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Abstract. It is shown that for every context free language L
there effectively exists a test set F , that is a finite subset F of L
such that, for any pair (g, h) of morphisms, g(x) = h(x) for all x

in F dimplies g(x) = h(x) for all x in L . This result

was claimed earlier but a detailed correct proof is given here.
Together with very recent results on systems of equations over a free monoid
this result implies that every algebraic system of equations is equivalent

to a finite subsystem.



1. Introduction

A number of results concerning the decidability of problems about
morphisms have been obtained recently, for a survey of them see Culik
(1980). Already in an early stage of this work A. Ehrenfeucht made the
following intriguing conjecture: Every language L has a finite subset
F, such that for any pair (g, h) of morphisms, g(x) = h(x) for all x
in L iff g(x) = h(x) for all x in F . Such a finite set F has
been called a test set in Culik and Salomaa (1980) where it has been shown
that the conjecture holds true for languages over a two-letter alphabet.

It is also clear from arguments in Culik and Salomaa (1978) that Ehrenfeucht's
conjecture holds for regular sets over any alphabet,in which case a

(finite) test set can even be effectively constructed. Effective

existence of a test set for each language of family L <clearly implies

that morphism equivalence is decidable for family L , i.e. given a

language L in L and two morphisms g, h it is decidable whether or not
g(x) = h(x) for each x e L . Therefore test sets cannot effectively

exist for context sensitive languages since morphism equivalence for them

has been shown undecidable in Culik and Salomaa (1978).

The main purpose of this paper is to prove that a test set
effectively exists for each context free language. This result was already
claimed in Albert and Culik (1980), however R. Parchmann discovered an
error in the proof of Lemma 2 of this paper and gave a counterexample
(shown in Section 3) to this lemma.

In Section 3 we prove a weaker but still sufficient version

of Lemma 2. The proof is quite lengthy despite an effort to make it as



succinct  as possible. The next section gives the main result and its
application to the testing of morphism equivalence. The new applications
to systems of algebraic equations over a free monoid are discussed in

Section 5.



2. Preliminaries

We need only very basic notions of formal language theory. To
fix notation we specify the following, otherwise we refer the reader to
Harrison (1978), Hopcroft and UlTman (1979) or Salomaa (1973).

We study morphisms of a free monoid Z* generated by a finite
alphabet I . The unit of £* 1is denoted by A and 5= gk - {1} .
The length of a word x 1in I* is denoted by |[x| . For two words x
and y , xy'] (resp. y_lx) denotes the right (resp. left) difference of
X by y . The notation prefn(x) is used to denote the prefix of x
of length n . By definition, if |x| < n then prefn(x) = X . By
pref(L) we mean the set of all prefixes of words in a Tanguage L . The
corresponding notions for suffixes are obtained by replacing pref by
suf .

We are almost all the time working with equations in a free
monoid. The following basic facts are well known and used without any
explicit reference, the reader may consult e.g. Harrison (1978). For each
word x in I there exists a unique word p(x) such that x e p(x)*
and p(x) cannot be written in the form p(x) = y' with n=22 . The

word po{(x) is called the primitive root of x , and a word x 1is called

primitive if p(x) = x . For two nonempty words x and y ,
o(x) = p(y) if and only ff xy = yx . For arbitrary x and y the
identity xy = yx 1is equivalent to the existence of a word p such that
XY € p* . We also recall the fact that if two words x"  and ym have
a common prefix of 1ength Ix| + |y] , then p(x) = p(y) . Finally,

we state a simple lemma, the proof of which is straightforward.



Lemma 1. Let I be a finite alphabet and u ¢ 5t s VaW,X € % .
If uvw = vx , then there exist words p e Z* , p' e rt and integers
i>1,J=>=0 such that u = (pp')i and v = (pp')jp . Moreover, if pp'
is chosen to be primitive, then p, p', i and Jj are unique. 0

Next we state our crucial definition.

Definition. Let L cz* . We say that a finite set F 1is a test

set for L if F <L and for any two morphisms h,g : I* > A*

h(x)

g(x) , for all x ¢ F , implies

h(x) = g(x) , forall xelL .

Intuitively, the above means that to test whether two morphisms
agree word by word on a language L it is enough to check whether they
agree on a finite subset F of L .

Finally, we define the notion of the balance of a word with
respect to two morphisms, cf. Culik (1980). Let h and g : Z* > A* be

two morphisms and w ¢ %* . The balance of w_with respect to the pair

(h, g) , denoted by Bh,g(w) , is defined by

By W) = [h(w)| - [g(w)]

»9

We write simply B(w) if morphisms h,g are understood.



3. Pumping and Test Sets

In this section we show how certain pumping properties
of Tlanguages are related to the existence of a test set. This is done
by considering certain types of equations in a free monoid. We start with
a simple example.
Example 1. Let Z be a finite alphabet. For any words
X1s Xgs Yys Yps Ups Ugs Vg and Vo the following holds true

X T %Y
XqU1¥y = X5UsYs implies XqUiVeYq = x2u2v2y2
XYYy = XpVa¥p

To see this, assume Xp = XoW for some w ¢ ¥* . Then Yo = WY and
consequently the second equation yields XoWU Y1 = XoUoWyy i.e.
WUy = UW . Similarly we obtain WV = VoW Hence, we conclude:
XPUpVedq = XgWUpVqdy = XpUghvdy = XpupVollyy = XplpVp¥p -

The above implies that any regular language, that is a
language satisfying the "one place pumping property" has a test set, cf.
Culik and Salomaa (1978). Indeed, if a language is given by a finite
automaton, then its test set is obtained by taking all words yielding a
computation where each state of the automaton is passed at most twice,
i.e. by taking words with Toop-free computations as well as words with at
most single (but possibly nested) Toop computations.

If the pumping occurs in two places, as is typical for context-
free languages,then the situation is essentially more complicated. It is

not only true that single loops are not enough but also that double Toops



are not enough either. This is seen from the following example

essentially due to R. Parchmann.

Example 2. let = = {a,b,d,a, bl and h, g two morphisms
defined by the table:

a b d a b
h] bcbb bch b A b
g A bcb b cbbb b

It is striaghtforward to see that h(xdy) = g(xdy) for all

(x, y) e {(x, 1), (a, a), (b, b), (aa, aa), (bb, bb), (ab, ba), (ba, ab)},
actually even for all (x, y) e {(@", an, ", " I n=1} . However,
h(abbdbba) # g(abbdbba) .

In the following we show that the above is the worst possible
situation, that is when we pump in two places, then three loops are enough.
To make this precise let A = {A, B, C, D, A, B, C, D} and define Q < A*
as Q= {(x, 1), (X, X), (XY, ¥X), (xvz, ZVX) | X,Y,Z « {A, B, C, D} ,
X#Y, X#Z,Y#Z} . Now, let T be an alphabet and o, B, v, 8, a,
B, Y, & words (not necessarily distinct) in I* . Define a morphism
poA* > 3% by u(A) =a, uB) =8, uC) =y, uwbd =8, wh) = o,

u(B) =B, w(C) =% and (D) =8 . We call the set
=@ = {00 ), (e, @, e (518, BT )}

an initial loop set.




The reason for the rather complicated formal definition of an
initial loop set is that we must include only nonrepetitive combinations
from o, B, Y, §, however the strings «a, B, v, § do not have to be
distinct. In other words for any (v, x) e M v is obtained from aBy$

and x is obtained from &yBa by erasing some of the pairs (a, a), (8, £),
(v, v}, (8, §) (and possibly by changing the order of words). This is
essential, since Lemma 2 will be used to show that if two morphisms

disagree on some long enough word they will disagree already on a shorter

word, cf. the proof of Theorem 1.

Using this notation we state our basic lemma.

Lemma 2. Let M be an initial loop set, u,w,y ¢ I* and
h,g : * - A* two morphisms. If g(uvwwxy) = h(uvwxy) holds true for all

(v,x) ¢ M, then it also holds for (v, x) = (oByS, 8yRa) 1i.e.

(1) g(uaBydwdyBay) = h(uaByswsyBay) .

The proof of the Temma is rather lengthy. So we divide it into

several parts, some of them formulated as independent lemmas.

Lemma 3. Let wed*, ny = g(n) and n, = h(n) for each n

in * . If ViwXy = VowX, holds true for all (v, x) ¢ M, then also

(2) 01 B1Y1 81081 v7B1ay = 0pBaYo8awlaYoBats
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Proof. We first observe that the case when any of the pairs (a], EH),

(85 By)s (vp vq) or (8,» &) equals (x, A} is clear: then equation

(2) is already among the assumptions, since for any (v, x) ¢« M we have
[vyxq ] = [voxs|

Case I. Jog| = Jo,] .

Our assumption a]w&i = azwaé now implies the identities a; = a, and
5& = &é . Consequently, (2) follows from

B1v18qwdy 7By = Bavpd,ud,vo8, -

Case II. |q1l > |a2|.

Let o = 0ol for some u e A+ . Moreover, let

Moc = {(v, x) e M l (av, xa) € M} .
Then from our assumption and the identity ap T ool We conclude

(3) uv1wx]6G = v2w>(2&é for all (v, x) « M,

Now we apply Lemma 1 to the equation Hwoy = w&é . So there exist

peA*, p'e N , 121 and j =0 such that

b= (o) L w= (pp')p
We assume that pp' s chosen primitive. Setting
7= (p'p)!
we see that uw = wp and &é = ﬁ&i . Remembering that vquwX; = v,ux,

for all (v, x) € Ma » we now conclude from (3)
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(4) HVqWXy = Vq0Xqu for all (v, x) ¢ Ma
Claim. For each (v, x) ¢ Ma there exist i(v) >0 and i(x) =2 0 such
that v, = (pp')1(v) and x, = (p'p)i(x) .

To prove the claim we first observe, by symmetry, that it is

enough to show the existence of an i(v) .

Let (v, x) be a fixed element in M, . We apply Lemma 1 to
the equation HVywXy = v]mxlﬁ'. So it follows that
' k [ s . ] k
b= (@)%, vy = (@) Xq, T = (q%)

for some k =21, k(v, x) 20 and q e A* , q' ¢ At Choosing qq'

primitive we obtain i = k and hence

qq' = pp

and

it
©
—
=
~——

q'q =p'p

(Note that the primitiveness of pp' implies the primitiveness of p'p).
Our next aim is to show that p = q and, consequently, p' =q' .
Assume that this is not the case. Then e.g. p =qp , for some ¢ # A ,
implying that q' = ¢p' . Thus, we have p(u) = o(p'q) = (p'q)e , and
since both ¢ and p'g are nonempty p(e) = p(p'q) . So
(i) « (plo))?(n(0))* , a contradiction.

In conclusion, we have proved so far that for each (v, x) e Ma

there exists a k(v, x) such that

vux; = (ppt)kVX)p
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and moreover
] |‘i . :1
m=(pp)jp, we=(pp')", u={(p'p) .
In particular, w is a suffix of VWX and hence we may define i] by

the condition

By the definition of ~ , it is clear that it behaves 1ike a morphism,
i.e. XX' = X X' (whenever everything is defined). It is also clear that
A . +
ViXq € (pp')" for each (v, x) € Ma
Next we consider B- and y-words. By the above periodicity

and by the length argument we have
BiBIYIYy = YiqBiBy = BYpYiBy = vqByByy

Consequently,

and
Bivivy = YimBys vqByBy = ByByyy
So it follows that B],Y] € s? and ﬁi, ?ie 55 for some words 51 and

S Thus, we may use our last equalities to conclude that

o -
L2 N . fal 2 :
B],Y],B],y] e s* for some s . Since B]B] and Y|Y; are powers of a

primitive word pp' we have

B-I aY] :—B—-I ,?-l € (pp')* .
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By symmetry, we also obtain

5-1 ’5] € (pp')* .

Finally, we are ready to conclude the equation (2). Indeed, we have

AN

1817181001 ¥1B10y = apuByY1818;vqBquay

AN A

= AoByY18y 877y Byhwoy

= QoByY78qwéyvyBy0y
= nBsYp87w8,Y,B50,
Case III. Iazl > [a]I .

Clearly, this is symmetric to Case II.

So our proof for Lemma 3 is complete. a

Lemma 4. Let e A*, n;=g(n) and n, = h(n) for each n

in * . If TVIX) = XpVyT holds true for all (v, x) ¢ M, then also

(5) 1181181017180y = 0pBoY20,85Y,Bp0,T
Proof. As in Lemma 3, we may assume that the words a]Ei, B]E}; y]?i
and G]EH are nonempty. We have two cases.

Case I. B(a) = 0 , i.e. the balance of the word o 1is zero.
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Subcase (i). N = max{|ByYoYoBols [858,8,851 5 1V8,8,7513 = [1] .

Since R(a) = 0 and Ta]&i = 0,0,T  We have

(6) oyt | = 1] = lapr(a) ]

Now let e.g. |8262§é§é| > [t] . Then from the assumption

TB]6]51B] = 82626262T we obtain

preflT[(Bzézézez) =T = suflTI(B]é] ] ]) .

Consequently, from the assumption To,B;618:Bj0q = AB58,8 58,505 T and (6)

it follows that

a3 lroy = 7 = ayr(a)

So the desired equation (5) follows from TB]Y]5]6] 181 ° BZYZGZSEYZBZT .

Subcase (i1). N < |t] .

From our assumptions TVIX] = VpXoT for

(v, x) € {(B> B)s (v, ¥)» (BY, YB), (YB, BY)} we conclude that
6282Y2Y29 Y2Y282825 BZYZYZBZ, YZBZBZYZ € pYEf(T)
Conseguently,
BoBaYoYp = YpYpBaBy = Ba¥pYaBp = YoBaRaYe
and so we derive, as in the end of the proof of case II in Lemma 3, that
829 YZ, 823 Y2 € q*

for some primitive word q .
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Using the symmetric reasoning for B- and &-words we obtain

that also
(32, —6~2€q* .
Now the identity TB1B} = BZEéT gives

(7) T € (qlqn)*ql

for some words q' and q" with q = q'q" . Consequently,

VoXoT € (q'g")*q"' for all (v, x) € Ma , and hence our assumptions

together with the primitiveness of q'q" 1implies
(8) B]’ Y]s 6]: §]9 —Y—]’ g] 6(q"q')*

To complete the Case II (ii) we prove the following claim.
Observe that the claim will .be proved without assuming anything

about the balance of the word o .

Claim. Assume that the pairs (8, B), (y, y) and (8, §) satisfy

B-l, Y]’ (S'I’ -B—]’ ?'la 6] € (q"ql)*

and

82’ Yz’ 62, st st 62 € (q Q')*

for some words q' and q" with q'q" primitive. Then the statement of

Lemma 4 follows.
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To prove the claim let
r= aé]ra] = aér(aﬁ)-] .

(So we assume that ITa]I 2 |a,| ; the case ITG]' < Jop| is similar.)

From the identities Ta1&i = azaér and Ta]Bléiai = aZBZEé&éT we obtain
re pref(&zr) n pref(BZEZEZT)
Hence, by the fact Bzéé € (q'q”)+ R
r ¢ pref(q'q")* .

Let r =q"g with [q] < |q] and n =0 . Now we use the identity

rB1Y Y18y = ByYoY,Bor € pref(q'q")* .
Consequently,

9"q'q"q" ¢ pref(q'q")*

which, by the primitiviness of gq'q" , is possible only if q = q'
re (q'q")*q’
and so a straightforward calculation proves (5).
Case II. B(a) # 0 .
Now the assumption TV Xy = VoX,T , for each (vo x) e M,
implies that

(9) T(le])n = (V2X2)nT for all n=>0 .
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Next we make use of the identities a0 = az&ér and Ta]v]x]a% = QZVZXZ&éT
for (v, x) ¢ M, . Assuming that |Ta]l > |a,| (the other case is quite
similar) we obtain

-1 — -1 -1

ay Toq = (u2v2x2)—]ru]v]x] = &éT(a]) = V2X2&é (V]X]SH)

This yields
(10) Ta](v]x1)n5h = az(vzxz)n&ér for all n=0

and (v, x) € Ma

From (9 ) and (10) it follows that
(11) T(v1x])n, a£1TQ](y]x1)n ¢ pref(vzxz)* for all n =20

Now observe that |[t]| # |aé1Ta]| since B(a) # 0 . In other words, one

of the words T-](dé1Tu]) and (aélr ])—]T is defined and nonempty.

Let this word be p(a) . Then, by (11), (v]x])n e pref(p(a))* for all
n=0 . Consequently, p(V]X]) = o(p(a)) . This means that there exists

a primitive word, say p , such that
Vix; e p f h (v, x) e M
1% € P or eac v, X) e M

Observe that p 1is independent of (v, x) .

Now let us consider +vy- and B-words. We have
Y1V7> B1Bys YiBByTy € P
From the primitiveness of p it immediately follows that
Y15 Yy Bys By € P¥
Hence, by symmetry, also

5],5]6[3*.



We continue as in Case I (ii) to obtain equations (7 ) and the analogy of
(8) for the words Bos Bos Yps Yp» &5 and 6, . So the claim becomes

applicable, which completes the proof of Lemma 4.

Proof of Lemma 2. Let us recall our assumption:

(12) UpVWXqYq = UpVoloXoY, for (v, x) e M.

Our aim is to show that this equality holds also for (aByS, SyBa) . We

have four different cases depending on the relative lengths of Ups Ups ¥y

and Yo -

Case 1. Up = Usp 5 ¥y = 0, for some words p and o
Casé IT. Up = Ugp Yo = 0¥y for some words p and o
Case III. Uy = Uyp 5 Yy = 0¥y for some words p and o
Case IV. Uy = Uyp 5 ¥q = 0¥, for some words p and o

Clearly, by symmetry, it is enough to prove the lemma for Cases I and II.

Case I. The identities Up = Upp and Y1 % 9 applied to
UWiyy = UpWoy, yields W10 = W and, consequently, (12) is equivalent

to

(13) PVIW X10 = V,pW;0X, for (v, x) e M

Clearly, for each (v, x) ¢ M, there exists 72 and 22 such that
Vzp = sz ’ OXZ = XZG

By the definition of the operation ~ , it is clear that ~ , when
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defined, behaves 1like a morphism, i.e. (XX')=X X' . Hence, with this

notation , (13) is equivalent to

ViWXy = VoW X, for (v, x) e M.

The proof of Case I is now completed by Lemma 3. Observe that when
proving Lemma 3 we have'simp1ified notation: W, is replaced by w and

the waves over the symbols are omitted.

Case II. Now identities U = Uyp and Yo = 0¥, applied to
u]w]y] = u2w2y2 yields pw] = W,0 . We have two subcases.
Subcase (i). There exists a word T € A* such that p = WyT and

o= T, i.e. W and W, are not overlapping. With these notation

(12) s equivalent to

(14) WoTVQWy Xy = VWX, T, for (v, x) e M.
As in Case I we define words 92 and §1 such that
WiXp = XqWy for (v, x) e M
So (14) is equivalent to

TViXy = szzT for (v, x) e M,

i.e. we have (after a renaming) the situation of Lemma 4.



20

Subcase (ii). In owy = wyo w, and w, are overlapping, i.e. there
is aword T ¢ A* such that Wy = 10 and Wy = pT . So (12) is equivalent

to
(15) PV{TOX; = VppTXo0  for all (v, x) e M.
Again we define words ;1 and V] such that

Xy = Xq0 5 Vop = oV, .
Consequently, (15) can be rewritten as

ViTX] = VoTX, for all (v, x) e M ,

i.e. we may use Lemma 3 (after a renaming) in this case.

So our proof for Lemma 2 is complete.
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4. A Test Set for Context Free Languages

In this section we prove our main result

Theorem 1. For every context free language L cZ* (given by a A-free
context-free grammar G) there effectively exists a test set F .

m4n+]} , where n is

Moreover, F can be chosen to be {we L | |w| <
the cardinality of the nonterminal alphabet of G and m is the length

of the longest right hand side among the productions.

Proof. Assume that L is generated by a A-free context free grammar
G=(N, =, P,S). Let D be the set of all terminal derivation trees
generated by G such that on each path from the root to a leaf at most
four nodes are labelled by the same nonterminal. Let L' denote the set
of terminal words generated by D (the yield of D). Clearly, L' is a
finite subset of L .

We claim that L' 1is a test set for L . To show this let h
and g be arbitrary two morphisms. Assume that there exists a word =z
in L-L' such that h(z) # g(z) . Moreover, let 2z be a minimal such
word (with respect to (h, g)), i.e. whenever h(z') # g(z') with
z' e L-L' , then |z'| 2 |z|] . By the definition of L', there exists
a derivation tree for z of the form shown in Figure 1, for some words
u, w, y and some pairs (a, o), (B, B), (v, y) and (&, §) different

from (A, ) .
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Figure 1

By Lemma 2 and by the relation h(z) # g(z) , we conclude that
deleting some A-Toops from the above derivation tree, i.e. erasing from
z some of the pairs (o, a), (B, B), (v, y) or (8, 8§) , we obtain a
shorter word z, such that h(z1) # g(z]) . By the minimality of z ,
Z; must be in L' . Consequently, L' tests whether h and g agree
on L . Because this is true for any pair of morphisms, L' is really a

test set for L .
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The second sentence of the theorem is immediate.
0
Theorem 1 immediately implies the main result of Culik and
Salomaa (1978), the decidability of morphism equivalence for the family

of context free languages.

Corollary 1. Given a context free grammar G = (N, T, P, S) and two
morphisms g,h : T* > A* it is decidable whether g(w) = h{w) for all w

in L(G) . O

We can easily extend the claims of both Theorem 1 and Corollary

1 to some non-context-free languages using the following

Lemma 5. If F is a test set for L and FclL' <Ll then F

is a test set for L' .

Proof. Obvious by definition of a test set.
(]
Example. It has been shown in Culik and Salomaa (1978) that any

two distinct strings of the language L = {a"p" | n>1} form its
test set. Hence, by Lemma 5 the same statement holds true also for every

subset of L of cardinality at least two.
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5. Applications to Systems of Equations over a Free Monoid

In Culik and Karhumdki (1981) it has been shown that the
effective existence of a test set for a language of certain type is
equivalent to the effective existence of an equivalent finite subsystem
for every system of equations of "the same type". Here we are concerned
with context free (algebraic) languages and correspondingly with context
free (algebraic) systems of equations, which we will now introduce
formally.

A system of equations over I* with unknowns N 1is a binary

relation S c (N uzZ)*x (Nvz)*. Apair (u, v) in S represents

the equation u = v . We say that system S is rational (regular) or

algebraic (push-down) if N is finite and relation S is rational

(regular) or algebraic (defined by a push~down transducer), respectively.
The following lemma follows immediately from Theorem 2.1 in

Culik and Karhumdki (1981).

Lemma 6. If there effectively exists a test set for every context
free language, then for every algebraic (push-down) system S of equations
over I* we can effectively construct a finite equivalent subsystem of

S .
O

Thus our main result has an immediate corollary which extends a

result obtained for rational systems in Culik and Karhumdki (1981).

Corollary 2. Given (effectively)an algebraic (push-down) system of

equations S , we can effectively construct a finite equivalent subsystem

of S .
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Proof. By Lemma 6 and Theorem 1. g
Example. Let S be the system of equations over {a, b}* with

unknowns w, X, y, and z

w'x" = ynzn for all n=1 .

Clearly, S 1is an algebraic system, and every solution of S is either

of the form w=y , x =2z or of the form w = pr sy X = pq s Y = ps >

i

z = pt where p e {é, b}* 3 r,q,s, t=20 and r+q=s+1t . Here

any two equations form an equivalent finite subsystems of S . This is

just a translation into the terminology of equations of the Theorem 3.1

from Culik and Salomaa (1980) which states that every two distinct

strings of the context free language {a"p" | n 21} constitute a test set.

The inclusion problem for systems of equations is to test for

two given systems S] and 52 whether every solution of S] is also a
solution of S, . Theorem 3.1 and Corollary 3.3 from Culik and Karhumdki
(1981), together with Corollary 2 imply the decidability of the inclusion

and the equivalence problem for algebraic systems of equations.

Corollary 3. The equivalence problem and the inclusion problem for
algebraic systems of equations (with finite number of unknowns) over I¥

are decidable.
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Corollary 4. It is decidable whether an algebraic system of equations
on a free monoid has a solution.
Proof. By Corollary 3 we can effectively construct an equivalent finite

system of equations. Its solvability is decidable by Makanin (1977).
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