A Runnable Specification of
AV1-Tree Insertion

by
M.H. van Emden
Research Report CS-81-14
Department of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

April 1981



A RUNNABLE SPECIFICATION OF AVL-TREE INSERTION

M.H. van Emden
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

ABSTRACT

We argue that runnable specification of algorithms in logic have
important practical advantages: they combine superior readability with a
run-time efficiency which is acceptable in some situations. We peint out
that, in these situations, programs have become superfluous.

1. Introduction

Formal specification, as argued by Guttag and Horning [3], should
play an important role in software system development: attaining an intui-
tive understanding of the problem and designing a system is harder than
implementing a sound design. In view of this it is truly amazing that
programming and programming languages have received so much more attention
than specifying and specification languages.

In a properly executed system development the initial stages
(understanding, design) are more important in the sense that they are less
predictable and require more talented and experienced personnel than is the
case with implementation. This should not obscure the fact that implementa-
tion is still far from negligible in cost. It is therefore appropriate to
consider methods of formal specification where the result can be directly
executed on a computer. Recently such a method has emerged, which is based
on first-order predicate logic [8, 3, 10]. In this paper we report on our
experience with a very small example, namely AVL-tree insertion.

We compare this example of logic specification with a Pascal pro-
gram for the same computation. We choose Pascal for the comparison, as it
is a modern language designed to meet the dual objectives of clarity and
efficiency in terms of machine resources. We choose AVL-tree insertion
because a Pascal program for it is easily accessible [17]. For us this has
the advantage, besides the one of saving time, that the author of the Pascal
program will be above any suspicion of not being sufficiently sympathetic
to the Pascal language.

In recent years it has been widely recognized that it is important
for computer programs to be as readable as possible. In the fifteen years
between the inception of Fortran and Pascal considerable progress has been
made in this respect. Unfortunately, progress seems to be slowing down:
almost as much progress was made already in the five years between Fortran
and Algol 60.



Concern for readability in the design of programming languages
should not, however, obscure the fact that specifications are, by their
very nature, more readable than programs. To emphasize this we have in-
cluded in full a logic specification of AVL-tree insertion so that the
reader can make a comparison in terms of readability with a description
such as in [17]. We have attempted to give sufficient additional explan-
ation to make the paper easily readable for those both unfamiliar with
AVL-tree insertion and logic specifications.

Explicit use of first-order predicate logic as program specifi-
cation language with emphasis on runnability originates with Davis [4].
Both our approach and Davis's is based on the Horn-clause subset of first-
order predicate logic. OBJ [5] exemplifies an approach to runnable
specifications which is typed, and based on another subset, namely the
equations.

2. Trees Represented in Logic

The main linguistic categories in first-order predicate logic
are terms and predicates. Terms denote objects; predicates denote
relations between objects. Terms have a tree-like structure; our
representation is indeed based on this likeness.

Formally speaking, a term is either a simple term or a composite
term. A simple term is a constant or a variable. A composite term is

f(tl, ceer tn) where f 1is an n-place function symbol and t t

1" °°"" "n
are terms. For example bst(bst(nil, 1, nil), 2, bst(nil, 3, nil)) is a
term where bst is a 3-place function symbol and nil, 1, 2, 3 are constants.
This term can be used to represent the binary search tree

/N

The representation depends on the convention that nil stands for the empty
tree and that the arguments of bst stand for, respectively, the left subtree,
the root, and the right subtree. Notice that the function symbol bst is used
here as a data constructor. It plays a role similar to the one of a record in
Pascal. Of course the function symbol still denotes a function, in this case
from (tree, node, tree) - tuples to trees.

Qur example needs to be modified only slightly to accommedate AVL-
trees, which have one additional component: a balance indicator, which
indicates whether the right subtree has a height which is smaller than,




equal to, or larger than the left subtree. The value of the balance indi-
cator is in these cases, respectively, equal to the constants "<", "-",
">", Think of "<" and ">" as arrows pointing to which subtree has greater
height and of "-" as "neutral".

For AVL-trees we use the 4-place function symbol avl. Examples:

avl(nil, 1, -, nil) and

avli(nil, 1, >, avl(nil, 2, -, nil))

are AVL-trees. Of course, there exist terms having avl as function symbol
which are not AVL-trees and not even any kind of search tree.

3. The Insert Relation Specified in Logic

Data structures may be represented by terms of logic. Compati-
bly with this choice, operations on data structures may be represented
by relations between terms. The arguments of the relation then include
the data structure as it was before the operation and as it is afterwards.

Take, for example, the insert relation among binary search trees.
The following assertion is true of the relation we have in mind:

insertl(nil, *elt, bst(nil, *elt, nil)) ... ()

Note that an identifier preceded by an asterisk is a variable. Assertions
are (implicitly) universally quantified over all variables occurring in
them. The first argument of "insertl" is the tree before insertion, the
last argument is the tree afterwards, and the middle argument in the element
inserted.

We have only covered insertion into the empty binary search tree.
The following assertion states a useful fact about insertion into non-empty
trees:

insertl(bst(*1st, *root, *rst), *elt, bst(*1lstl, *root, *rst))

<le(*elt, *root) & insert (*1lst, *elt, *1stl) . e (2)

Read "«" as "if" and "&" as "and". The predicate symbol "le" stands for
the relation "less than or equal to". The assertion (2) says that inser-
tion is achieved by insertion into the left subtree provided that the
element to be inserted is less than or equal to the root. Similarly we
have



insertl (bst(*1st, *root, *rst), *elt, bst(*1lst, *root, *rstl))

<~ge(*elt, *root) & insert (*rst, *elt, *rstl) ... (3)

The predicate symbol "ge" stands for the relation "greater than or equal
to".

The assertions (1), (2), and (3) in conjunction are a complete

specification of binary tree insertion in the sense that whenever t2 is

the result of inserting e into a binary tree tl, the assertions logic-
ally imply insertl(tl, e, t2).

The insert relation for AVL-trees is similar to the one for binary
search trees. AVL-trees are binary search trees where for every node the
left and right subtrees do not differ more than one in height. Insertion
into AVL-trees proceeds in two phases. The first is the same as insertion
for binary search trees. As a result of such insertion it may happen that
at one or more nodes subtrees differ in height more than one. In the second
phase, if necessary, an operation called "rebalancing" is then carried out
which restructures the tree so that it becomes an AVL-tree. This second
phase is represented by the relation "adjust" which has as arguments the
0ld and new forms of the tree. Note that to adjust a tree may be to leave it
as it is, in case insertion 4id not destroy the property of being an AVL-
tree.

A typical assertion concerning the insert relation for AVL trees
is:

insert(avl(*lst, *root, *bi, *rst), *elt, *nt)
<« le(*elt, *root) & insert (*1st, *elt, *1stl) ... (4)

& adjust (avl(*lstl, *root, *bi, *rst), *nt)

The variable *bi is the balance indicator, *nt is the new tree after adjust-
ment. The first argument of "adjust" is not necessarily an AVL-tree. The
second argument ("nt" is short for new tree) is either the same as or a
rebalanced version of the first argument; and in either case an AVL-tree.

The assertion (4) gives the right general idea, but it still needs
some improvement. It is of course in theory possible for "adjust" to check
whether its first argument is balanced (by completely traversing it, for
example). It is much more attractive to make use of the fact that before
insertion the tree was balanced and then we need only as additional infor-
mation whether the height of the subtree, in which insertion took place,
increased.  And, of course, whether this subtree was on the left or on the
right. This additional information comes as additional arguments for
"adjust". Part of it has to be supplied by "insert", which therefore also
gets an additional argument. Thus the three major assertions for AVL-tree
insertion become as shown below. They are the counterparts of assertions
(1), (2), and (3) for unbalanced insertion.



INSERT (NIL,*ELT,AVL (NIL,*ELT,-,NIL),YES).
/* cee(5) */
INSERT (AVL (*LST, *ROOT, *BI,*RST) ,*ELT,*NT, *ISCHANGED)
<- LE(*ELT,*ROOT) & INSERT (*LST,*ELT,*LST1,*LSTISCHANGED)
& ADJUST (AVL (*LST1,*ROOT,*BI,*RST) ,*LSTISCHANGED,LEFT, *NT, *ISCHANGED) .
/* eee(6) */
INSERT (AVL (*LST, *ROOT, *BI,*RST) ,*ELT, *NT, *ISCHANGED)
<- GE (*ELT,*ROOT) & INSERT (*RST,*ELT,*RST1,*RSTISCHANGED)
& ADJUST (AVL (*LST, *ROOT, *BI,*RST1) ,*RSTISCHANGED,RIGHT,*NT, *ISCHANGED) .

/* ce e (7) */

4. The Relations Auxiliary to AVL-tree Insertion

The arguments of the adjust relation are as follows:
adjust (oldtree, ischangedl, leftorright, newtree, ischanged2)

"newtree" is either the same as "oldtree", or is the result of rebalancing.
Of "oldtree" it is given that it is the result of doing one insertion into

an AVL-tree. As a result it may have happened that one of the subtrees in-
creased in height. Whether this is. the case is indicated by "ischangedl";

"left or right" indicates in that case which subtree was inserted into.

It may happen that "newtree" is of greater height than "oldtree";
this is indicated by "ischanged2".

The first fact about "adjust" is simple:

ADJUST (*OLDTREE,NO, * ,*OLDTREE ,NO) . /% ... (8) */

This says. that if the subtree did not change in height as the result of an
assertion, then adjustment does not change the tree. A variable name * is
one that has a name different from any other in its assertion. This asser-
tion is true for any value of its third argument.

Let us now consider the case where insertion did change the height
of a subtree. Whether this makes rebalancing necessary depends on two things:
What the balance of the tree was before insertion and whether the height-
increasing insertion happened on the left or the right. For example, here
is a tree which was originally tilted to the left and where a height-increasing
insertion occurred on the right:



temcres

The new tree does not have to be rebalanced. The balance indicator changes
from "<" to "-". However, if the height-increasing insertion would have

happened on the left, rebalancing would have been necessary.

The various
possibilities are summarized in the following table:
BALANCE WHERE BALANCE WHOLE TREE TO BE
BEFORE INSERTED AFTER INCREASED REBALANCED
- LEFT < YES NO
- RIGHT > YES NO
< LEFT - NO YES
< RIGHT - NO NO
> LEFT - NO NO
> RIGHT - NO YES

This table can be regarded as the specification of a 5-argument
relation:

the table states which 5-tuples belong to the relation. Let us
call the relation "table". Then the following assertions of logic specify

the relation "table", and therewith the contents of the above table.

E
BALANCE WHOLE TREE TO B

*/
REBALANCED
/%  BALANCE IﬁgiﬁﬁED AFTER INCREASED

BEFORE o .

YES
e NTIE B S Y

TABLE ( ' RIGHT - ' o s ¥ES )
TAB - e NO :
TABLE ( i ' RIGHT - ' NO ’ Ng ;:
TABLE ( > ’ LEFT ’ ' NO , YE
TAEII:%(( > ' RIGHT ' - d
TA

o~ wooetclon (8) says all about the "adjust"™ relation for the
case where no subtree changed in height. 1In the other case the "adjust"

relation depends on "table" and "rebalance", as expressed in the following
assertion:



ADJUST (AVL (*LST, *ROOT, *BI,*RST) ,YES, *LOR, *NT, *ISCHANGED)
<- TABLE (*BI,*LOR,*BI1l,*ISCHANGED,*TOBEREBALANCED)
& REBALANCE (AVL (*LST, *ROOT, *BI,*RST) ,*BIl,*TOBEREBALANCED,*NT).

The first argument of "rebalance" is the tree which possibly needs re-
balancing; the last argument is an AVL-tree which contains the same keys
as the first argument. The second argument is the balance indicator of
the tree in the last argument. This information is specified in "table".

Again the first assertion about "rebalance" is simple: it covers
the case where "table" has specified that no rebalancing is needed.

REBALANCE (AVL (*LST, *ROOT, *BI, *RST)
,*BI1,NO,AVL (*LST,*ROOT,*BIl,*RST)).

The only difference in this case between the old tree and the new tree is
possibly in the balance indicator.

In case rebalancing is necessary, "rebalance" is defined in terms
of "=>", which denotes the relation for the required operations on the tree.
The first (second) argument is the tree before (after) the operation. Note,
that unlike the other predicate symbols, "=>" is used in infix notation.

REBALANCE (*OLDTREE, * ,YES, *NEWTREE)
<~ (*OLDTREE => *NEWTREE) .

Finally the time has come to consider the actual tree transforma-
tions. This is best explained by means of diagrams, as in Knuth [7].

U bl

- -

- - e e = o - - - .-

- e e




The tree on the left is not an AVL-tree because the subtrees of node A differ
more than 1 in height. The indicated operation then yields an equivalent
AVL-tree. An attractive feature of logic is that the above diagram can be
translated literally (figuratively speaking) into a logic assertion, as
follows.

AVL (*ALFA, *A,>,AVL (*BETA, *B, >, *GAMMA) ) =>
AVL (AVL (*ALFA,*A,-,*BETA) ,*B, -, *GAMMA) .

The symmetrically similar case is given by

AVL (AVL (*ALFA,*A,<,*BETA) ,*B,<,*GAMMA) =>
AVL (*ALFA, *A,-,AVL (*BETA, *B, -, *GAMMA) ) .

The other type of tree transformation is represented in the diagram
below.

A

——————

There are in fact two different, but very similar, subtypes here, depending
on the balance at node X initially. If it is "<", then afterwards the

balance at A is "-" and at B it ig ">". If initially the balance at X
is ">", then afterwards the balance at A is "<" and at B it is "-".
Initially the balance at X cannot be "-", because the element, which causes

the unbalance at A, can only have been inserted in one of the subtrees of
X. These contingencies are summarized in the following small table

" /* BIl BI2 BI3 */
TABLE2 ( <, = 4 0> ).
TABLE 2 ( > , < ., - ) .




The transformation is represented in the following assertion.

AVL (*ALFA,*A,>,AVL (AVL (*BETA, *X,*BI1,*GAMMA) ,*B,<,*DELTA)) =>
AVL (AVL (*ALFA,*A,*BI2,*BETA) ,*X,—-,AVL (*GAMMA,*B,*BI3,*DELTA))
<- TABLE2(*BIl,*BI2,*BI3).

The symmetrically similar case is

AVL (AVL (*ALFA, *A,>,AVL (*BETA, *X,*BI1,*GAMMA)) ,*B,<,*DELTA) =>
AVL+(AVL (*ALFA,*A,*BI2,*BETA) ,*X,-,AVL (*GAMMA, *BI3,*DELTA))
<- TABLE2(*BI1,*BI2,*BI3).



10.

INSERT (NIL,*ELT,AVL (NIL,*ELT,-,NIL),YES).
/X . (5) */
INSERT (AVL (*LST, *ROOT, *BI,*RST) , *ELT,*NT, *HTISCHANGED) -
<- LE(*ELT,*ROOT) & INSERT(*LST,*ELT,*LST1l,*LSTISCHANGED) _
& ADJUST (AVL (*LST1,*ROOT,*BI,*RST) ,*LSTISCHANGED,LEFT,*NT, *HTISCHANGED) .
/* oo (6) */
INSERT (AVL (*LST, *ROOT, *BI,*RST) ,*ELT, *NT, *HTISCHANGED)
<~ GE (*ELT,*ROOT) & INSERT (*RST,*ELT,*RST1,*RSTISCHANGED)
& ADJUST (AVL (*LST,*ROOT,*BI,*RST1) ,*RSTISCHANGED,RIGHT, *NT, *HTISCHANGED) .
/* eeo(7) */

ADJUST (*OLDTREE,NO,* ,*OLDTREE,NO) . /* ces (8) */
ADJUST (AVL (*LST,*ROOT,*BI,*RST) ,YES,*LOR,*NT,*HTISCHANGED)

<- TABLE(*BI,*LOR,*BI1l,*HTISCHANGED,*TOBEREBALANCED)
& REBALANCE (AVL (*LST,*ROOT,*BI,*RST) ,*BIl,*TOBEREBALANCED,*NT) .

/* BALANCE WHERE BALANCE WHOLE TREE TO BE
BEFORE INSERTED AFTER INCREASED REBALANCED */

TABLE ( - ’ LEFT ’ < ' YES ’ NO ).

TABLE ( - ' RIGHT ’ > ’ YES ' NO ).

TABLE ( < ' LEFT ' - ' NO ’ YES Yo /*.0.(9)%/
TABLE ( < ' RIGHT ' - ’ NO ' NO ).

TABLE ( > ' LEFT ' - ' NO ' NO ).

TABLE ( > ’ RIGHT ’ - ’ NO ’ YES ).

REBALANCE (AVL (*LST,*ROOT, *BI, *RST)
,*BI1,NO,AVL (*LST,*ROOT,*BI1l,*RST)).

REBALANCE (*OLDTREE, * ,YES, *NEWTREE)
<~ (*OLDTREE => *NEWTREE).

AVL (*ALPHA, *A,>,AVL (*BETA,*B,>,*GAMMA) ) =>
AVL (AVL (*ALPHA,*A,-,*BETA) ,*B,—,*GAMMA) .

AVL (AVL (*ALPHA,*A,<,*BETA) ,*B,<,*GAMMA) =>
AVL (*ALPHA,*A,-,AVL (*BETA,*B,-,*GAMMA) ).

AVL (*ALPHA,*A,>,AVL (AVL (*BETA, *X,*BI1l,*GAMMA) ,*B,<,*DELTA)) =>
AVL (AVL (*ALPHA,*A,*BI2,*BETA) ,*X,-,AVL (*GAMMA ,*B,*BI3,*DELTA))
<- TABLE2(*BI1,*BI2,*BI3).

AVL (AVL (*ALPHA,*A,>,AVL (*BETA, *X,*BI1l,*GAMMA)) ,*B,<,*DELTA) =>
AVL (AVL (*ALPHA,*A,*BI2,*BETA) ,*X,~,AVL (*GAMMA, *B,*BI3,*DELTA))
<~ TABLE2(*BI1l,*BI2,*BI3).

/* BIl BI2 BI3 */
TABLE2 ( <, =, > ).
TABLE2 ( > , < ., - ) .



Running the Specification

11.

In Figure 1 we have collected together all assertions specifying

insertion for AVL~trees.
interpreter [14].
tree insertion published by N. Wirth [17].
4341 computer under the VM/CMS operating system.
by two language processors.

It is also a listing of the code run by a PROLOG
The run time was compared to the Pascal program for AVIL-
The runs were performed on an IBM

The Pascal program was run

The results are summarized in the tables below.

One was "Waterloo Pascal" which is a processor
for student use intended to economize on translation and loading, without
regard for efficiency in the resulting code.
optimizing compiler.

The other is IBM's Pascal VS

Processor

Mode

Virtual CPU
time in seconds

Waterloo Pascal no printing .99
Waterloo Pascal output printed 1.40
Prolog no printing .22
Prolog output printed .28
Pascal VS no printing .04
Pascal VS output printed .11
Figure 2
Time required to run the translated
program for AVL-tree insertion
inserting 50 nodes
Translate and
Load Time
Processor Size Minimum machine (seconds vir-
Processor (blocks of 800 bytes) size required (Xbytes) tual CPU time
Waterloo Pascal 17 640 2.67
Prolog 29 301 .32
Pascal VS 336 784 6.16

Figure 3

Resources required for

translation




12.

6. Conclusions

In this example logic has proved to be a near-ideal interface
between a human and a computer.

For the human, logic is a medium allowing concise and versatile
expression of facts about relations. Note how the assertions for "insert"
express recursive definitions. Note how directly tabular material can be
represented. And note also how directly the diagrams for the tree trans-
formations are represented in the text. The precision and rigor of logic
is guaranteed by a mathematically defined semantics. More importantly,
the meaning of logic assertions is usually intuitively ascertainable,
without reference either to formally defined semantics or proof theory.

For a machine, logic is apparently interpreted with an efficiency
which is in some situations sufficient to make the writing of programs
superfluous. In other situations the advantages, claimed by Guttag and
Horning [6] for their unrunnable specifications, still apply.

After these euphoric remarks a few sobering thoughts are in
order; thoughts concerning the state of the art in systems running logic
specifications.

1. Only runtime has been compared, not space utilization. One reason
is that such a comparison is a good deal more difficult to make,
requiring some additional instrumentation for both the Pascal and
logic systems used. A more important reason is that the logic system
used in this comparison is based on an early design which is not as
economical in space as the newer implementations [11, 13].

2. The example is particularly. favourable for current logic systems,
which are at their best with tree-structured data and with recur-
sion as opposed to iteration. The Waterloo logic system, for example,
has no iteration. When iteration has to be done by recursion
(certainly not always necessary) it is done at a considerable
penalty in terms of space. However, Warren's system [16] has the
tail-recursion optimization. Here iteration is still done by re-
cursion but in a way which combines the important semantic advantages
of recursion with most of the econamy of iteration.

Terms are more flexible than LISP's lists; this already carves out
a sizable niche of applications for logic specifications. Still,

the problem of including arrays remains to be addressed, although

there do not seem to be any fundamental difficulties.

3. The nature and role of specifications is not yet clear.  The logic
systems have been used primarily as a neat way of programming, with
little concern for whether the code is usable as a specification.
McDermott's note [12] is symptomatic for this orientation. Even



13.

within specifications, widely differing objectives are possible. The
example in this paper is specification of the logic of an algorithm
(in the sense of Kowalski [9]) for AVL-tree insertion. It would also
be possible to specify when a binary search tree is ordered, what the
height of a tree is and then just to specify that insertion must
result in an ordered tree of which the heights of the subtrees differ
by 0 or 1. No system is in sight which would run such a specification
with anything but monstrous inefficiency. Yet such a specification,
without any commitment to a specific algorithm, is closer to most
people's intuition than the one exhibited in this paper. The
algorithmic specification is in need of justification with respect

to the non-algorithmic one. Such justification is facilitated by

the fact that both are in first-order predicate logic, which has a
well-developed proof theory. See Clark [1, 2] for examples of such
justification.

4. For Pascal it is apparently possible for a computer to produce code
which runs about 20 times faster than an interpreter. Such speed-
ups are of course not necessary for logic processors, as they are
not as slow as Pascal interpreters. But it is not at all clear
whether the equivalent factor of about 10 is achievable by compilers
for logic. Some encouraging results have been obtained for logic
compilation by Warren [15]; only time can tell how far this can be
taken.

7. Acknowledgements

Thanks are due to Virgil Chan for help with writing the specifi-
cation and to Ronald Ferguson for the timing comparisons. The National
Science and Engineering Research Council financed facilities supporting
this work.

8. References

1. Clark, K.L., The verification and synthesis of logic programs.
Department of Computation & Control, Imperial College, 1977.

2. Clark, K.L., Predicate Logic as a Computational Formalism. Springer
(to appear).

3. Colmerauer, A., Metamorphosis Grammars. In Natural Language Com-
munication with Computers, L. Bolc (ed.), Springer Lecture Notes
in Computer Science, 1978.

4. Davis, R., Runnable specifications as a design tool. In Logic Pro-
gramming, K. Clark and S. Tarnlund (eds.), to appear.



10.

11.

12.

13.

14,

15.

16.

17.

14.

Goguen, J.A., and Tardo, J.J., An introduction to OBJ, Specification
of Reliable Software, (Conference Proceedings, MIT, April, 1979).

Guttag, J., and Horning, J.J., Formal specification as a design tool.
Seventh Annual ACM Symposium on Principles of Programming Languages,
SIGACT/SIGPLAN, 1980.

Knuth, D., The Art of Computer Programming, Vol. I, Addison-Wesley,
1968.

Kowalski, R.A., Predicate logic as a programming language; Proc.
IFIP 74, North Holland, 1974, pp. 556-574.

Kowalski, R.A., Algorithms = Logic + Control, Comm. ACM 22(1979),
pPp. 424-436.

Kowalski, R.A., Logic for Problem-Solving, North Holland, Elsevier,
1979.

McCabe, F.G., Micro Prolog. In Logic Programming, K. Clark and
S. Tarnlund (eds.), to appear.

McDermott, D., The Prolog phencmenon, SIGART Newsletter, July 1980.
rp. 16-20.

Mellish, C.S., An alternative to structure-sharing in the implemen-
tation of a PROLOG interpreter. In Logic Programming, K. Clark and
S. Tarnlund (eds.), to appear.

Roberts, G.M., An implementation of PROLOG; M.Sc. Thesis, Dept. of
Computer Science, University of Waterloo, 1977.

Warren, D.H.D., Implementing PROLOG-compiling predicate logic programs.

DAT Research Reports 30 and 40, Dept. of Artificial Intelligence,
University of Edinburgh, 1977.

Warren, D.H.D., An improved PROLOG implementation which optimizes tail
recursion. In K. Clark and S. Tarnlund (eds.), Logic Programming
(to appear) .

Wirth, N., Algorithms + Data Structures = Prodgrams, Prentice Hall, 1975.




	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

