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ABSTRACT

The traditional method of data fitting is by the least squares (12) technique.
When the data is good -- reasonably accurate with normally distributed errors --
this method is ideal. When the data is bad -- contaminated by occasional wild
values -- then the / technique (minimizing sums of absolute values of residuals)
has much to recommend it. This paper surveys the strategy of a globally and
superlinearly convergent algorithm to minimize sums of absolute values of C
functions. The approach to be presented is closely related to the use of a certain,
piecewise differentiable penalty function to solve nonlinear programming problems.

1. Introduction
In this paper we outline the strategy of a method for solving the problem

m
minimize F(x) = D, | fi(x)| (1.1)
x i=1
where x €R" and fiECZ for all ie{1,..., m}. Such problems arise, for example, in data fitting

contexts, where the functions f; are defined by

Six)=h(x)=y; .
Here the y; are considered to be observations of the functional A (¢,x) at #;. If & is linear in x; that
is, h(t;x)= hiTx, then (1.1) is equivalent to a specialized linear programming problem

minimize ﬁ (; +v;) (1.2)
u,v,x =1

subject to hl-Tx tuy—v,=y;i=1,..., m

and u; 20, v, 20, ; i=1,..., m

but with x unrestricted.

The conventional method of fitting data y to a functional form A would replace the absolute
value in (1.1) by the square, giving an 12 estimation of x. Such estimates are very sensitive to the
presence of outliers -- occasional observations y; which are wildly out of line with the rest. The /
estimate of x has a certain capacity to ignore outliers. A simple linear example will suffice to

illustrate.
Let

h(tx)=x+1tx, ,
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and consider the data

oo\)oxu-.hwwv—-"e-»

LY
0.75
2.00
3.00
4.25
4.75
6.50
7.25
0.00

which was obtained, very roughly, from the form h with x;=0, x,=1. Note that the y value
corresponding to ¢ = 8 is wild. (Perhaps an 8 in the first position was misread as a zero when the
data was collected or transcribed.) The / estimation of x for this data is X = —0.1875,
¥, = +1.0625, which is not unreasonable, considering the accuracy of the good portion of the data.
The [, estimation of x for this data is x; = +1.848, x,= +0.381. A plot of the data and the two
lines

y

y =x;+ux, (Lline)

X, +1x, (lllinc)

reveals that the /. line accurately reproduces the sense of the first seven data values, ignoring the
eighth completely. The 12 line is as strongly influenced by the eighth data value as it is by all of
the first seven put together. Consequently, the L line shows no reasonable agreement with any
portion of the data.

It is interesting to note that the / line for the above example interpolates two of the data
points, the third and the seventh. That is

f[3&)=h(t3X)—y3=10

fAX) =h(tsx)—y,=0 .
This results from the fact that ¥ is determined from the linear program (1.2), in which the
components of x are unrestricted, implying that these two components must be basic at an
optimum. And the structure of (1.2) in turn implies that u, v pairs associated with two equality

constraints must be nonbasic at an optimum; i.e. the corresponding two deviations must be zero.
More generally, if x ER”, one can expect to have at least n of the data points interpolated.

The algorithm surveyed in this paper is a natural extension of the algorithm in [I] to
nonlinear problems, using the material of [3,4] as a theoretical foundation. As in [1], we exploit
the interpolation feature.

For the sake of simplicity, no constraints appear in (1.1). The discussion in [1] however,
where linear constraints for the linear version of (1.1) were incorporated by adding penalty terms to
F which could be handled by the algorithm in a natural way, generalizes directly to nonlinear
problems with linear and nonlinear constraints. Our current software, in fact, solves the problem

m
minimize 2 | f; ()]
* i=1
subject to fi(x)>0, forj=m+1,... m+l
and fix)=0, fork=m+I+1,... m+i+s

The exposition is further simplified by assuming the availability of exact first and second
derivatives rather than considering gradient differencing and/or quasi-Newton methods, though
both can be employed in obvious ways.



2. Notation, Definitions, Assumptions
All norms (|| -|| ) used below are Euclidian norms.
We will organize our thoughts around the set (possibly vacuous) of those f; in (1.1) which
will be zero at a local minimum of F. For a given x and ¢ >0 let
A(x, ) = {ji] f;(x)] <eand 1< j<m}
denote the set of e—active indices at x. Let
I(x,e) ={l,..., m}—A(x e
represent the e—inactive indices and
o;(x) = sgn[f;(x)]; i€llx,¢) .
Let
p.e) = X o(x)fi(x) .

1€I(x, €)
and note that
4.0 = D a0 = 3 1] = S| = F)
i€I(x,0) i€I(x,0) i=1
for any x. It is easily seen, moreover, that for any designated point x there is an ¢ > 0 such that for
all0g<ege
A(x,¢) = A(x, 0)
and
$(x.€) = F(x) .
With e fixed, there is a neighborhood N of x depending upon e, for which 'x eN implies
A(x,€) = A(x,0) ;
and also given any 8 > 0 there is a neighborhood N 5919 of x within which
| p(x,e)— F(x)| <& .

Thus, we approach the task of solving (1.1) from the point of view of selecting a trial active
index set A and its complimentary index set I suggested locally by x and some activity tolerance e.
(Usually A = A(x, €), but we have sometimes found it useful to consider ASA(x,¢), and so we will
distinguish the A of our choice from A(x,e) in what follows.) Then, with A chosen, we begin
solving

minimize ¢(x) = X, 0,(x)f;(x) 2.1
x i€l

subject to fj(x) =0; jEA

until we are sufficiently close to a minimum of F to satisfy a convergence criterion, or until it is
evident that we are dealing with the wrong selection of A in which case (2.1) is redefined (by
redefining A) for further steps of the algorithm. The approach to solving problems of the form
(2.1) will be the one taken in [3,4], for which it can be shown, under reasonable assumptions, that
the sequence of function values F which are generated decrease monotonically to a locally minimal
value.

For ease of discussion we will begin with the following
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Assumption

1.  The vectors ij(x ), j€A are linearly independent for each x,A we choose to consider. (See
section 5 for further comments on this.)

We summarize the applicable results and defer their full development to a later paper.

Definition: A point X is a stationary poini of F, if there exist scalars U, J €A(X, 0), such that

2 o®VE® = X wVfEF) .

i EI(X, 0) JEAF,0)
Definition: A stationary point X of F is a first —order point of F, if

-1 u; < +1; jeA(x,0) . (2.3)
Definition: A first-order point X of F is a strict second —order point of F, if

—1 <y <+1, jeAF0) .

and for each nonzero vector p eR” satisfying

pTVf(¥) =0, jeAR®0) (2.4)
it follows that
p'Bx)p >0 @.5)
where
BE)= XY o®VY® - X wVUF) . (2.6)
i €l(x, 0) JEA(X, 0)

The following are corollaries of results from [2].
Theorem 1: A necessary condition for the point X to be a local minimizer for F is that ¥ be a
first-order point for F.
Theorem 2: A sufficient condition for X to be a strong local minimizer for F is that X be a
strict second-order point for F.

If A is chosen as A(X, 0) in (2.1), then the following is a standard result.

Theorem 3: A necessary condition for X to be an optimal point for (2.1) is that ¥ be a
stationary point for F.

The indication which we may take that our choice of (2.1) -- that is, our choice of A -- is an
incorrect representation of (1.1) is that in proceeding toward an optimum of (2.1) we appear to be
nearing a stationary point of F which is not a first-order point of F. On such occasions we change
(2.1) by dropping an index j, from A as suggested by the following sequence of definitions and
results,

Definition: The values u, = uj(x), J €A defined from (2.1) for a given x €R” by the solution to

the least squares problerjn
minimize | Vf,(x)u = Vo | , @n
u
where
Vo(x) = Elal-Vfl-(x) (2.8)
i€

and Vfalx) is a matrix with columns ij(x), j €A, are the
first —order multiplier estimates at x.
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Definition: Any vector peR”" defines a descent direction for F at a point x, if
F(x+ap)< F(x) for all >0 in some neighborhood of 0.

It follows easily from the material jn [1] that, if X is a stationary point of (2.1) which is not a
first-order point for F and u; = u(x), j€A are the associated first-order multiplier estimates, then
the vector d given by the solution to the linear system

VS, @)7d = —sgn(u; ) (2.9)
0 0
VAEd =0, jeA-{ig |
where j, €A is some index for which | u; [ >1, will define a descent direction for F at X. This

result can be extended for the nonlinear pr8blem under discussion to the following.

Theorem 4: If X is a stationary point for (2.1) which is not a first-order point for F, if x is

close enough to X in the sense that A(x, ¢) = A(¥, 0), and if A in (2.1) coincides with A(X,0), if

0;(x) =sgn[f;(x)] =sgn[f;(X)] for all i€A and if u;, jEA are the first-order multiplier

estimates at x, then the vector d €ER” determined as in (2.9) with X replaced by x will define a

descent direction for F.

Definition: The step direction d defined above will be called the dropping direction

The algorithm for (1.1) to be described uses the dropping direction whenever the selected
version of (2.1) (i.e. the choice of A) is not an appropriate model for (1.1). Otherwise one or both
of a pair of directions based directly upon (2.1) is used.

Definition: A horizontal direction at x for (2.1) is a vector & €R” which solves the following

equality-constrained quadratic programming problem

minimize Y2 Toh + h TV (x) (2.10)

subject to VfA(x)Tj =0
for a positive definite matrix Q. During the course of the algorithm two choices of Q are
considered:

Q = V%x)+D @.11)
for a diagonal matrix D with nonnegative diagonal entries (possibly zero) as needed to ensure
positive definiteness, and (as suggested by (2.6))

Q =Bx)=Vi%x)- X u,Vx) , (2.12)
JEA

where u;, j€A are the first-order multiplier estimates at x. If it is necessary to distinguish
Wthh cf101ce of Q is used to produce h, we will use 4° to indicate that (2.11) was used and
k°° to indicate that (2.12) was used.

Definition: Let x be a designated “reference point”. A vertical direction at x referenced to ¥ is
a vector veR” which solves the following least squares problem

mlmmlze [ VfA(x) + ) (2.13)

where f,(x), j€A (NB: x not x) denotes the vector of function values f (x), arranged
consistently with the columns of VfA(x)

During the course of our algorithm a line search will be used for dropping directions and for
some horizontal directions. Whenever x + a*d or x + a*h is written for any point x, it will be
assumed that a*> 0 has been chosen to provide sufficient decrease in the sense that

F(x +a*d) < F(x)—nld TV(x))? (2.14)

for some chosen tolerance » > 0, and similarly for 4.
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Assumptions (continued)
fl.eC2 for all i.
Any points x to be considered are confined to a compact set S.
(2.14) holds with respect to each a* chosen.
There are only finitely many stationary points X in S.
All first-order points of F in S are strict second-order points.
There exist numbers U > L > 0, = > 0 such that

Liy|*<y By <U|y?

for any y satisfying yTij(xk) =0, all j €A, whenever || x, —X|| <= for any first-order point
Xin S.

A

Under the above we have the following results more or less directly from [3,4].
Theorem 5: Let A = A(x, 0) define the problem (2.1), and assume that X is a first-order point
for F. Then there is a neighborhood of X such that, for all x, x in that neighborhood,
F(x +v) < Fx) , (2.15)
where v is the vertical direction at x referenced to x.

Theorem 6: Let X be a stationary point for (2.1), with A = A(X,0). Assume that X is also a
strict second-order point for F. Then there is a neighborhood of X such that, for any x in
that neighborhood with

F(x +h°°+v) < F(x) (2.16)
where v is the vertical direction at x + 4°° referenced to x.
Theorem 7: Given any instance of (2.1) and any x, the horizontal directions h°, h°° as given
in (2.11), (2.12) respectively are descent directions for F.

Definition: For any designated point x, and any chosen d, e{h®, h°°}, v consistent with the
above, the transitions

x > x+a'd 2.17)
x > x +a'h

X =>x+v

x > x+h+v

will be called respectively a dropping step, a horizontal step, a vertical step and a
Newton step taken from the point x.

We are now prepared to outline our algorithm and its convergence properties.

3. Algorithm: Strategy and Convergence

Assume that A has been chosen and we are considering the resulting problem (2.1) at some
point x. We can be either (a) very close to a stationary point of (2.1) which, by virtue of having
correctly identified A, is a first-order point of F, (b) nowhere near a first-order point of F and
trying to move closer to a stationary point of (2.1) as a means of decreasing the value of F, (c)
somewhat near a stationary point of (2.1) and interested in testing whether A is corectly chosen.
Thus, we associate three regions with each stationary point X of (2.1). R consists of those points x
which, loosely stated, are so distant from X that (2.2) is far from satisfied. In such circumstances
the multiplier estimates u; will not be required, which is fortunate since they can be expected to be
quite unreliable. R, consists of those points x which are closer to X in the sense that (2.2) is rather
well satisfied, and the associated first-order multiplier estimates clearly indicate the character of the
true multipliers. R consists of those points which are within the intersection of the neighborhoods
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mentioned by theorems 5 and 6 and so close to X that (2.2) is very well satisfied.

To be more specific, let 7,5 > 753> 0 be given. Then

Ry = {x] Yy )u) = Vo)l 75}
R, = {xxgR,\JRyand | Vf,(0)u(x) = Vo) <7}

Ry = {x xefnbd. of Thm. 5}{T){nbd. of Thm. 6} and || V£ ,00)u(x) = Ve(x)| <73}

In practice we can never determine exactly into which region our given point x falls, but this
is inessential to the success of the algorithm. The global decrease of F to a locally minimal value
is guaranteed under reasonable assumptions, and these regions are used only to govern our strategy
of approach to the corresponding minimizer ¥. Failure to determine the regions optimally, at
worst, defers the time after which superlinearity of the convergence rate sets in. Our desire is to
avoid estimating multipliers and confine ourselves to horizontal steps (viz. (2.17)) in R, to estimate
multipliers and determine whether a dropping step is necessary in R,, to use vertical steps as well
as horizontal steps in R, if dropping is not called for, and finally to switch to Newton steps for fast
convergence to X in R 5.

We base our assumption about which region contains a given point x largely upon the
magnitude of | Vf,(x)u—V¢(x)|, and we back up this assumption by verification tests which we
apply to the dropping direction, to the vertical step and to the Newton step as appropriate.

With this general introduction, the algorithm is most easily described in terms of a table.
The tolerance parameters 7 ,> 753> 0 have been introduced above. Three more positive
parameters §;, 6, and 8, are needed for determining whether to reject respectively a dropping step
direction, a vertical step or a Newton step on the grounds that they will not yield acceptable
decrease in F. Each iteration of the algorithm starts with a current point x, chooses A anew as
A(x, €), and uses x , A to test a condition (column 1 in the table below) which serves to pick out a
table row. Each row is associated with an assumption about the R-region in which x is located
(column 2). A verification of this assumption may be carried out by performing a follow-up test
(column 3). Finally, an adjustment to x is made in one fashion if the test result is positive and in
another fashion if the result is negative (columns 4 and 5 respectively).



Prevailing
Condition

19/ u=Vol 7,

I VfA“—V¢|| <723
and
Positive Result of table
lines 2 or 3
ocurred last step
and
X*+x+v
was successful in the
case of line 2

Corresponding
Assumption

XER

XER
and
no drop

Follow-up
Test

none

|uj| <1, all jEA
or
lujol > 1, somej EA
but
dTve> -8,

F(x+h°+v)
<F(£)—63

Positive
Result

Negative
Result

X <x +o*h’ not applicable

XX +a*h® x<ex +a*d
followed by
Xxex+v
if
FG+V)<FE)=5, £

x=x+a*h®°

followed by

XX +h7+y

Xex+v
if
F(x+v)<
FG)=8, ) /4
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In addition to the above, € is reduced whenever F(x +v) < F(x)—8,|| f,| fails to hold, whenever
linear dependencies in Vf, are detected while computing d, or whenever the condition
|fj (x +a*d)| <e is detected following the "Negative Result” outcome in line 2. The reduction of
¢ is’heuristic in the first case (division by two), in the second case the reduction is just enough to
discard indices j from A associated with vectors V£, which are contributing dependencies and in
the third case the reduction is just enough to ensure that j, will not reappear in A at the next pass
through the table, i.e. just enough to ensure that fj0 is properly "dropped”.

Let k €{1, 2,3, ...} index the sequence of iterations which are performed, and let )fk, €
and A, denote the x, ¢ and A encountered at the k-th iteration step. Under the 7 assumptions
stated on an earlier page, with the set S mentioned therein, and for all >0 in (2.14) sufficiently
small, the discussion in [3,4] provides us with the following

Results

a.  The sequence of values ¢, is bounded away from zero, and the elements of the sequence of
index sets A are identical for all k sufficiently large.

b.  There exists a first-order point X €S such that lim ’Ek =X.
k>

c. For all k sufficiently large, only the positive outcome of line 3 in the table occurs (i.e only
Newton steps are taken).
TS I .
d. lim — —— = 0, implying superlinear convergence.
ke - =% |

4. Test Problems

Some representative problems from [5,6] have been tested. They are referred to below by the
labels they were given in these references. In each case we report the number of evaluations of the
function F and the number of iteration steps of the algorithm (x—x +Ax) which were required to
go from the stated initial point to a point having 7-place agreement with the solution (effectively
single-precision accuracy on our computer, the Honeywell 6600). It should be noted that our
method, exclusive of what might be required by the line search being used, needs one evauation of
all f;, Vf; (that is, one evaluation of F and V¢) together with one updated version of the matrix
Q. (approximating V% or B according to the nearness of x to a stationary point) for each
iteration. In addition, if the iteration step involves a vertical segment v, a further evaluation of fj,
J €A, is required. Any disparity shown below between the number of function evaluations and the
number of iteration steps is the responsibility of the particular line search being employed -- an
exceedingly crude and simplistic one in our current code.

Where possible we have tried to give a comparative figure for function evaluations and
iteration steps as they are indicated in [5,6]. It will be seen from this that our method appears to
be comparable to the one described in [6] and significantly better than the one described in [5].
Further computational testing and refinement are in progress.

Problem 1 ([5] Example 5.1):
fl(x)=x]2 +x,—10
fx)=x,+x} =7

Initial Point: x, =1, x,=2

Minimal Point:

x(=2.842503,
x5=1.920175

Minimum F Value: 4.704243E-01
Function Evaluations: 14
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Iteration Steps: 6
(The algorithm of [5] had not attained comparable accuracy after 12 iterations and 88

function evaluations.)

Problem 2 ([5] Example 5.2, [6] Problem 4):
Sy y=x;+x,+x;—1
f4(x)=xl+x2_X3+ 1
Fsr)=2x7 +6xF +25x3—x+1)°
Initial Point: x; =1, x, =1, x3=1
Minimal Point:
x =0.5360725
x,= -32E-10 = 0
x3=0.03193041
Minimum F Value: 7.894227
Function Evaluations: 20
Iteration Steps: 10
(The algorithm of [5] attained a comparable value of F only after 11 iteration steps and 109
function evaluations. The results in [6] are recorded only to 5 figures. Agreement in the

minimal F value to that number of figures was reported attained after 10 iterations and 11
function evaluations.)

Problem 3 ([5] Example 6.1):
y=y()=te ' —eTH+ LTI+ 37 Kin(71) + e 7> /sin(S1)
h(t:x)= xle—x2tcos(x3t +x )+ xse—x6t
[ix)=h@x) =) =h{t;x) =y,

where ; =00+ (i —1)/100, i =1, .., 51.
Initial point:

x =2, x,=2, x3=7

x4=0, x5=-2, xg=1
Minimal Point:

X, = —2.240744
x,=1.857688
X3 = 6.770049
xy = 1.496694

x5=0.1658920
xg=0.7422845
Minimum F Value: 0.5598131
Function Evaluations: 78
Iteration Steps: 68
(The Algorithm of [5] converges to a different minimal point having the same minimum F
value. After 11 iterations and 116 function evaluations it had attained the F value 0.559818.)
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Problem 4 ([6] Problem 3):
Six) =x12 +x22 + x x4
So(x) =sin(x )
f3(x) =cos(x,)

Initial Point: x; =3, x,=1
Minimal Point:
x ; =0.000000
xy= -83E-04 = 0.0
Minimum F Value: 1.000000
Function Evaluations: 20
Iteration Steps: 16
(The Algorithm of [6] reports termination at the point x,=0, x,= 2.0E-04 after 15
iterations and 15 function evaluations.)

5. Of Things Not Mentioned

One would expect 1] minimization to be used most frequently in the context of data fitting;
e.g. the simple linear model problem in the first section or test problem 3 above. Moreover, 1
minimization will be chosen in these contexts over /., minimization often because there is a
suspicion about the validity of a small portion of the data; e.g. the simple linear model problem.
The vast majority of the data may be excellent, and this will mean that the vast majority of the
functions f;(x)=~h(f;;x)~y; may be nearly zero at some points x which the algorithm must
consider. The gradlents Vf; are likely to be linearly dependent at such points; i.e. the algorithm
will have to contend with degeneracy. We believe that horizontal, vertical and Newton steps
remain reasonable and retain their theoretic properties under some weaker constraint qualification
than that of linear independence (Assumption 1) if the choice of A is taken to be a subset of A(x, €)
associated with a spanning collection of the vectors Vf (x), j€A(x,€). A similar situation is not
evident for dropping steps. Thus, the algorithm as dcscrlbed could be expected to have dificulty in
R, regions about degenerate stationary points. This is an area of further research.
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