1980.

Knuth, D.E. The Art of Computer Programming, Vol.l (Reading, Mass.: Addison-
Wesley, 1968).

Knuth, D.E. The Art of Computer Programming, Vol.3 (Reading, Mass.: Addison-
Wesley, 1973). ’

Kwong, Y.S. and Wood, D. “Approaches to Concurrency in B-trees”, Lecture Notes
in Computer Science 88, Springer-Verlag (1980), 402-413.

Rosenberg, A.L. and Snyder, L. “Time- and Space-Optimality in B-trees”’, ACM
Transactions on Database Systems 6, 1 (1981), 174-193.

Yao, A. “On Random 2-3 Trees”, Acta Informatica 9, (1978), 159-170.

	

