A Probabilistic Algorithm for
Decentralized Extrema-Finding in a Circular
Configuration of Processors
by
E. Korach*, D. Rotem** and N. Santoro***
RESEARCH REPORT CS-81-19

University of Waterloo
Department of Computer Science
Waterloo, Ontario, Canada

May 1981

* University of Waterloo
Department of Combinatorics and Optimization
Waterloo, Ontario, Canada

** University of Waterloo
Department of Computer Science
Waterloo, Ontario, Canada

*** University of Ottawa
Department of Computer Science
Ottawa, Ontario, Canada

A Probabilistic Algorithm for Decentralized
Extrema-Finding in a Circular Configuration

of Processors

by

E. Korach*, D. Rotem** and N. Santoro***

Abbreviated Title: Extrema Finding in Circular Configurations

* University of Waterloo
Department of Combinatorics and Optimization
Waterloo, Ontario, Canada

** University of Waterloo
Department of Computer Science
Waterloo, Ontario, Canada

*** University of Ottawa
Department of Computer Science
Ottawa, Ontario, Canada

Abstract

In this note we present and analyze a probabilistic algorithm
for finding all k highest numbered processors arranged in a circular
configuration. The algorithm requires 0(n(1ogen)k) message
transmissions on the average and may be completed in n time units.
This generalizes the algorithms of Chang [2] and Hirschberg [4]

which find only one unique highest numbered processor.

Key words and phrases: Decentralized Algorithms, Distributed System,

Operating Systems, Records in Permutations.

1. Introduction

In this paper we consider a system of n processors arranged
in a circular configuration. Each processor is given a unique number (of
which it alone is aware), and we would 1ike to devise election algorithms
which designate by concensus a set of one or more unique processors.
Situations in which such algorithms are important are presented in Lelann
[5] and Chang and Roberts [2].

The efficiency of these algorithms can be measured by the total
number of messages exchanged between the processors and also by the total
time required to complete the election process. The time is measured
under the assumption that there is maximum overlap in the message
transmission. The algorithm of Chang and Roberts, which we call
Algorithm-C, finds the highest numbered processor in the circle in n
time units and requires the transmission of an (Hn ~ 1ogen is the
n-th harmonic number) messages on the average with a worst case of
n(n+1)/2 transmitted messages. Recently, Hirschberg and Sinclair [4]
found an algorithm which requires 8{(n + [n 1092n]) messages in its worst
case. However this new algorithm requires between 4n - 2 and 6n - 6
units of time to complete the election process. The number of message
transmissions by Hirschberg and Sinclair has been slightly improved by
Burns [1] who also showed that 0(n 1ogzn) is a Tower bound for this
problem.

In Section 2 we propose a new solution to the extrema-finding
problem which uses a probabilistic method. This algorithm, called

Algorithm-P, has a lower number of messages transmitted on the average

compared with Algorithm-C, while its running time is still n .
In Section 3 we propose an extension to Algorithm-C which
enables us to select the k unique processors with the k highest Tabels.
This algorithm is analyzed using the theory of records in permutations
[3] and when k = 1 we get a new proof of the nH ~ result given in [z2]

for the average case analysis of Algorithm-C.

2. The Algorithm

For reference purposes we include here a description of
Algorithm-C. The assumptions made in all the above mentioned algorithms
are that each processor can send messages only to its neighbors in the
circle and that it can distinguish between the clockwise and anticlockwise

directions.

Algorithm-C
Step 1: Initially each processor i , 1 < i <n , sends the message i
to its clockwise neighbor.
Step 2: When processor i receives the message Jj then;
a) if j > i then i sends the message Jj to its clockwise
neighbor.
b) if j =1 then i wins the election since it is the
highest numbered processor.

c) if j < i the message j is discarded. d

The correctness of this algorithm follows immediately from the fact that

only the highest message transmitted will return back to its originator.

The time required to complete the election process when maximum overlap
of transmissions is allowed will be n .
Next, we present our algorithm for this problem,
Algorithm-P
Assume that a number p where 0 < p <1 is known apriori to all
processors on the circle. Also, each processor i stores the maximum
number it has seen so far 1in MAXi . Each processor i, 1 <1 <n
performs the following.
Step 0: Set i~ MAXi
Step 1: Initially processor i chooses randomly a direction
d(i) e {clockwise, anticlockwise} where
prob{d(i) = clockwise} = p , and then sends the message i in
the chosen direction.
Step 2: If processor i receives a message j from one of its
neighbors then if j > MAXi the message j 1is sent to the
other neighbor of i and MAXi «~Jj else if j = MAXi R
processor i wins the election.
Step 3: If processor i receives two messages, say k and j , from
both its neighbors at one time then it ignores the smaller
message, min(k, j) , and proceeds as in Step 2. 0
Again, correctness and finiteness of this algorithm follow
from the fact that once a direction d(i) is chosen for message i ,
this message will continue to traverse the circle in this direction. The
message 1 will return to its originator if and only if it is the

highest number on the circle. Clearly, the worst and best case for the

number of transmitted messages and also the running time is as in
Algorithm-C.

The following definitions are useful in the analysis of the
average number of messages transmitted by Algorithm-P. Let
I = <Oy Ogs vevs 0> be a permutation on {1, 2, ..., n} . The ordered

set of records of T , R(I) , is defined as

R(IM) = <01 eI | i>1 and for all j < i, o <o

The set R(II) v o, s also called left to right maxima in T ([6]). Let

1
D be a permutation of 1, 2, ..., n written on a circle. We denote
by D(i) the permutation obtained by reading the elements of D in the
clockwise direction starting with element i and D(i) is defined
similarly where the reading is performed anticlockwise (see Fig. 1). For
an element j in the permutation B(i) (D(i)) we denote by Z(i, i)
(A(i, §)) the distance of j from i , i.e. A(i, j) is one less than
the position of j in DB(i) .

In Algorithm-P , a processor i may be eliminated from the
election process by processor j where j > i 1in two ways:

a) the message i arrives at processor j and it is discarded.

b) the message i arrives at processor £ , & < i and is

found to be smaller than MAXQ = j or is ignored because

it arrives at 2 at the same time as j .

In both cases processor j is called an eliminator of i . In a given
->
circular arrangement D , Tet ED(i) be the sequence of all possible

<~
eliminators of 1 if d(i) = clockwise , and ED(i) the sequence of

possible eliminators of i if d(i) = anticlockwise (see Fig. 1).
Clearly, the first records in B(i) and B(i) which we call " and S
respectively satisfy ry e ED(i) and Sy € ED(i) . For the purpose of
the following analysis we will assume that the processors work
synchronously and that all processors start the election process at the

same time,

Lemma 1. Let R(B(i)) and R(B(i)) be the sequence of records of B(i)

and 5(1) respectively. For j > 1 ,

> > —Z('i, rj)-+ >

(a) ry e ED(1) > {rj e R(D(i)) and ———E————- < A1, r])}
. . A1,)] o

(b) Sj € ED(1) ++-{sj e R(D(i)) and ———;;———— < A, 51)} .

where r and s are the k-th records of E(i) and B(i) respectively.

Proof:
(a) In this case the message i moves clockwise. If 1 =n then it
has no possible eliminators and R(B(i)) is empty so the lemma holds.
Otherwise, the message i can travel at most the distance Z(i, r1).
Clearly, a processor rj may eliminate i 1if and only if

(1) d(rj) = anticlockwise

<« -
(1) A(Pj, ry) < A, r,) + 2 which is equivalent to

>

A(T, rj) >

—] < A, r])

T [x1 is the ceiling of x , i.e. the smallest integer larger than x .

(iii) the message rj is not eliminated by any other processor
on its way which is equivalent to ry e R(D(4)) .

Part (a) follows from (i), (ii) and (iii).

Part (b) may be proved in a similar way. 0
Theorem 1. The average number of messages transmitted during the
execution of Algorithm-P is smaller than %n(Hn + %—- é%) for n >3
and p = %—.

Proof: Given a pair of circular configurations, D and its reverse

DR (see Fig. 1(b)), the total distance travelled by message i , (i # n)

under Algorithm-C in this pair is

<

A(i,) + A1, s;)

_}
Turning now to Algorithm-P, Tet ED(i) =< ey 1> and

ED(i) =SSy s S The probability that i will be eliminated by

ry € ED(i) is (]i?i.p:)and the distance travelled in this case by
meassage i is -———%——E—] , also, i will travel the distance z(i, r1)
with probability p2+] . We obtain the following expression for the

average distance travelled by message i in D .

v LA, ry) .
A= (1-0p)) DJ[———]—L] + pHA(i, r])
= 2

3 .

Similarly in DR the average distance is,

kK . [A(d, s. -
£ (-p))y [Ah SJ)] et sy)
i

By setting p = %— and noting that the the sum A + B may only increase if

we ignore the possible eliminators Pos +eey Ty and Sps e Sy if follows
that,
- <
1~ « ! AT, ry) A(1,s])
A+ B <5 (A, ry) + 0>, s,)) +% —_— +
2 1 1 2 o 5
(2)
3 /7 <. 1
SZ(A(-ls r])+A(1s S'I))+7

The above analysis holds for every message i , i < n , and for every

R The message n always travels a distance of n ,

pair D and D
hence the average number of messages transmitted under Algorithm-P where
each of the (n-1)! circular configurations is equally probable is less
than

LRI SIS D (3)

jw
—
>
=y

3. Finding the k Targest numbers

In this section we analyze a modification to Algorithm-C for
the case where all k processors with highest labels must be identified,

we call the new algorithm A]gorithm—ck.

Algorithm-C

Step 1k: Each processor j sends to its clockwise neighbor a message
which consists of a pair of numbers (j, c) where c¢ is a
counter which is initially set to zero.

Step Zk: When processor i receives the message (j, c)

a) If j>1i then i sends (j, c) to its clockwise neighbor.

b) If j =1 then 1 is the c¢+1-st highest numbered processor.
c) If j< i then

c« c+1

if ¢ = k the message is discarded otherwise

the message (j, c) is sent to the clockwise neighbor of i.

d

The correctness of this algorithm follows from the fact that
exactly the messages which originated from one of the k highest numbered
processors will return back to their originators. We now give a bound on
the average number of message transmissions in this case.

Clearly all messages which are one of the k Tlargest will be
transmitted n times in any circular configuration. We therefore
consider only messages i where i < n-k . Given a circular configuration
D with R(D(i)) = Py Pos vees P> the message 1 will travel a
distance of at most Z(i, rk) before it is discarded. We can now use the

following result given in [3].

Lemma 2. Let An(k) be the average position of the k-th record in a
random permutation on {1, 2, ..., n} and let pn(k) be the probability

that such a permutation contains exactly k records. Then for k fixed

10

and n > o

)k

x=
——
-~
——
4

1
ET-(]ogen

)k

>
—_
=~
~
2
=

k! (1ogen

O
Remark 1: The contribution to An(k) of permutations which do not have

a k-th record is taken as zero.

Theorem 2. For k fixed, the average number of messages transmitted

under A]gorithm-ck is asymptotically bounded by G where
_ k
G = O(n(]ogen))

Proof: We calculate an asymptotic bound on the total number of messages
transmitted over all (n-1)! possible circular configurations as follows.
For each fixed configuration D we consider the n permutations

B(]), 3(2), cens B(n) which can be derived from it. We note that the
distance travelled by message i in D 1s at most one less than the
position of the k-th record in E(i) if this record exists. In case

E(i) does not have a k-th record, the distance travelled by 1 1is
bounded by n . By repeating the above argument for all (n-1)! possible
circular configurations and using Lemma 2 it follows that the

total number of messages transmitted is bounded by
n! An(k) + n! k-pn(k—])-n . (4)

The first term in (4) bounds the total number of messages in these

permutations which have a k-th record while the second term bounds the

11

total number of messages in all the remaining permutations. By dividing
(4) by (n-1)! we get an upper bound G on the average number of

messages transmitted where

n(]ogen)k n-k(]ogen)k'] K
G = + = 0(n(Tog_n)") . (5)
k! (k-1)! €

N
The exact result an of [2] is derived by noting that exactly
(n-1)! permutations on {1, 2, ..., n} do not have a first record.

Hence the total number of messages transmitted
n!(An(l)-1) + (n+1)(n-1)! (6)

the second term is a correction introduced because of Remark 1. The
average is obtained by dividing (6) by (n-1)! and the known result
([31) that An(l) = Hn-]

We can transform Algorithm-P into A]gorithm-Pk by adding a
counter ¢ to each message in a similar way to the transformation of
Algorithm-C into Algorithm—ck . In this case all k highest numbered
processors will be identified.

It is easy to show that for every k (k < n) , the performance
of A]gorithm-Pk is never worse than that of A]gorithm-Ck . In fact we

can prove the following: Let ACk and APk be the average number of

messages transmitted under A]gorithm-Ck and A]gorithm—Pk respectively.

Lemma 3. For fixed k , p = > and n > o |
AP
k Ty k+1
KE“'S 1 - (20 (7)

12

Proof: For a fixed configuration D and a message 1 < i < n-k , let
<b], b2, ces bk> be the k numbers which cause the counter ¢ to be
incremented if d(i) = anticlockwise . Note that in this case not all
the bi's (ai's) are necessarily records in B(i)(E(i)) . We now
repeat the same argument as in Theorem 1. In the configuration D and
its reverse DR » the message i will travel a distance of

Z(i, b) + A(i, ak) under A]gorithm—Ck. In A]gorithm-Pk the average

o)
distance for this pair of configurations is bounded by

1 [,k [B0S B 1,k\ 7,
5[(7) [~—2—~— +(1 -)A(1, b,)

AT, a) <
+;_ [(;_)k [_TL] + <] - (-]2—) >A(1’, ak)“

from which the result follows since ACk is at least n 1ogen .

2

4. Summary

The analysis of Algorithm-P has been carried under the
assumption that the processors work synchronously. However, Algorithm-P
will perform better than Algorithm-C also in the asynchronous case since
there is always a positive probability that message transmissions will be
saved. Furthermore, the bounds derived on the performance of Algorithm-P
are conservative, it is an open questions whether the bounds given in (3)

and (7) can be improved.

13

Recently, Dolev and Rodeh [7] have devised a unidirectional
algorithm for finding the largest numbered processor which uses
2n10g2n messages in its worst case. Again, their algorithm has
a running time which is worse than n. It is an open problem
whether algorithms with running time of n must have a quadratic

number of message transmissions in their worst case.

The following table summarizes the known algorithms for the

extrema finding problem in circular configurations of processors.

Number of Messages

Name Time
Average Case Worst Case
, . 2 2
1 LelLlan's Algorithm [5] n n n
2 Algorithm-C [2] an (n;1) n
. ' . between 4n-2
?
3 Hirschberg's Algorithm [4] ? 8n Tog,n and 6n-6
. _ 1
4 Algorithm-P (p = ?) < %—an (n;]) n
. k
5 A]gor1thm-Ck sG=O(n(]ogen)) (2)-(§)+kn n

. 1 1,k+
6 Algorithm-P, (p = 7) <(1-(3)])ACk (2)-(;)+kn n

20" o7

>

D (1) =<1,7,8,3,5,6,4,2> ;

R(D(3)) = <5,6,7,8> 5 R(D(3))

<+

Ep(6) = <7,8> ; E(5) =

1
7 e
(l'.i’
g ¢
oR -
3\°\.
.
~
\\\\0__/

5
(b)

Figure 1

D (3) = <3,8,7,1,2,4,6,5> ;

<8>;

<8 .

14

References

[1] J.E. Burns, A formal model for message passing systems. Tech.
Rep. No. 91, Computer Science Department, Indiana University,
September 1980.

[2] E. Chang and R. Roberts, An improved algorithm for decentralized
extrema-finding in circular configuration of processors. Comm.
ACM, 22, 5 (May 1979), pp. 281-283.

[3] F.N. David and D.E. Barton, Combinatorial Chance. Charles
Griffin & Co. Ltd., 1962.

[4] D.S. Hirschberg, and J.B. Sinclair, Decentralized extrema
finding in circular configuration of processors. CACM, vol. 23,
Number 11, 1980, pp. 627-628.

[5] G. LeLann, Distributed Systems - Towards a Formal Approach.
Information Processing 77, North Holland Pub. Co., Amsterdam, pp.
155-160.

[6] D.E. Knuth, The Art of Computer Programming, Vol. 1, Addison-Wesley
1968, pp. 175-176.

[7] M. Rodeh, Private communication. May 1981.

	

