Primiﬁé.RequiSan/GmPhbSerGib& 18398

1. Please complete . unshadod areas on 2. Distribute copies as follows: White and 3. On comptletion of order the Yellow copy 4. Please direct enquiries, quoting requisi-
form as appllcable Yellow to Graphic.Services. Relam Pink will be returned with the printed tion number and account number, to
Copies for your records. material. extension 3451.

TITLE CRIF’TION i
-/3

DATE REQUlSITIONED R DATE REQUIRED . "ACCOUNT NO.

\7/}“%1,«.4 /"7 - W"Lw /< - l/‘ql AR 4 3./ ICMI

REQUlssTlo‘Jj)ER— PRINT L v PH NE\/- SIGN G AUTHJQ\RITV
‘ LS fd,uz Praes /u]_mk,w/
MAILING = NAME DEPT. BLDG. & ROOM NO. [C] oeLivER

INFO — , : : . [Lerex-ue

Copyright: I hereby agree to assume all responSIblllty and llablllty for any mfnngement of copyrlghts and/or patent rlghts which may arise from
the processing of, and reproduction of, any of the materials herein requested. [further agree to indemnify and hold blameless the
University of Waterloo from any. liability which may arise from said processing or reproducmg l also acknowledge that materials
processed as a result of this requisition are for educational use only

NUMBER J /\(O NUMBER /)
OF PAGES A OF COPIES . !
TYPE OF PAPER STOCK .
OND DNCR PT. DCOVER DBRISTQL DSUPPL|ED D
PAPER SIZE . :
BL x 11 []8:x1ta R IERE O

LABOUR
B . o

PAPER COLOUR INK "

MHITE 3 M]

PRINT ING] ‘ NUMBERING

[7]1sie PGS. Msmss PGS. FROM 1o

BINDING/FINISHING .

HOLE . : .
MLLATING WAPLlNG E] PUNCHED D PLASTIC RING

FOLDING/ CUTTING
PADDING SIZE

Special instructions:

SHAPHIC SERV. . OCT 85 4822

An Adaptive Plan
for
State~Space Problems

by
Larry Arthur Rendell

Research Report CS-81-13

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

March 1981

ABSTRACT

An adaptive plan (meta-sStrategy) is described which
automatically generates evaluation functions for state-space
problems, and which has created a function that solves the
fifteen puzzle with (locally) optimal parameters. in
attribute space is defined by a vector of features (func-
tions mapping states into integers) supplied by the user.
Structures (clusters) are formed in the attribute space
which represent 1local (and often veiled) measures of
performance. These regional structures constitute a refined
feedback instrument for the adaptive plan.

The system 1s an iterative one, and each iteration
consists of three steps: the solving step, ¢the region
(cluster) handling step, and the regression step. After a
(one-way) graph traverser attempts a training set of problenm
instances (solving step), the plan clusters states in the
attribute space according +to probabilitistic performance
statistics, via a splitting algorithm (region handling
step). From the clusters, parameters for a linear evalua-
tion function are computed (regression step). In post-
initial iterations, the system's graph traverser utilizes
the evaluation function generated by the preceding itera-
tion. The region handling step refines established clusters
both by revising previous probability estimates and also by
further splitting, in order to improve the function progres-

sively.

iv

1.

2e

Introduction
1.1« The State-Space Paradigm
1.2. Evaluation Functions and Optimization
1.3. Basic Form of the Plan
1.4. Related Cognitive Theory
1.5. Model Formation: Clustering
1e6. Overview of the Plan
1.6. 1. Solving Step
1.6.2. Region Handling Step
1.6.3. Regression Step

1«7. The Plan as a Perceptual Model

1.8. Alternatives

Preliminaries

2.1. State-Space Problenms
and System Formalizations
2.1.1. The Basic Syntax
2.1.2. The Evaluation Function
2.1.3. System Organization

2.2. The Standard Illustrative Example
2.2.17. The Fifteen Puzzle
2.2.2. Pifteen Puzzle Features
2.2.3. Illustration of State Graph Development

vi

13
16
22

27
28
30
38

41

43

45

45
45
49
52

54
54
55
57

3.

Clusters, Penetrance and Evaluation Functions
3.17. Groundwork
3.1.1. Rectangles
3.1.2. Count Functions
3.2. Penetrance
3.2.1. Probability Measure
3.2.2. Distribution of Penetrance
3.3. Evaluation Functions
3.4, Error Estimation

3.4.1. Count Error
3.4.2. Non~Randomness Error

The Evaluation Function and the Iterative System
4.1. Regions

4.1.1. OUnreduced Regions

4.1.2. Error of a Region

4.1.3. Reduced Regions
4.2. The Full Evaluation Function

4.2.1. Grouped Penetrance

4.2.2. HModelled Penetrance

4.2.3. The Combination

4,3, Outline of Iterative Revision

The Clustering Process
5.1. Distance
5.2. Clustering
5.2.1. The Algorithm
5.2.2. Properties of the Algorithm

5.3. Shrinking Regions

5«4. The Pirst Iteration of a Series

vii

62

62
63
63

65
65
69

70
72

74
75

77
77
78
79

81
84
85
89

92

96
96
101
101
105
110

114

be

Region Handling for a Post-Initial Iteration

6.1. Revising Penetrance of Established Regions
6.1.1. Formally Relating Immediate
to Cumulative Regions
6.1.2. Setting Multiplier Values of
Immediate Regions: KMOD
6.1.3. Combining Cumulative with
Immediate Regions
6.1.4. The Penetrance Revision Substep
6.1.5. The Strategy-Power Factor

6.2. Subdividing Established Regioans
6.2.1. Algorithms SUBDIV and KFIX
6.2.2. The Full Definition of Distance
6.2.3. The Refinement Substep

6.3. Extending Region Boundaries
and Further Subdivision
6.3.1. Boundary Extension
6.3.2. Modifying Penetrance of Extensions
6.3-.3. Subdividing the Extensions
6.3.4. The Extension Substep

6.0. The Entire Process of Revision

Experimental Results and System Properties

7.1. Formula Manipulation
7«11 The Problenm
7.1.2. Problem Instances
7.1.3. Features
7-.1.4. Results

Te2a The FPifteen Puzzle
7.2.1. Experimental Results
7.2.2. Costs

7<«2.3. Less Mechanized Alternatives
7.2.4. Comparisons with Other Research

Conclusions
8.1. Summary of Present Research

8.2. Future Research

Bibliography
Index of Definitions

viii

116
118
120
122

125
126
128

132
133
138
140

143
143
145
148
148

151

153

155
155
157
160
162

168
168
183

186
193

200
200

201

205
209

2.2
3.2

5.2

5.4

7.1.1
7.1.2
7.1.3
7.1.4
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7

LIST OF TABLES

Attributes of States

Cluster Statistics

CLUSTER Output

SHRINK Output

Solving Step (Formula Manipulation)

Region Handling Step

Regression Step

Evaluation Function Performance

Solving Step (Fifteen Puzzle, experiment one)
Region Handling Step

Regression Step

Solving Step (Fifteen Puzzle, experiment two)
Region Handling Step

Regression Step

Performance of Evaluation Functions

ix

60
68
104
115
164

‘164

164
166
169
171
172
174
175
175
177

2.2
4.2
5.1
5.2
5.3
7.1
7.2
7.3
7.4

LIST OF ILLUSTRATIONS

Development of a State Graph

Hypothetical Penetrance Function

Penetrance and Error Bands

Perverse Penetrance Divergence

Effect of SHRINKing

Optimality of Fifteen Puzzle Evaluation Function (1)
Optimality of Fifteen Puzzle Evaluation Function (2, 3)
Performance versus Solution Length

Performance versus Heuristic Component Weighting

59

83
100
109
111
180
181
197
198

1. INTRODUCTION

This thesis describes a mechanized system which adapts
itself through experience to improve its performance vwith
state-space problems. From a mathematical standpoint, there
is no new theory here, rather a synthesis of mathematical
tools; several concepts and methods from statistics are
adapted, including probability, interval estimation
{inference with known reliability), regression (least-
squares fitting), and clustering (of similar data objects).
The wvalidity of the approach is evidenced by results of
experiments with formula manipulation, and particularly with
the fifteen puzzle.

Although the system can be understood without it, the
motivation for the design is also discussed. It is possible
to view the various mathematical concepts from a
psychological perspective; for example clustering can be
related to the goal-oriented information —reduction that
occurs 1in perception. In fact the whole approach becomes
very simple when seen as a perceptual model; any complexity
arises only in the mechanization of details. All paragraphs
and sections of this intuitive psychological nature are
marked with an asterisk, and are included for the reader who
is interested in the author's conception.

An index of definitions is provided.

This introduction is organized as follows: The first

section describes a well defined context around which the

perceptual model can be formed: problem solving with the

state-space paradigm. 1.2 narrows the domain of discourse

to a particular formalization for solution search: the
evaluation function, and discusses ways of optimizing the
performance of such a function. Section 1.3 examines the
basic structure of the system's plan for evaluation function
improvement. 1.4 (*) discusses related theory of human
thinking and perception. Section 1.5 introduces a necessary
device for abstraction or intelligent information reduction:
statistical clustering. And 1.6 begins the task of felating
the adaptive system mechanism, while 1.8 considers possible
alternative designs. (Briefly, section 1.7 (*) compares the
system with the motivating perceptual theory.)

Let us first see what the state-space approach is and

why it is used.

[PY
.

[Y
[}

HE STIATE-SPACE PARADIGHM

Automatic problem solving is a good area in which to
investigate models of human thinking and perception, because
there has already been developed a theoretical structure
involving state-space problems. Thus we can begin with this
extant formulation and concentrate our efforts on the
difficult problem of intelligence; we can conform our
models to the state-space formalization and explicitly

verify whether they are promising, since the experimental

results can be quite conclusive.
The fifteen puzzle is a ccamon example of a state-space
problem. It is a square which contains fifteen square tiles

and a space into which adjacent tiles can be slid. The goal

might be: 1 2 3 4

5 6 7 8
9 10 11 12
13 14 15

- and the starting configuration, or starting state, any of
16! /2 (about ten trillion) even permutations of the goal
state. Any state can be transformed into two, three, or
four other states by means of an operator (i.e. move into
the blank space the tile which 1is above, below, to the
right, to the left). We shall return to the fifteen puzzle

in depth in chapter two.'

State-space problens, then, are problenms with

explicitly describable, distinct states. From the starting
state, other states can be produced by successive
transformations using a specified set of operators.
(Generally a state can have a pumber of such offspring.) The
"space” in the term "state-space™ refers to the entire set
of states reachable from any starting state by successive
applications of operators. Chapter two defines state-space

problems and associated. terms more precisely.

! When it was invented a century ago, the fifteen puzzle
was extremely popular; see Ball (1931) and Gardner
(1964) for additional details.

Although the fifteen puzzle is just a toy problem, it
is often selected because it 1is easily formulated but
difficult to solve by machine.' Many important and hard
problems can be formulated as state-space problems (theoren
proving for example); and progress with any representative
problem is likely to be equivalent to general advancement,
as long as the approach is general.

It is appropriate to represent relationships among
states by using a graph. The vertices or nodes of a gstate
graph are the states and a directed edge (arrow) Jjoins one
state A to another B, if B is obtained from A by an operator
application. We can think of a state graph as being built
by a graph traverser, an algorithm which begins with just
the starting state vertex and develops nodes by applying the
set of operators to them. If a goal is reached, a solution
can be traced as a path from the goal to the starting state
in the fipnal state graph which results.’

In this process of extending the state graph (i.e. of
searching through the state-space), the graph traverser is

guided by some search strategy, which is a mechanized rule

for deciding which node is to be developed next. One of the

1 Doran and Michie (1966) first used the fifteen puzzle;
Doran (1967), Pohl (1969), and Chandra (1972) also worked
with 1it. A more manageable simplification, the eight
puzzle is sometimes examined -- see Schofield (1967),
Michie (1967), Michie and Ross (1970), Purcell (1978),
and Gaschnig (1979).

2 Our graph traverser actually constructs trees, but vwe
retain the more general tern.

simplest strategies is the exhaustive breadth-first strategy
vhich develops nodes in the order of their generation. a
breadth-first search requires prohibitive amounts of both
memory and time, even for modest problems. Node growth is
exponential. For example, in the fifteen puzzle, the number
of states developed at level d (depth of the state graph --
i.e. path 1length from the starting state) is about two to
the power 4, so the breadth-first strategy is useless for
puzzles more than eight or ten moves from the goal, whereas
fifteen puzzles typically require many tens of moves. (This
is a restatement of the fact that the fifteen puzzle has a
very large state-space.) To be effective, a search strategy
must lead the graph traverser fairly directly toward the
goal, without generating too many extraneous nodes.

State-space problems and the above related concepts
have been current for several years now and are vwell
discussed in Nilsson (1971, 1980).

Early in their history, search strategies were often
static and defined by the experimenter (but see Samuel,
1959) . More recently, hovever, some interesting theoretical
framevworks have been developed which facilitate dynanmic
modification of strategies (feedback is generally involved).
Systems using such techniques can be described as learning
or adaptive systems. There is a "second level" of control;
the strategy modifier is called a meta-strategy or plan.

Some designs are discussed in Winston (1977); see also

Holland (1975).

1.2. EVALUATION FUNCTICNS AND OPTIMIZATION

One wvay of specifying a search strategy involves the

evaluation function, which ranks nodes, to allow a bhest-

first search. Doran & Michie (1966) originated the use of
the evaluation function to guide a graph traverser. Their
ideas were further explored in Doran (1968) and Michie &
Ross (1970) «

A simple example of an evaluation function for the
fifteen puzzle is the sum, for each tile, of the distance of
the tile from its "home" position, ignoring intervening
tiles. (The rationale is that the goal has a zero distance
score, and low scores should generally indicate proximity to
the goal.) It does not work perfectly, because configura-

tions arise with (for example) the first two rows:

2 1 3 4
7

Judged by the evaluation function, such a state might appear
to be to be close to the goal, but in fact it is far from
it. So one might use a more sophisticated <function:
distance score plus some constant times the number of
reversals (two tiles being in correct order in a row or
column except switched).

Generally for state-space problens, a function

consisting of a combination of several elementary functions

or features is beneficial. If f is a feature and A is a

state, we call f£(a) an attriltute of A. Evaluation functions

are always defined in terms of features (i.e. attributes are
used to discriminate states).

Among other state-space problems and evaluation func-
tions, Doran and Michie (1966) experimented with the fifteen
puzzle, using the function 8(a) = [§l k2 pib + cR , where,
in state A, k; 1is the distance of the i-th tile to the empty
space, p; is the distance of the i-th tile to its proper
position, and R is the number of reversals. Various values
of parameter triples (a,b,c) were substituted; the best
combination solved 60% of the random puzzles presented.

The ideal evaluation function (if one exists) might
differentiate perfectly between states in a (short) solu-
tion, and all others. A more realistic ideal is a function
which optimizes performance for all possible problem
instances, or for reasonably sized random subsets.

In practice evaluation functions have been
conceptualized 1in various ways. One aim is to estimate
shortest path distance from the start to the goal, the path
being constrained to include the evaluated node. This solu-
tion length scheme incorporates two components in the func-
tion £, a distance-from-starting-state component g, and a
heuristic estimate h of the distance to the goal. If A is a
node, £{(3d) = g{A) + h(a).

Hart, Nilsson and Raphael (1968) proved that if h never
overestimates the remaining distance, then a graph traverser

G using £ is admissible, i.e. G will always find the

shortest solution. Moreover, with an additional, =mild
consistency condition, G is also optimal, i.e. it develops a
minimum number of nodes. (Unfortunately, in practice it is
difficult to find an h which is both powerful and a lower
bound on remaining path length.)

Pohl (1970) gereralized the form of £ to be
(1-w)g + wh where 05:51.] If w=0, the search is breadth-
first; if w=1, £f Dbecomes the heuristic form alone; if
w=0.5, £ reduces to the original form of Hart et al. In his
theoretical analysis, Pohl deduced several interesting
results, among them that, for the worst «case (least
favourable evaluations by h), w=0.5 can do no worse than w=1
(in terms of number of nodes developed). He also deduced a
formula which, for certain restricted cases, maps a given
error bandwidth on h to an error bandwidth on number of
nodes developed.

In his impressive PhD thesis, Gaschnig (1979) continued
similar studies, not only with formal analyses, bat also
with careful interpretation of large amounts of experimental
data, examining the effects of various "problem specifica-
tion" and "control ©policy® parameters (with twc diverse
problems, one of them the eight puzzle). Generalizing the
theory of Pohl, Gaschnig showed that, for a certain class of
heuristics, #w=0.5 1is the least costly choice for the worst

case. Although he concluded that theoretical worst case

1 See also Pohl (1977).

predictions have not yet reached the stage of practical
application, Gaschnig clarified some important conceptions
and relationships.

A different approach to evaluation functions is to
express the worth of a state as a probability measure.
Slagle & Bursky (1968) thought of evaluation functions in
these terms. And continuing along this 1line, Slagle &
Farrel (1971) showed the effectiveness of automatically
adjusting feature parameters using statistical feedback and
regression analysis in a general graph traverser progran.
Also incorporating probability, Michie (1967) and Michie &
Ross (1970) considered "path popularity”. Our evaluation
functions are defined in terms of probability. The methods
of estimating the probabilities are original.

Unlike the type estimating solution length, our func-
tions are purely heuristic. However, since it 1is ©possible
to convert our evaluation functions into the distance
estimating form, chapter seven relates some fifteen puzzle
experiments to the work of Pohl and of Gaschnig.

If an evaluation function is to be composed of

elementary features, they must be merged in some way. The

simplest combination is linear. (So if £ = (f,,£f, ,ee..fp)
is a feature yvector and b = (b,,b2,...,bnfr is a (column)
parameter vector, then p= f.b == or log(p) = f£.b, which we

use, for reasons later to be given -~ provides a potentially

more powerful measure (alkeit a linear restriction).

10

Throughout this thesis, we usually assume linear
relationships, but the treatment can be generalized.)
Assuming that the feature vector is adequate, we now
consider our original problem cf creating a high performance
search strategy simply as a problem of finding an optimal or
close to optimal parameter vector b.

If the dimensionality n is two or possibly three, b can
be optimized experimentally (see Doran & Michie, 1966), but
such a trial and error approach is useless for a larger
number of features, particularly in view of possible
nonlinearities. Because of nonlinear interactions, it is
generally not feasible to optimize one parameter,
subsequently add a term and set its parameter, etc., since
feature interactions imply interrelationships among
parameters.'

An alternative approach is to solve some problenm
instances breadth-first, measure some appropriate statistics
for the resulting final state graphs, and weight the fea-
tures accordingly. For any interesting problems, however,
these instances would have to be the relatively easier ones,
and thus not random (average prcblem instances being too
difficult to solve breadth-first). But siampler problea
instances may not be representative. For example it can
happen that some important feature does not come into play
at all, except in the case of harder instances. The second

1 See the discussions of obstacles to adaptation in Holland
(1975) .

11

fifteen puazzle feature previously introducted, the reversal
score, illustrates this phencmenon; reversals tend not to
occur when a puzzle nears solution. The difficulty is a
cyclic one: A good evaluation function is needed toc solve
hard problem instances, and information from the solution of
harder instances is required in order to create a good func-
tion.

The present work is an attempt to tune parameters
gradually by accumulating heuristic information over a
sequence of iterations. The plan wvas sketched in Rendell
(1977), where the main experimental results were also given.
Here these results are detailed in chapter seven, vwhere
computational costs are also considered. In addition,
comparisons are made with a direct, non-mechanized method of
optimization.

Several other approaches had different design
philosophies; some were very successful. PFrequently they
involved unsupervised learning, adjusting parameters during
a single search. The classic example is Samuel's (1959)
checker playing program, which used a linear combination of
sixteen features, including relative piece advantage,
control of center, etc. Michie & Ross (1970) used T'"pattern
search” and “path popularity® in their adaptive graph
traverser. Slagle & Parrel (1971) incorporated regression
in their MULTIPLE (MULTIpurpose Program that Learns). And

Purcell (1978) unified some earlier methods, also taking a

12

perceptual viewpoint in a methodology to adjust a linear
combination of features. In these and other cases, a poten-
tially workable tack for evaluation function improvement has

been converted into a mechanized plan.

Another possible approach to our optimization prcbhlem
is to guess a set of good parameter vectors, measure the
results on random problem instances, and use the extracted
information tc improve the parameter vector choices
(according to correlations and patterns exhibited among the
various vectors and performances). This process is carried
out repeatedly with continually revised vector sets.
Holland (1975) developed a substantial and very general
theory, along w#with appropriate methods for such adaptive
systems. His iterative design is modelled after knowledge
of genetics and utilizes certain advantages of parallelism.
This genetic plan benefits from the multiplicity of
parameter vectors, each of whose performance is measured
before a new sSet 1is generated (therein 1lies its main
strength -- absolute optima can be located). So while the
method is very effective, it seems to be inherently 1less
efficient than a perceptual system which works with just a
single parameter vector at each iteration. At the same tinme
our system has proved useful for the two state-space

problems tested.

13

1.3. BASIC FORM OF THE PLAN

Instead of improving the evaluation function according
to its overall performance, our system examines performance
statistics within local volumes, or areas, of the attribute
space determined by the feature vector £ = (f, ,f, ,ce.,f,).
A "regionalization™ was proposed by Michie & Ross (1970),
and the present system is a realization of that dintuition
(c.f. also Samuel's (1967) ®signature tables"). Our plan

examines the ratio of the number of solution states to the

total number of states which map into an attribute space
area, thus providing a measure of Ygoodness", or the
elementary penetrance, a probability that depends on the
search strateqy used. It is a localized measure, a refine-
ment of t&e term defined by Doran & Michie (1966).

We can imagine a hypothetical situvation with no tinme
constraints which would allow us to examine the penetrance
of an attribute space region for breadth-first searches of
all possible problem instances. This would give us the true
penetrance, which is what we endeavour to estimate, by
suitable alterations of elementary ones measured for non-
trivial evaluation functions and problem instances which are
not too difficult. The relationships between elementary and
true penetrance are of paramount importance. They are also
difficult to unravel. True penetrance 1is discussed in
chapter three, and the creation and modification of

elementary penetrance comprise the major part of chapters

14

five and sixe. The detrimental consequences of dispensing
with true penetrance estimates, and using only elementary
penetrance values, are investigated in chapter seven.

These attribute space areas, together with their true
penetrance estimates, constitute the basic structures for
our system. From them the plan deriveé a grouped penetrance
component of the evaluation function, which is piecevise
constant. (To find the grouped penetrance of a state A,
just determine into which region A maps.) And the plan

deduces a modelled penetrance component via weighted 1least-

squares fitting of penetrance values to (the centers of)
their regions, to provide the parameter vector b for 1log (p)
= f.b. Errors associated with the estimated penetrance

values supply the +weights, sc that smaller errors mean

larger contributions. (The modelled penetrance of A is then

p(d) = exp[£(3).b.) The full penetrance is a weighted
average of (the logarithms of) the two components. The full
evaluation function is the subject of chapter four.

There is a serious obstacle to creating a plan which
attenpts to measure +true penetrance: If breadth-first
searches can give statistics only for simple problenm
instances, which are generally not representative of feature
participation, how <can the plan obtain the necessary data?
Searches that are other than breadth-first, used alone,
result in unpredictably biased (elementary) penetrance

values. Chapter six presents a sort of "bootstrap"” method

15

to bypass this problem; the biases are removed.

There is an additional question: How should the plan
decide on the shape and extent of an attribute space region,
and how many regions should te considered? Section 1.5
provides an answer, which incorporates clustering, and 1.8
asks why clusters (regions) need to be used at all. |

The true penetrance, and the error-weighted evaluation
function, composed of grouped and modelled penetrance, are
novel to this system. The solutions to the two key gues-

tions posed above are also original, and are central.

(*) Although the clustering method can be described in
a purely mathematical way, the underlying ideas originated
in psychological theories. The attribute space clusters to
be described in sections 1.5 and 1.6 embody a number of
interrelated facts and interpxetaiions concerning human
perception. For this reason, let us now consider our second

key question from this intuitive point of view.

1.4. (*) RELATED COGNITIVE THEORY

- D s T <A . ———— ——

Features have been incorporated extensively in
mechanized perceptual systems for many years now. Samuel
(1959) was one of the first to use features (and a weighted
evaluation function). Since then, numerous other

researchers have utilized a similar basic approach, and the

16

feature notion is novw often an unguestioned integral part of
adaptive system design.' But this property, attribute, or
feature concept existed earlier in the theories of some
psychologists. Bruner et al (1956) defined an attribute as
Meeees aNny discriminable? feature of an event that is
susceptible of some discriminable variation from event to
event.”® They noted that "Higher organisms are highly
sensitive to changes in the probability relations in their
environment, and will tend to use any cue {feature) that
does better than chance.™ As these quotations suggest,
humans and other animals are capable of differentiating or
discriminating elements of their environment according to
values of features.

Discrimination can be learned. For example, pigeons
have been trained to respond to a given form (shape) or
colour (food being the reward for pressing the correct key).
Furthermore, animals can become more discerning with
accumulating experience. Experiments with human subjects
have shown that ability to discriminate musical semitones
increases with age, and that skill in distinguishing two

tones, closely spaced in frequency, improves with

1 See Hunt (1975), Holland (1975), and Duda & Hart (1973).

2 Behavioral psychology defines the term "discrimination®
in terms of observable differential response among
stimuli. See Deese & Hulse (1967), chapter six.

3 Psychologists conceptualized features at least as early
as 1924 -~ see Bruner et al (1956), chapter two.

17

practice.' In other words, differential sSensitivity

increases. This fact is consistent with common knowledge
that our perceptions become more refined as experience is
gained in an area.? Classical music can at first seenm
perplexing, but 1later on the listener notices many
subtleties; he may eventually be able to identify composer
or conductor without previously having heard the particular
piece or performance. A practiced chess player «can
immediately dismiss many board configurations as untenable.
Or an experienced counseling psychologist can understand and
accurately predict behavior by observing nuances in voice,
posture, movements, attitudes and interests.

Another aspect of discrimination which is relevant for
our system 1is that environmental objects or events often
admit numerous possible choices of discriminating features
in the mind of the perceiving organism, but there are
certain general tendencies which are related to sgelective
perception and g_j_:tentio_rg.3 Experiments have shown that the
more distinctive a feature is, the more likely it is to be

selected over its less discriminable counterparts.* (of

1 See Werner (1957) pp. 101-103.

2 James noticed this phenomenon. See the discussion in
Gibson (1969) pp. 23-25.

3 See the discussions of selective perception and attention
in Gibson (1969) pp. 3,4, and especially in Bindra
(1976), chapter ten.

4 See Bindra (1976) pp. 210,211.

18

course it often occurs that more than one feature is
required to distinguish an object -- for example both colour
of hair and height to recognize a friend at a distance.)

In perceptual theories, discrimination is sometimes
associated with categorization. The category into which an
object can be placed is also considered to be a function of
attributes, particularly in +the theory of Bruner et al
(1956).‘ In that work (and in our model) discrimination and
categorization are considered to be strongly related, essen-
tially part of the same process: In formation, categcries
are differentiated.

Also according to Bruner et al, as time passes, percep-
tion itself becomes increasingly dependent on the (internal)
categories while the (external) stimuli have a decreasing
effect. Similarly Bindra (1976) states that as humans
develop, ".... perception becomes more internally selective
or voluntary and less externally imposed or involuntary."?
Perception is active, not passive, and it becomes moreso.’
To a large extent, it is a function of past experience.

There is also everyday evidence for this idea that what
is perceived is a matter of internal motivaticn. For
example, someone viewing a movie might particularly notice
+ This and other theories are also discussed in Gibson

(1969) .
2 Bindra (1976) p. 209.

3 See Koestler (1964), book two, chapter ten; and Arbib
(1972) , chapter two.

19

characterizaticn and acting if he is interested in human
behavior, plot if he is interested in story comnstruction or
in intellectual intricacies, visual techniques if he is a
photographer, and so on. Furthermore, we generally doc not
look for anything at all unless it is important to us for
some reason. The number of seats in a theatre and their
colonr, +texture and microstructure are all there tc be seen
but usually we do not bcther with them. (The mere existence
of the verb "to look"™ -- as opposed to "to see® -- suggests
activity and attention.)

Selective perception is related to the fact that the
amount of data in the external world is so large; we nmust
sceen the huge gquantity of sensory input in order to have
enough time to interact with our environments at all.

The 1information reduction seems to take place through

1

generalization and concept attainment. FPor example, an

object 1in the environment that has four legs, a seat and a
back is conceptunalized as a chair, amn abstract construct.
To consider a chair in detail could take an inordinate
amount of time (e.g. the wood grain might be intricate), but
simultaneously a categorization is made, the object
generally becomes less interesting, and attention shifts
elsewhere. It is important toc note that the generalization
is not made haphazardly, but rather according tc¢ the

interest of the organisnm.

1 See Bruner et al (1956).

20

To account for these interrelated phenomena, some
researchers have postulated a ubiquitous hierarchical
organization (tree structure of subcomponents), thought to
underlie animal nervous systems generally, in perception,
thinking, and motor control. Others have shown the
advantages of hierarchical systeas (natural or artificial),
which include efficient and effective information processing
or control, and economical organization of available
resources.’ These systems have the property of progressive
information reduction and abstraction toward the rcot of the
hierarchy ("higher" or "deeper" level) and increasing detail
toward the leaves of the tree {(close to the envirnoment).
For example, when we walk, we are normally aware just of the
act, but walking is a complex task requiring balance and
coordination of mwmuscles and groups of muscles. 1In the
hierarchical paradigm the subtasks are 1learned early in
life; then they become automatic, habituated, and attention
can be direscted to "higher", more abstract levels.

Features fit neatly into the hierarchical schene.
They, themselves are abstractions; generally less informa-
tion is required to describe an object in terms of a set of
1 Simon ({1962) analysed "nearly decomposable™ systems that

have subsystems with a low frequency of relatively weak
interactions among one another, which therefore permit a
hierarchical organization. Koestler (1964) wove together
a number of related ideas and evidence to argue
convincingly that a hierarchical model is indispensible
for animal nervous systems; see also Arbib (1972).
Other interesting analyses were provided by Holland

(1970) and Van Emden (1970). See also the discussicn and
references in Jackson (1974) pp. 368-372.

21

attributes than to represent the object itself.
Furthermore, as we have seen, features can be combined into
a single evaluation function -- a "Jdeeper" abstraction.

But to state that features and evaluation functions are
abstractions is not very impressive. The interesting aspect

of such a scheme is the mechanism for generalization; e.g. a

successful process of feature creation, or an effective plan
for evaluation function formation. {So the f'"pandemcniua®
design of Selfridge (1958) and the "perceptron" model of
Rosenblatt (1962) are intriguing. See also Purcell (1978).J)

This brings us to one of +the central questions
(concerning our system) posed at the end of section 1.3: 1If
we 1imagine amn attribute space, each point of which is
associated with a penetrance, how should the space be
divided (how should the generalization take place)? The
obvious answer is: according to 1local consistencies and
disparities in the penetrance itself. {Our system "attends
to" penetrance.) A region shculd enclose areas of more or
less constant penetrance, while other volumes should have a
significantly different penetrance (attributes
differentiating). The clear choice for a method of
implementing this discrimination is cluster analysis

(clustering can simulate categorization).

1 It should also be mentioned that Newell & Simon (1972) is
a comprehensive thecry of human problem solving criented
toward mechanization.

22

1.5. HMODEL FORMATION: CLUSTERING

Clustering is a statistical method for reducing large
amounts of related data to a manageable, coherent, and
meaningful form. In the general problem, individual data
objects are combined into clusters such that (ideally) any

two objects within a cluster are similar, while any two from

different clusters are dissimilar (the measure of similarity

being defined according to the particular interests of the
designer).' In our case, Wwe are ultimately interested in
differentiating states according to their 1likelihocd of
being in a solution, so our measure of similarity relates
directly to penetrance.

As a measure of dissimilarity in the general clustering
problem, some real-valued distance function is chosen
(defined over pairs of data objects). Often there is a
problem of effectively redaucing an attribute vector descrip-
tion of the data to the singly dimensioned distance. There
is no such difficulty in our case, hovever. We want to
group areas in the attribute space which have a fairly
uniform penetrance, and there is a natural way to do it.
Each estimate of +the true penetrance has an associated
error, and our distance depends on both.

Suppose u 1is an estimate of the true penetrance of an

area r of the attribute space. And suppose that u has an

1 A "fuzzy" approach might be explored, but we use discrete
regions.

23

associated error factor e. Errors are expressed as factors
of the penetrance because they are sometimes very large,
often several times +the ©penetrance itself. (The large
magnitudes occur because of the uncertain nature of the
estimates in our system.) The likely extremes of u in r are
u/e and ue. Note that, for sensibility, e > 1; also e = 1
implies no error. More detail is given about error factors
throughout chapters three to six.

Suppose, now, that r, and r, are two attribute space
volumes, with penetrance values u, and u,, and error factors
e; and e,. Assume u, > u,. Let us consider the extremes of
the penetrance values to see if they overlap. The expres-
sion u,/e, is the likely lower limit of the first, and u,e,
is the likely upper bound of the second. We define our
distance (which is not a metric) to be dist(r,,r,) =
log[(u,/e, / (uze,)] = 1log(y;) - 1log(u,) = [leg(e,) +
log(e,)] (If v, > u,, dist is defined symmetrically.)

Note that for dist to be large, both highly divergent
penetrance values and small errors are necessary. The
distance is greater than zero only if we can be sure, within
the error bounds, that r, has a higher penetrance than r,
(or vice-versa). A positive distance implies dissimilarity.
This subject is treated more fully in chapter five.

The other aspect of the general clustering problem that
we need to discuss is the determination of the actual

cluster set (partition). This can be a combinatorial

24

monstrosity, since the number of ways of fitting n objects
into m groups is so large.' However, many reasonable
algorithms have been developed, of a few basic tyres. Two
classes which are relevant in our case are the Jjoining
algorithms and the splitting ones.

A joining algorithm begins with a set of clusters, each
of which contains Jjust one object. It then proceeds to
agglomerate the pair of clusters exhibiting the smallest
distance, and continues in this manner until some stopping
criterion is met. The search for the most similar pair can
be quite expensive -- and in our case there would be
additional complications which arise from the (yet +to be
explained) facts that the only clusters that are allowed to
combine are those which are adjacent in the attribute space,
and that the clusters are constrained to be rectangles.

In contrast, a splitting algorithm partiticns the
objects into a number of <clusters, then continues to
subdivide the resulting clusters until some halting
criterion 1is satisfied. Although splitting algorithms have
not found much favour, because, as Hartigan states, ".... it
is difficult to decide on a compelling splitting rule.®,?
there is a very natural method of splitting in our
particular case. (It has already been previewed in the

preceeding discussion of the distance function.)

1 See Anderberqg (1973), p.3.

2 Hartigan (1975), p. 12.

25

With either a Jjoining algorithm or a splitting one,
there is generally the problem of realizing an effective
criterion to halt +the process. (I.e. how many clusters
should result in the end?) The results can be misleading if
the criterion is not a good one. Again, however, this does
not apply to us; the standard results naturally <from the
penetrance statistics and their meaning (through dist),
which is shown implicitly below.

In our plan, clusters are restricted to be rectangular,
with boundary planes parallel to the axes, sc little
information is required for their specification (just two
extreme corner points). The clustering algoritha is a
splitting one. A parent rectangle r is specified as input,
wvhich minimally surrounds all relevant peints in the
attribute space. How these points are determined is
outlined in the next section, as is the fact that penetrance
values and their error factors can be calculated for any
subrectangle c¢f r. The algorithm CLUSTER tentatively
divides the whole rectangle into two subrectangles, in every
possible way (generating every dichotomy in each attribute
space dimension), and picks out the "best"” of these srlits.
The best split is the one whose rectanqular clusters have
the greatest distance from each other (are +the nmost
dissimilar); i.e. the pair r,, r, is selected such that
ryyr, = r and dist(r,;r2) 2 dist(r',r") V r',r" such that

r'Ur” = r. Thus, the best tentative split is the cne such

26

that the two rectangles are "mcst assuredly dissimilar"™ with
regard to penetrance.

If this 1largest distance 1is less than zero, the two
rectangles are recombined (since they are then similar).
If, hovever, the distance is greater than zero, the tenta-
tive split becomes permanent, and the whole process is
repeated for each of the two new clusters, in turn. The
splitting continues until no further discrimination cccurs.

The output from this clustering algorithm is a
rectangular partition {(r,,r,,...r,} of the parent rectangle
r. Each cluster r; has an associated penetrance u; and
error factor e;. We call the triple R; = (r; ., u; ., e;) a
region (a convenient structure, sets of which carry all
necessary heuristic information about a problenm). The
number of regions output can theoretically be large, but in
practice the set is gquite small, often zero to three.

CLUSTER has some interesting properties. 1Its speed
decreases reasonably slowly with the size of the feature
vector. Although it is oftenm not the case in clustering,
our particular algorithm is highly "objective" -- +the
number, size, shape, and orientation of the individual
rectangles of the partiticn depend largely on the
statistical data. Chapter five discusses these and other
aspects of the algorithm.

Our distance function is novel and clustering has not

been used in adaptive problem solving systems previously.

27

Note that we have been discussing three separate

spaces. One is the state-space. Another is the attribute

space into which the states are mapped, and which is
partitioned into local regions. And the third space is the
one dimensional ranking space in which the evaluation func-

tion (derived from the regions) orders states.

1.6. QVERVIEW OF THE PLAN

Let us novw examine the system as a whole. It is an
iterative system which accumulates penetrance information.
Before the first iteration begins, the user must provide a
vector of integer valued features which define an attribute
space to be utilized throughout as a context for clustering.
At the outset the entire space is an undifferentiated lump
with a constant penetrance.

Each iteration takes place in +three distinct steps.
The first attempts tc solve problem instances, using the
full evaluation function from the previous iteration. {For
the first iteration the functicn is a constant.) The second
step utilizes information gathered during the solving step
to create or revise clusters for a new evaluation
{penetrance) function. And the third step uses these
clusters to compute the modelled component of the function,

via least squares fitting (regression).

28

The first step incorporates a (one-way) graph
traverser' and attempts to solve a training set of problenm
instances. Initially, this is done breadth-~-first (since the
original evaluation function is a constant), but after the
first iteration, solution attempts proceed according to an
evaluation fﬁnction which has been created by the previous
iteration. An attempt 1is halted if a preselected maximum
number of states is generated; but whether or not a solu-
tion is found, a final state graph results (see section
1<1). As will soon become apparent, there nmust ke a
successful solution tc at 1least one of the input prchlem
instances, if the iteration is to be useful.

This final state graph set determines the penetrance
values, as follows: Ignoring edges, each developed node of
every final state graph 1is mapped into a point in the
attribute space.? Each point has a pair of integers
associated with it. The total count t (for a point) is the
number of developed nodes in all the final state graphs that
map into that point. The other integer is the good count g,
which is like the total count, except that it is further
restricted to include only those nodes which appeared in a
1 Two-way graph traversers work in both directions at once;

from the starting state toward the goal and from the goal
to the start.
2 Conceivably, a feature might measure the structure of a

state graph but those used to date have ignored genera-
tion history.

29

solution.

Now, the ratio g/t is the probability that a
corresponding state was used in a solution of some problenm
instance. We call it the elementary penetrance. Notice
that its value depends on the particular problem instance
training set and also on the evaluation fnnction. {(Note,
also, that if at least one problem instance is not solved,
all of the good counts, hence all the elementary penetrance

values, are zero.)

As an example of the solving step, for the fifteen
puzzle, we might define a two-dimensional attribute space
using the +two features mentioned in section 1.2, the
distance score and the reversal score. Then, if the search
were breadth-first, points close to the origin would be
found to have high g/t ratios, and points away from the
origin would generally have low elementary penetrance
values, since both low distance scores and few reversals are

desirable.

1.8.2. REGION HANDLING STIEP

This second step of an iteration uses the attribute
vectors and their associated counts (of the solving step)
either for clustering (first iteration), or for revising and

refining previously established clusters (succeeding itera-

30

tions). In either case, the definitions of the gocd and
total counts are generalized to refer to all points 1lying
within a particular attribute space area, rather than just
to a single point. Thus the elementary penetrance ¢f a
rectangle (for a particular problem instance set and evaluna-
tion function) is its good count divided by its +total
count.’

In addition to the penetrance itself, it is desirable
to know hovw reliable the value is. Recall that the error
plays a part imn the distance function, dist, thus in
CLUSTER, and also in evaluation function formation. One
source of error is a random element which relates to the
magnitudes of the counts. For example, a penetrance of 0.1
might be calculated from a count ratio of 1/10 or 10,100 but
the latter is more dependable. As well as this, there are
other contributions to the total error, such as biases
caused by the evalunation function in obtaining the counts.
The various error factors are combined multiplicatively;
i.e. if e; and e, are two error factors relating tc a single
penetrance, the combined error is e, e,. But the full
explanation of all error factors is deferred to later
chapters. For our present purposes it is enough to know

that vwe can estimate a combined error factor for a region.

! Since a rectangle represents an area of roughly constant
penetrance, the variation of penetrance with a feature
should perhaps not be too erratic in practice.

2 Error factors and regions were introduced in section 1.14.

31

Chapter three discusses count functions, penetrance and

error factors.

1.6.2.1. FIRST ITERATIO

Let us consider how the region handling step works in
the first iteration. To begin, a rectangle r is formed
which minimally encloses the attribute maps from the final
state graphs of the solution step. This becomes the parent
rectangle for CLUSTER. The penetrance used by dist is
simply the elementary penetrance. CLUSTER outputs a set of
regions ©C; = {(r;,u,,e;), {(r;,u,,2,), Jeeeecss (Taslm,en)]
{where uj is the count ratio gj/tj for rj). Since the
search 1is breadth~-first in the first iteraticn, each
elementary penetrance uj becozes an estimate of the true
penetrance of rj- {Recall the definition of true penetrance
in 1.3.) So C, becomes the cumulative (or estakblished)
r£egion set of iteration one. It is these cumulative regions
that are the primary structures for the plan; they house
the entirety of the accumulated experience (and are revised
from iteration to iteration).

In our two-dimensicnal attribute space example for the
fifteen puzzle, we typically find (what becomes) a cumula-
tive set for the first iteraticn, of three regions, whose
true penetrance estimates are 0.5, 0.02, and 0.001.
Incidentally, we also find that all the splitting occurs in

the dimension corresponding to the distance score. This is

32

an example of the phenomenon discussed in section 1.2, that
simpler problem instances are not always representative, and
so cannot necessarily be used (alone) to optimize
parameters.

1.6.2.2. POST-INITIAL ITERATIGCNS

In iterations after the first, the elementary
penetrance is used again, but there is an important
consequence of the fact that the evaluation function is no
longer trivial. Suppose that r is some rectangle in the
attribute space. We know that the elementary penetrance u =
g/t of r depends on the final state graph set of the sclving
step, and thus on the evaluation function that gquides the
search. Thus we can no longer assume that the elementary
penetrance is a good measure of the true omne (the 1latter
defined in terms of breadth-first search). In fact it is
generally a very poor estimate.

Let us examine the reasons for this assertion. Suppose
that u, = g,/t, is an elementary penetrance of r fecr a
single training probler instance, and for a non-trivial
evaluation function 8; and that u, = g,/t, is an elementary
penetrance of r for the same problem instance, but for a
breadth-first search {corresponding to the trivial function
8, = constant). Assume, for simplicity, that the same solu-
tion is discovered in both cases. Then 9, = 9o+ Now, if 8

is a wuseful evaluation function, it "wastes" fewer nodes

33

than 8,3 i.e. if r encloses all attribute vectors, t, < t,.
(It could also happen that t, > t,, if 9 is worse than 68,.)
If r is a smaller area, the general expectation is still
that t, < t,, especially if 6 is reasonably good. Thus, ve
generally find that u, > u,. We define the important
quantity, the strategy-power factor (for a problem set P,
rectangle r, and evaluation function 8) to be H(r,9,P) =
Ug/4y. {(This is an original and central concept.) If P is
representative, then higher values of H(r,9,P) imply better
performance of 8 in r.

Now we <can summarize the mechanism of the region
handling step for post-initial iterations. There are three
substeps. The first revises true pemnetrance estimates of
the established regions; the second (possibly) refines
(subdivides) each established region, incorporating CLUSTER
again; and the third substep enlarges cumulative regions as
necessary to engulf any uncovered outlying attribute space
points. All three substeps utilize the established regions
and corresponding new elementary penetrance values. (The
reason that the second and third substeps take place after
the penetrance revision is that both require true penetrance
estimates and this ordering allows greater accuracy.) Al1
three substeps (of necessity) take into account that the
strategy-power factors are not unity, using bootstrap and

smoothing designs.

34

First the penetrance revision substep: Suppose that
two regioms of the input set are R, = (r,,un,,e,) and R, =
(r; ,u,,e,). Suppose, also, that for the most recent solving
step the counts for attribute space points lying within r,
and r, are (g,,t;) and (d,,t,)« Since the strategy-rowver
factors are not unity, ve cannot revise the established true
penetrance estimates u; by (say) taking their average with
the elementary values g; /t;, but we can use the irfcrmation
indirectly. If, for example, u, = u, but g,/t, > g,/t, then
u, should be adjusted upward ands/or u, downward. The
relationship between the established penetrance values and
the elementary ones is such that the various strategy-power
factors are quite disparate, but in chapter six we develop a
method for converting the elementary values to true
penetrance estimates by smoothing them against the
corresponding established ones. The new estimated true
penetrance becomes a mean (weighted according to errors) of
the old value and the corrected elementary penetrance.
Hence penetrance becomes a product of experience cver all
the iterations. (This revision has the additional effect of
decreasing errors.)

The penetrance-revision portion of our plan
theoretically allows the eventual creation of an evaluation
function with a correctly proportioned parameter vector
despite early imbalances caused by easier problem instances

not being representative of relative feature importance.

35

Next the refinement substep: We have seen that CLUSTER

is incofporated in the first iteration +to (begin to)
discriminate the initially undifferentiated attribute space.
This algorithm is also used in subsequent iterations, but in
a slightly different way; it is called once for each
established reqgion, and there is a complication because the
strategy power factors are not equal to one. Suppose that a
parent region is R = (r,u,e) (vwhere r is its rectangle, u
its estimated true penetrance, and e its error factor). And
suppose that the algorithm splits r into m rectangles
yy, Lyseeee,y I, Whose counts are (g,,t,)., (9, #E2) s ecee,
(3mestm)« According to our previous discussion, Zg;/It;, the
elememtary penetrance of R, is likely larger than the true
penetrance estimate u. Hence the elementary penetrance
values g; /t; of the subrectangles r; are generally
overestimates of their true values (or at least the two are
unlikely to be identical). If we could invent a way to
convert Xg;/Zt; to u, then proceed to treat the individual
g;/t; in a similar manner, the required estimates would be
produced.

One way to accomplish this is the following (which is a
simplification of the approach taken in chapter six): Set k
= u / (Z9;/Zt;). Each new subregion has a true penetrance
estimate k(g;/t;). (Generally, k << 1.) Note that k is an
estimate of the inverse of the power factor of the parent

region. Thus the elementary penetrance values are converted

36

to estimates of the true ones.
There are several reasons why this conversion is used.
The relevant one here is that the new subregions of an old
parent region now exist in the context of other old regions.
A typical example from an experiment with the fifteen

puzzle is a case in which a parent rectangle r with true

penetrance estimate u = 0.001 split into two, r, and r,.
The count pairs for r, and r, were (g,,t,) = (13,94) and
(92.t,) = (8,175), so k = u / (Zg9; /Zt;) =
0.001 / (21/26%) = 0.013. Hence the estimated strategy-
pover factor is 1/0.013 = 80. And the true penetrance
estimates were 0.013(13/94) = 0.002, and 0.013(8/178) =
0.0006.

As a more global example cf the effect of the refine-
ment substep, consider our two-dimensional attrihbute space
exanple which had three regions at the end of the first
iteration. In the second iteration, the number of regions
typically might double, to about six; perhaps the region
with the highest penetrance splitting into two (in the
distance score dimension), the middle region not
subdividing, and the region with the 1lowest penetrance
splitting twice (once in each dimension). The reversal
score begins to have an effect. Succeeding iterations
result in a proportionately 1larger number of refinements
along the reversal score dimension, for a time, then very

few splits take place at all. After a few iterations, there

37

might be a total of about fifteen cumulative regions.

The refinement substep facilitates introduction of fea-
tures into the full penetrance function which have little or
no effect in easy problem instances, but which are important
for harder ones. 1In addition, the increase of the number of
established regions expands the information that goes into
the formation of both the grcuped and modelled compcnents of

the full function.

The third, or extension substep of the region-handling
step uses essentially similar methods. First rectangles are
extended to cover new points. Generally (vhenever the
modelled evaluation function is non-trivial), the penetrance
must be adjusted, since the centers of the rectangles are
consequently shifted. After this extension and penetrance
alteration, further splitting is also permitted in the new
areas of the attribute space. The extension sukstep is

described in chapter six, along with the other two substeps.

if C:z_; is the cumulative region set of iteration I-1,
then GC;, the cumulative set of iteration I, is the result
of applying these three substeps to C;z_, . This region
handling -- formation in the first iteration and revision

thereafter -- constitutes the essence of the plan.

38

1.6.3. REGRESSION STEP

The +third step of an iteration computes the modelled
component of the evaluation function (see section 1.3).
Regression is the statistical technique of least sgquares
fitting of a dependent (or resgonse) variable, in which the
investigator 1is wultimately interested, to a vector of
independent ones, which are thought to have an influence.
The aim is to create a mathematical model which can predict
the dependent variable, given the independent vectcr. In
our case, the former variable is the (logarithm of the) true
penetrance estimate, and the latter is the attribute vector.
The models are (log-~) linear (although this restriction is
not inherently required).

The complete unit of corresponding data for the regres-
sion is the established region, created by the second step
of the iteration. If R = (r,u,e) is a cumulative region,
the center points of r provide the independent attribute
vector, and the observations are weighted as an (inverse-
square) function of their (logarithmic) errors, which are
diverse. (S50 more reliable data are more heavily weighted.)

There is a measure of the extent to which a given
independent variable correlates with the response variable.
Since the correlation computation can be mechanized, it

facilitates what is called the stepwise reqression procedure

which begins with the trivial constant wmodel and precgres-

sively adds the most highly correlated variable to the

39

model, making a new best fit each time. The procedure
terminates when it judges the remaining anintroduced
independent variables to have amn insignificant effect. Thus
some of the parameters can be exactly zero. If A is a
state, £ is the feature vector, and b is the final raranmeter
vector resulting after application of the stepvise
procedure, then the modelled penetrance is pa)y =
exp[£f' (A).b] (vhere f£' is the vector function formed by
augmenting £ with the unity function to accommodate the
constant parameter).

Since some of the parameters b; can be identically
zero, the regression step has the effect of deciding which
features are generally relevant to penetrance discrimination
among states. (The grouped component of the full evaluation
function can still differentiate on the basis of a (sc far)
rejected feature, but to a much lesser degree.) At the same
time, of course, this third step weights the accepted fea-
tures.

As an example, consider the fifteen puzzle example we
have previously discussed. In the first iteration, three
cumulative regions result, and since there are only tvwo fea-
tures, the stepwise regression procedure can be applied.
The result 1is that only the distance score has a non-zero
parameter, since no discrimination occurred in the reversal

score dimension. In later iterations this second feature

enters the model.

40

There are significant reasons why the full evaluation
function is created from both the grouped component and the
modelled one. Over a series of iterations, the grcuped
component is more important initially, especially because a
regression is not meaningful unless the number of regions is
greater than the number of features in the model. In fact
there are cases in which the modelled penetrance could never
gain a foothold were it not for the inclusion of the grouped
penetrance. Conversely, some of the later splits that cccur
can be anomalous, and the modelled penettance restrains the
grouped one in cases vhere it is erroneous. The two compo-
nents form a synergye.

Chapter four details the regression step and also the

full penetrance function.

Considering the system as a whole, it is a "boctstrap"
operation which uses the evaluation function tc increase
efficiency of solution, and the solution statistics to
improve the heuristic.

The results of using the plan with two different state-

space problems are described in chapter seven.

1.7. (*) THE ELAN AS A PERCEPTUAL MODEL

Let us now take a cursory look at the plan as a model

of perception, specifically with regard to the properties

41

discussed in section 1.l4. We have already seen that the
clustering algorithm simunlates both discriminaticn and
categorization in a dynamic manner (discrimination is
learned) with a set of features as a basis. {The "mctiva-
tion" 1is the built-in drive towvard higher penetrance.) 1If
we consider the points menticned in our discussion of cogni-
tive theory, we have:

(1) Discrimination improves with practice (pp. 16-17).
This corresponds to refinement of established regiocns in
iterations following the first (pp. 35-37). ilso, the
system attempts to improve true penetrance estimates of the
cumulative regions (pp. 34-35).

(2) The most distinctive features are selected preferen-
tially (pp. 17-18). The plan automatically splits in the
best attribute space dimension, this being a property of
observed contingencies in the environment (final state graph
data) (p. 22 ff.).

(3) Perception is active; it becomes increasingly depen-
dent on the categories and less on the stimuli (pp. 18-19).
The system necessarily exhibits a "drift® toward T"seeing”
only those states which are considered to be of greater true
penetrance (pp. 13-14, 38-40). This may be related +to
discovery of local (as opposed to absolute) optima.

(4) Information is generalized and its quantity reduced
(pp. 18-22). The clusters are concise (pp. 22-27).

{(5) Hierarchical structures are involved (pp. 20-21). Fea-

42

tures are already abstractions (information is compacted)
and they are integrated tc fcrm the desired indications of
true penetrance (pp. 27-41). (Information is again reduced,

meaningfully, according to predetermined guidelines.)

1.8. ALTERNATIVES

Although the present system has been successful, sonme
of its mechanisms are not perfected, and <there remain
several alternate approaches that could be investigated.
For example, an attribute space area need not necessarily be
rectangular; the clustering algorithm might examine more
than one dimension at a time; the graph traverser could be
tvo-way; the penetrance revision could be more
sophisticated; regions wmight be recombined; dimension
reduction might be implemented. And perhaps one of the
major improvements concerns the representative attribate
vector (centroid) for a region (independent variable in the
regression step). An outline of another design is given in
chapter eight.

A more basic question is whether clustering need be
used at all. (Should the regions and region handling step
be eliminated?) To reiterate, the modelled evaluation func-
tion is presently obtained by a regression of penetrance on
central attributes of regions. 1Instead, one could simply

fit penetrance to individual attribute points. This works

43

well in the first iteration when the elementary penetrance
values are accurate estimates of the true ones, but in later
iterations we are left with a choice between (1) fitting
elementary penetrance directly (which does not work properly
-- see the discussion of experiments with probit analysis in
chapter seven) or (2) converting to true penetrance
estimates. Selecting the latter, not only do we remain with
the problem of mechanizing the conversion, but we have a
farther unfortunate choice: (1) carrying voluminous data
from iteration to iteration, rather than +the concise re-
gions, or (2) regenerating true penetrance estimates from
the model, against which the new elementary penetrance
values can be compared for conversion. The latter, though
somewhat artificial, is probably superior; however, our re-
gion scheme has the advantage of inherently more accurate
total information (there is more accuracy still in the case
of individual point retention, although supposedly the re-
gion plan keeps just enough). For example, 1incipient
tendencies can be retained in the region set before they are
exhibited in the (linear) modelled component. If, instead,
a nonlinear model is incorporated to pick up this infcrma-
tion, frequently the "real" information becomes confused
with the spurious, and the resulting parameters cause very
poor performance.

Experimentally, the region plan seems to be superiocr to

other approaches. (This is disscussed in chapter seven.)

44

The approach in this thesis is to explore a single line
of reasoning, in order to keep the presentation as simple as
possible. Accordingly, clusters are rectanqular restric-
tions, evaluation functions are exclusively linear combina-
tions of features, and so on. Although some alternative
details may later prove to be superior, the present goal is
to show that the central ideas can provide a useful general

framevwork for automatic parameter tuning.

2. PRELIMINARIES

S =

This chapter introduces some basic artificial
intelligence and system concepts used in later chapters.'
The first section defines and discusses some fundamental
formalizations, emphasizing those relevant to our system;
then the organization of the system functions is cutlined.
The second section serves to familiarize the reader both
with these essential concepts, and with a particular state-
space problem, the fifteen puzzle. The example begun there

is used throughout the thesis for illustration.

2.1. STATE-SPACE PROBLEMS AND SYSTEM FORMALIZATIONS

Most of the basic approaches discussed in this section

are elaborated in Nilssom (1971, 1980).

In the «context of artificial intelligence, it is not
usual to define the term Yprorleam" precisely. If we confine
our inquiries to state-space problems, however, cur task
becomes simpler. 1A state is a condition or configuration of
a problem which will admit an explicit, precisely defined
1 Throughout, some familijarity with statistical terminology

such as the mean, standard deviation, skewness,
probability distributions, regression, and cluster
analysis is assumed, although some of these terms are
briefly explained in chapter one. For details see Fraser

(1958) and Snedecor & Cochran (1972).
45

46

description. For example, the state of a fifteen puzzle is
its particular arrangement of tiles. (We also frequently
use the term "state® to refer to the description of a
state.) A state-space is the entire set of possible states
of a problen.

One state can be transformed into another by means of
an operator. An operator is a partial function on the set
of states -- partial since, generally there may be some
states to which an operator cannot apply. An operator set
{for a problem) specifies all possible changes from one
state into others. For example, the fifteen puzzle has a
set of four operators: move into the empty square the tile
which is (1) to the 1left, (2) to the right, (3) above,
(4) below. Each of these operators is a partial function
only, since the blank can be on an edge of the puzzle.

A starting state is a specially designated state of a
problem, as is a goal (state). Suppose the set of possible
starting states is S, and the set of possible goals is F.
A state-space problem is the general problem of transfcrming
a starting state A;€eS into a goal state A, e F , succes-
sively applying operators of the specified set O.' 1

(state-space) problem instance is a triple (3,,0, A;). The

problem instance 1is solved if a sequence of operators from
O is found which accomplishes the transformation of the
starting state A, into the goal state A,.

I "Goal state"™ can be generalized to "goal state set", but
this simpler definition will be adequate.

47

A state graph is a directed graph whose vertices are

states, one of which is the starting state.! If o€ O is an
operator, then the graph has an edge (A,B) only if B = o(d).
Our state graphs have the property that whenever (A,B) is an
edge, so 1is (A,C), as long as o0'« O such that C = o*'{4).

One node B is a descendent of ancther node A, and A is an

ancestor of B, if +there is a path from A to B. If the
length of the path is one, B is an offspring of A, and 2 is
the parent of B. B can possitly have more than one parent,
however our state graphs are actually trees; cnly the
earliest discovered parent 1is made explicit (though we
retain the term "graph™). When a problem instance is being
attempted, initially the state graph has only one vertex
(corresponding to the starting state A,) but the graph can
be continually extended by applying the entire set of
operators to any node A; then A is said to be developed.?

The level of a vertex A is the path length from the starting

state to 1. A

]

olution is a path through a state graph from

the starting state A, to the goal A;.
A graph traverser is an algorithm which develops nodes

(i.e. extends the state graph).’® Our traverser is designed

1 See Gill (1976) for elementary graph theory definitions.

2 Some systems have been designed which apply a subset of
the operators, rather than to develop a node entirely -~
see Michie (1967), Doran (1968) and Michie & Ross (1970).

3 The graph traverser is essentially the A* algorithm of
Hart et al (1968) ; see also Nilsson (1971).

48

to cease operaticn after a preselected maximum number of
nodes M have been generated, or if the goal is found.' M is
the cutoff. 1In either case, a final state graph (£fsg)
results (which is wuseful not only for tracing a solution,
but also for deriving performance statistics). Such a graph
has no more than M states.

A graph traverser is guided by some (search) strategqy,
wvhich 1is a mechanized rule for choosing nodes for develop-
ment. For example, the breadth-first strategy develops
nodes in the crder of their generation; it is complete and
necessarily finds the shortest sclution, but it is prohibi-
tively inefficient.

For a given cutoff, problem instance, and search
strategy, the final state graph is uniquely determined.

The term performance is often used 1in ccmparing
efficiencies of search strategies. Various criteria are
used. One is the number of nodes developed before a solu-
tion 1is found. Another criterion involves the calculation
of the effective branching factor B, of a final state graph.
B is given by B(BY=1)/(E~1) = T, wvhere d is the path length
1 Our graph traverser is actually a one way traverser. Two

way traversers work both ways, from the starting state to
the goal, and from the goal state to the start. They
often have an advantage over one way traversers. For
example, if the search is breadth-first, and if the
exponential growth of nodes is k!, a two way traverser
would generate Jjust 2k?' states if the solution is at
level 4. Although future research might include
investigaticn of our plan with a two way traverser, it is
an unessential complication in the present systen. But

see Pohl (1969) for a comparative study of computational
efficiency in uni- and bi-directional algorithuas.

49

of +the solution, and T is the total number of nodes
generated. Still another perfcrmance measure, propcsed by
Doran & Michie (1966), is the penetrance, the solution
length divided by the number of nodes developed. For any
criterion, it 1is appropriate tc compare strategies using a
standard set of (possibly random) problem instances.

The guality of a sclotion refers to some measure of its
length, perhaps in comparison with the shortest rpossible

solution (if known).

2.1.2. THE EVALUATION FUNCTIGN

The evaluation function provides one way to specify a

search strategy.' Such a function maps a state-space into
the set of real numbers. We can call its range the cranking
space, since a strategy using an evaluation function
continuvally develops the state which has the highest current
evaluation (or the 1lowvest, depending on design). This is

called best-first search. As an example, the function 8, =

! Aside from evaluation functions, there are other means to
form search strategies. For example Chandra (1972) vwrote
a program designed to sclve the fifteen puzzle by
correctly placing tiles in the outer gnomon first, then
proceding tc solve the reduced problem in the sanme
manner. That program was the first to solve the fifteen
puzzle., It differed from our approach in three ways: it
had a twvo-way graph traverser (see previous footnote);
the strategy used problem reduction (subgoals); and
particularly, his strategy was specialized and created by
the programmer (i.e. there was no mechanized plan). For
some Strategies admitting plans see Winston (1979).

50

constant defines the breadth-first strateqgy (if ties are
resolved by order of generaticn). Our evaluation functions
have their range restricted to the closed interval [0,1],
because they represent probakility estimators (of a state's
being in the shortest soluticn). (So in this case largest

is best.)

In this system, a third space 1is used which is
intermediate between a state-space and the ranking space. A
feature is an integer valued function over a state-space.'
Suppose that F = (f, ,f,,.ee,f,} is a set of features, and f
= (£f,,£7/0e+,fn) is a feature vector. If A is a state, then
f: (A) is the ith attribute of A (1€ifn). 2and £(A) is the

attribute yvector of A. If S is a state~space, then the

cartesian product £, (S) x £,(S) x x £, (S) 1is the
n-dimensional attribute space of S (defined by f). The
cardinality of the attribute space image £(S) is generally
much smaller than that of its state-space.

Our evaluation functions have two components.? One is
called the grouped penetrance function v; it is formed in

the attribute space, using clustering and localized

1 It would be possible to define the domain of a feature to
be {the set of nodes of a state graph} x {the set of
state graphs}, i.e. to consider the history of a state,
but our features will all be simpler.

2 A conmon scheme is to use a linear combination of bcth a
distance~-from-starting-state component and a distance-to-
goal heuristic (discussed in section 1.2). 1In contrast,
our two component evaluation function is purely
heuristic.

51

statistics of performance of previous evaluation functions.
And the other component is called the pmodelled rpenetrance
function p; its logarithme is a linear combination of fea-

tures whose parameters are discovered by a least squares fit

of 1logarithmic penetrance values to attributes. If b
(bo,b],bz,...,b,,)T is the (colunmn) parameter vector, and f =
(f,/£,42ees,fn) 1is the feature vector, then the modelled
penetrance of a state A is p(Ad) = exp[f* (A).b] where f*' =
| PP SUPS PUFIPRp 1 I {(We use this primed notation similarly
throughout.) Note that p(A) > 0. We can also consider p

to have been normalized (by multiplication of b by a

constant) so that 22§ pP(R) = 1. Hence the range of both V
and p is the ranking space [0,1]. The combination of » and
p 1is the full penetrance function 8 = c,» + c,p vwhere c,
and ¢, are coefficients whose values vary. The coefficients
are chosen so that the range of 6 is also [0,1]. An example

of a modelled function is given later in this chapter, and

vV, p and 8 are detailed in chapters three and four.

An entity which is used to control an activity or
influence an algorithm is called a structure. For example b
is a strategy structure which controls a graph traverser.
An algorithm that alters a structure (generally using some
sort of feedback) is an (adaptive) plan (a "second level" of
control or "meta-strategy"). OQur system contains a plan
which makes use of the attribute space. 1 plan is efficient

if it causes the structure to converge rapidly to a local

52

optimum of performance. A plan is effective if it

eventually generates an absolutely optimal structure.'

2.3.3. SYSTEM ORGANIZATION

The system operates iteratively in three steps. The
function of the first (the "solving step®”) is to gather data
from final state graphs. The second (the "region hardling
step”) clusters the data in the attribute space. And the
final step (the "regression step"”) uses the clusters to
produce an evaluation function (vith which the succeeding
iteration generally solves more difficult problem instances
to generate state graphs again). We can now detail the
first step, then outline the other two.

Suppose that 8 is a full evaluation function, and let P
be a problem instance, while M is the cutoff. Then the

f£inal state graph 6 (for 8, P and M) is the final state

graph created by a graph traverser using 8 as its gquide 1in
attempting to solve P. To simplify notation, we use the
same symbol, G, for the name of the graph traverser mapping
(context will precliude ambiquity); we have G: {set of
evaluation functions} x (set of problem instances} x {set of
positive integers} --> ([set of state graphs}. We often deal
with a set of probleam instances P. The mapping G can be

extended: G(8,P,4) = (G(8,P,M) | PeP}. %We refer to this

' All terms in this paragraph are from Holland (1975).

53

set simply as G if there is no danger of ambiguity in the
specification of evaluation function, problem instance set
or cutoff. G = G(8,P,M) is the final state graph set (fsg
set) (for 8, P and ¥).

We frequently use an integer subscript to refer to an

iteration. Suppose that P; is a problem instance set at

iteration I, called the training set of iteration I. Let

8y, be the evaluation function created at iteration I-1, if
I>1; or a constant, if I=1.' The graph traverser computes
the final state graph set G; = G(8,_, P, ,HN). Gy 1s the
fipal state graph set (fsg set) of iteration I. The

associated computation is the first step of iteraticn I or

the solving step of iteration I.

As we shall see later, and as the reader might suspect,
no useful information is gained unless the solver has sonme
success. So P; must include at least one problem instance
which 1is solvable according to 8;., . For example the first
iteration must use a training set, one member of which is
solvable breadth-first.

Later on, we shall encounter the second step, which
forms or revises regions of similar penetrance in the
attribute space, using statistics from the attribute space
map of Gy; and the third step, which computes an evalua-

tion function 8;, from these regions.

1 This initial evaluation function could conceivably be
chosen to be a non-constant function.

54

2.2. THE STANDARD ILLUSTRATIVE EXAMPLE

-ty

In order to clarify definitions, examples appear
throughout this thesis. Every example chosen was froma an
actual experiment with the fifteen puzzle. So in the
following, we define the fifteen puzzle precisely, detail
the feature set for our standard example, and give an
illustration of state graph development with an evaluation

function.

2.2.1. THE FIFTEEN PUZZLE

The fifteen puzzle has states, each of which is a four
by four array of integers, {0,1,2,eces ,15}. A1l the
integers except "0" are called tiles; "O" is the blank. Let

A be a state of the puzzle, and 1let a;; represent the

g}
integer in position i,j (1<i,j<4). Suppose 0 = a,,. The
operator set {o0,,0,,0,,0,}, is defined as follows: B =

o« (3) (1<k<4) implies b;; =a;; , except for:

k=1: if p#1, Dbpq = ap-1,4 & by, 0 (move tile dcun),

k=2: if p#4, Dbpy = aps1,q & bpyy,q =0 (move tile up),
k=3: 1if gq¥1, beq = 33,41 & bp,q1 = 0 (move tile right),
k=4: if g74, bpq = ap,q41 & bp,q4y =0 {move tile left).
Applying one of these operators constitutes a move. Note
that o, and o, are mutual inverses, as are o; and o,.

The fifteen puzzle was invented in 1878. Jchason §&

Story (1879) showed that for any given goal state, just one

55

half of all the puzzle instances are solvable, those whose
tile arrangements form even permutions of the goal. See
Gardner (1964) and Ball (1931) for additional details of the
long history of this prchblem. Also see Schofield (1967) for

an analysis of the smaller eight puzzle.

2.2.2. FIFTEEN PUZZLE FEATURES

The feature set for our standard example consists of
four features., Let G be the gocal state, with array elements
g (1<1, j<4) » If A is any state, with elements ag; e the

following define the features ({f;| 1<i<4}.

4 4
£,(8) = ¥ X (if g;; = 0 then 0 else |i-i'] + }j~3j*1, where
=1

i=1 3
i' § j' are such that ags;r = g;j).

f, is the distance score; it is the sum of the distances of

the tiles from their "home" position.

4 3
£2(d) = I I (if 3k such that a;; =g, # 0 amd a,;,,
"-’] j=] 4 3 ’
9i,x-;y # 0 then 1 else 0) + X I (if 3k such that
j=1 i=1
alj = QKJ f 0 and a:H'J. = gK‘l,j # 0 then 1 else
0.

f, is the order wrong score; each line (row or column) is

examined and the number of cccurrences is counted of two
tiles being in their proper line and adjacent but out of

order.

56
3

£2(8) = T (if {a;,,3;5 s3;3 084} = {9y +9;5 +9:53+9;,} and

=1

3k such that a;, # g;, then 1 else 0) + jé}(if
{alj,azj,a3j,a4j} = {913c92j0933-943} and 3k such
that a,; # g.; then 1 else 0).

f; 1is the line ggégg score; the number of lines is counted

(excluding the fourth) which have the correct tiles for the

line, but with an incorrect order.

Let §;, = 11if a;; = g.; and 0 otherwise.

f, (A) = é:] (if é]&;k = 3 then 1 else 0) + jé (if é‘aki =
3 then 1 else 0).

f, is the blocked score; the number of 1lines is counted

vhich have exactly three of the four tiles correctly placed.

(The incorrect fourth "blocks" entrance of the other proper

one,)

Notice that these fcur features are not all independent
of one another; for example £, and f, are related. Note
also that £, and £, are generalizations of the reversal
score of Doran and Michie (1966) {see section 1.2 and

below).

Typically, with average problem instances, £, ranged
from 0 to 60, £, from 0 to 4, £, from 0 to 2, £, from 0 to
6, so the total number of relevant points in the attribute

space was about 4000.

(The remainder of this subsection can be ignored until

57

chapter seven.) We introduce two more features that were
used, but not for our standard example. They are related to

some of the four above. First,

4 3
fs (4) = _%j%(if a;; =94 #O0anda;;,, =g #0 then
i=1= 4 3
1 else 0) + .E],Eﬁif a;; = 9i,,; #0 and
J= = ’
ai,1,; = gi; # 0 then 1 else 0).

f, is the reversal score.'

The final feature was motivated by Chandra‘'s design and
involves the outer gnomon only. Let us write the sequence

941 2 93192 921 ¢ 9112 G12¢ J13s F14 @S C;y Cyy eewsy C;, and

similarly a,; , eeeee- as b;, by, ecs., by. Then

£ (0 = Z(if b, = c, amd by = Gep aMd 0 F bay ¥ Cuy
é;en 1 else 0) + (if b, = ¢, for k = 2, 3 and 4,
and 0 # b, # c, then 1 else 0) + (if b, = c, for
k=4, 5 and 6, and 0 # b, # c, then 1 else 0).

f, is the gpomon-blocked score.

2.2.3. ILLUSTBATION O

STATE GRAPH DEVELOPMENT

Now let us examine in some detail the development cf a
state graph. We chose a fifteen puzzle starting state 3,,
and the modelled component of one of the evaluation func-
tions created by the system: 1n[p(d)] = £(A).D = 0.70 -

0.56f£, (A) - 2.18f, () - 0.67f, {A), vhere A is any state (b,

1 This reversal score is similar to that of Doran & Michie
(1966) ; see the discussion im Pohl (1969), pp. 79,80.

58

was exactly zero). We make ccmparisons of node development
based on p, with what it would be in the case of a breadth-
first strategy. Figure 2.2 shows a state graph which is a
subgraph of a final state graph whose solution 1length was
88, constructed with A, as the starting state. Arcs are
labelled with operators; heavy lines show part of the solu-
tion; dotted lines indicate operators that would be applied
in a breadth-first search but not with p guiding the graph
traverser. The nodes labelled A; (0<£i<4) are the omes in
the solution; the omnes labelled B; (1£i<5) are those which
are not part of the solution but which are generated using
p; and the states named C; (i=1,2) are never generated if p
controls the traverser. (The operators giving a parenmt are
not shown.) The values of log{ p(A)] are indicated near the
state A (as well as in table 2.2).

Figure 2.2 illustrates that a breadth-first search
proliferates nodes exponentially. At level 4, the total
numbers of states generated are 1, 3, 7, 17, 41 (for 4 =
1, 2, 3, 4, 5); or about 24.

Let us examine the feature values of some of the states
of figure 2.2. Table 2.2 shows that the starting state i,
has its order wrong score £, (4;) = 1; this is because the
third column has the "3" tile and "7" reversed. Alsc the
blocked score f,(3,) = 1, since the first column is correct,
except for tile "™14", Eoth A, and B, have a distance score

one higher than f, (A,), since moving either the "10" or the

T,

.59

1 4 7 12
5 11 3 15
9 6 13 10
14 8 2

-16.7

-17.3

1 4 7 12 4 7 12
® |° 1315 ., . ® 511 3 15
9 6 13 9 6 13 10
14 8 2 10 14 8 2
: /'I \\
hl/ & e ls
-16.7 -17 -16.7 4 N
1 4 7 12 1 4 7 12 1 4 7 12
511 3 s 11 3 15 @511315@
9 6 1315 ® 9 6 13 9 6 10
14 8 2 10 14 8 2 10 14 8 13 2 14

1 4 7 12
5 11 3 15
9 6 1310

Figure 2.2.

5 11 13 3

9 6 15
14 8 2 10

-14.5
1 4 7 12

S 11 3
9 6 13 15
14 8 2 10

Development of a State Graph.

60

"2" results in a net increase of distance -- a move always
increases or decreases this attribute by one. The state A,

has £, (A;) = 0, since "3" is moved out of the third column.

Table 2.2 . Attributes of States.

state A £, fg £ £, 1n(g(A))
A, 26 1 0 1 -16.7
A 27 1 0 1 -17.3
A, 26 1 0 1 -16.7
Ag 27 o o 1 -15.1
A, 26 0 0 1 -14.5
B, 27 1 o 1 -17.3
B, 28 1 0 1 -17.8
B, 25 1 0 1 -16.2
B, 28 0 0 1 -15.6
B, 26 0 0 1 -14.5
c 26 1 0 1 -16.7
c, 26 1 0 1 -16.7

We can see from table 2.2 how the graph traverser
selects nodes for developaent. At the outset, A, is the
only state, and just two operators can be applied, resulting
in 2, and B,. Applying p to A, and B, results in a tie,
vhich is resolved according to the earliest generated node.
After A, is developed, the ranking space contains images of
A,, B, and B, {these are the only undeveloped states).
p(d,) 1is the highest. After A, is developed, only 3,, B,,

B, and B; are candidates. £, (B,) = 25 and £, (A;) = 27 baut

61

f,(B3) = 1 while £,(A;) = 0 and the difference in the £,
term (b, = -2.18) outweighs that of £, (b, = -0.56) in this
case, so A; is developed next.

Although this example does not illustrate the fact, it
often occurs that some state away from the eventual solution
has a better evaluation, so the traverser temporarily works
elsewhere.'

Generally, for our standard example, the training
problem sets P; had a dozen or fewer members; the
associated final state graphs G; had a couple of thousand
nodes, but the attribute space maps of Gy never included

more than a few hundred different points.

The next chapter begins to supply details ccncerning

the penetrance, its error, and the evaluation function.

1 Gaschnig (1979) studied this "hopping around®.

3. CLUSTERS, PENETRANCE AND EVALUATION FUNCTICNS

Ultimately to gain a measure of their "goodness", e
would like to map states into points in an attribute séace,
and there form clusters. The cluster boundaries are chosen
so that all points within a cluster correspond toc states
which have a rcughly similar probability of being in a solu-
tion. Thus a single probability (penetrance) is assigned to
a claster, for use in the grouped component of the evalua-
tion function and indirectly fcr the modelled component.

But first we nmust define the penetrance, examine its
distribution, and begin tc ccnsider how to estimate *#true"
penetrance values and how to determine the reliability of
these approximations -- or rather the opposite -- the error.
In later chapters we use both the penetrance values and
their errors in the actual fcrmation of clusters and also in
weighted least squares fitting for the evaluation function;
but in +this chapter vwe concentrate on the clusters
thenselves. In addition, we introduce the form of our

modelled evaluation function and relate it to penetrance.

3.1. GROUNDWORK

We first describe a rectangular restriction of
clusters, and then introduce two functions used tc form and

to characterize clusters.

62

63

3.1.1. RECTANGLES

In order to keep the information required for their
specification to a minimum, we can restrict clusters to be
rectangular. Suppose that we have an n-dimensional integer
(attribute) space, A. Consider a rectangle r in A which is

aligned with the axes. r may be completely defined by just

tvo (extreme) correr points, ip(r) = (a,,3;, ««- ,a,) and
ap(r) = (b;,by) ee. ¢bn), where 1lp(r) is the lower, and

up{r) +the upper, so a; <k, ign. A point X =
(X,sX,s 2o« ¢X,) 1is contained in r iff a; £ x; £ b;, 1<i<n.
We can abbreviate this: xer.

If 1lp(r) = up(r), vwe say that r is degenerate, or r is
a point rectangle.

If a finite portion of A is partitioned into m
rectangles {r, ,r,, ... ,I,}, then the whole set can be

entirely specified by just 2mn integers, via m corner point

pairs, (lp(r;),up(r;)) (1<j<m).

3.1.2. COUNT FUNCTIONS

We introduce an important pair of T"count"” functions
over rectangles in an attribute space. These functicns have
a dual purpose; they are used to coanstruct and to modify an
emerging evaluation function, and they participate in the
process of clustering. Both of these roles will gradually

become clearer.

64

Suppose we have the following:

{1) A state-space representation of a problem, and a set of
k final state graphs @G = {G,,Gy,«-+,G,} = G(8,P,M)
(vith at least one success), where 8 1is an associated
evaluation function, P is an associated set of k problenm
instances, and ¥ is a cutoff.

(2) A feature vector £ = (£, ,f,,...f,) defining an attribute
space A.

(3) A rectangle r in A.

He define the two integer valued count functions, g and t:

The total (state) count of r (for £ and G,

t(£,G,r) = the total number of developed node= A, such
that, for some GeG , A is in the graph G,
and f(a)er (i.e. the attribute space map of

2 falls inside the rectangle r).

And the good (state) count of r (for £ and G),

g{f,G,r) = the number of developed nodes A, such that,
for some Ge G:
(1) E(A)“ X, and

(2) A is in a sclution in G.

We abbreviate the counts to g(G,r) and t(G,r) if there

is no danger of ambiguity in the specification of f.

65

From the count functions we define the basis of (both
components of) the evaluation function and of the clustering

processe.

3.2.1. DPROBABILITY MEASURE

Let £ be a feature vector, G a set of final state
graphs, and r a rectangle. Consider a function mapping
{f} x G} x {r} into the ranking space [0,1], called the

penetrance of r (for f and @)

U(£,G,r) 'f:_f g(£,G,r) / t(£,G,x).

For any G, the penetrance U(G,r) is the conditional
probability that a state A= G=G is in a solutiom in G,
given that f(A)e r. Our penetrance is a localized refine-
ment of the term defined by Doran & Michie (1966).

Let 8,(A) = <constant for all A, and let P, be the
entire set of all solvable protlem instances. (If P, 1is
infinite, 1limit it in some reasonable way which does not
disturb randomness unduly -- such as taking a large sample
in place of P,-- we shall assume this theoretical problenm
of infinite gquantities has been circumvented throughcut the
remainder of this thesis. Similarly we avoid the academic
question of whether it is feasible to determine the

solvability of a problem instance.) Now define the

exhaustive £f£sgq set G, G{8; ,P;,00) (i.e. the graph

==
traverser is allowed to continue indefinitely, breadth-
first, until a solution is found, this being repeated for
each and every problem instance). G, is the set of all
shortest solution final state graphs (excluding ties because

an fsg has a single soluticn only). The penetrance

U(£,Gq,r) is the true penetrance (of r).

If it could be known for all degenerate r, the ¢true
penetrance would determine an ideal evaluation function,
since it is precisely the ratic of solution states to total
states for all shortest solutions (except for ties).

Since G, is generallf extremely 1large, it wculd be
reasonable to select a random subset and estimate U{G,,r).
For typical problemas however, the calculation of a breadth-
first final state graph of even a single random instance is
impractical. Thus we might consider selecting easy (short
solution) problem instances, rather than random ones. This
could result in useful information for some problems, but
generally, easy instances may not be representative (our
standard example will jillustrate this -- three of the four
features come into play only for harder instances). This
System begins with easy probleam instances, though; ther it
proceeds to compute and to use repeated estimates cf U (G,,I)
in more sophisticated ways, continually attempting to
improve its accuracye

Let us nov define a working penetrance for general fsg

67

sets G@G. In typical sample spaces, the counts are often
small; particularly, the good count is frequently zero.
When it is, ve substitute the user-specified parameter zval
for g(G,r), whose value is intended to be close to 2zero.
Throughout all experiments a value of 0.5 was used; this is
equivalent to guessing that if the sample space were twice
as large, a state A, such that f(A)er and A is imn a solu-

tion, would actually be encountered.’

The elementary penetrance of a rectangle r (for a set
h

G of final state grap and feature vector f)

g(f.G,r) / t(£,G,r) , if g (£,G,r)>0
w(£,G,r) ==
def

zval / t(£,G,r) , if 9(£,G,r)=0.

Flementary penetrance can ke measured and manipulated

computationally.

The system begins with G a set of breadth-first final
state graphs and wutilizes elementary penetrance values
directly to estimate (tentatively) the true penetrance of
states which arise in future solution attempts. Later on, a
plan uses the elementary values indirectly in a complex way
for revision of former estimates. There are serious error

sources 1in this procedure, however; for example the

' An alternative choice might be to use (g+1)/(t+1) to
estimate U.

68

magnitudes of the count functions play a part, and, espe-
cially, the early generalization is made on the basis of
easy problem instances. We shall examine these errors after
ve consider the distribution of the penetrance and the form

of the modelled evaluation function.

Example 3.2

Consider our standard example which has an attribute
space of four dimensions (see section 2.2). The particular
results which we view now resulted from the breadth-first
search of four easy puzzle instances, each nine mcves away
from the goal. Three clusters were formed, whose corner
points, count functions and elementary penetrance values are

shown in table 3.2.'

Table 3.2. Cluster Statistics

corner points ? counts % elementary

1p sp gt = penetrance?
(1,0,0,0) (5,0,0,3) 20 79 0.28
(6,0,0,0) {(6,0,0,04) : 0 31 ; 0.016
(7,0,0,0) {(17,2,0,3) 0 2641 : 0.0002

' The mechanism for cluster creation is given in chapter
five. The rectangle set covers only those pcints
encountered.

2 Zval = 0.5.

Consider again the population of breadth-first final
state graphs G, (the exhaustive fsg set), and let G be a
subset of G,;. For any rectangle r, U{G,r) is a random
variable over {G} whose distribution cannot be determined
directly for interesting problems. In any case, our aim is
to provide a system which requires a mimimum of user-
specified kncwledge about a particular problem, so a
standard ¢treatment is desired. Unchanging first crder

structures facilitate mechanization of the seccnd order

plan.

Proportions such as our penetrance are commonly altered
by one of two similar transformations, the logit or the
probit; ﬁhe resulting random variable has a distribution
vhich is 1likely <closer to normal.' Here we consider the
former; if u is a penetrance, then 1log (u/(1-u)) is its
logit.? 1In our case, nearly all rectangles encountered in
practice have very 1low penetrance. Thus if the logit is
approximated by the natural logarithm, the error introduced
is generally insignificant.® We use the simplifying assump-
tion that any penetrance has a log-normal distribution (and

use a (linear) combination of features +to predict the

1 See Bartlett (1947).

2 The probit is essentially the inverse of the cumulative
normal distribution.

3 Again, some alternate treatment might be selected
instead.

70

logarithm of the penetrance). This choice allows easy
computational combination of various error factors
(described in later chapters). The conception of the system
anticipated that only rough estimates are required,
particularly since feedback seems to provide resilience, so
if our assumption 'regarding penetrance distribution is
somevwhat inaccurate, the consequences should nct be
catastrophic.

We assume that the distribution of W(G,r) is the same

as that of U(G,r).

3.3. EVALUATION PUNCTICNS

Our evaluation functions are composed of two parts, the
grouped component », and the modelled component p. Both map

the set of states into the ranking space [0,1] through the

feature vector £ = (f,,f;,eeefn). Both estimate true
penetrance. (How they are combined is explained in chapter
four.)

The grouped component relates to penetrance estimates
of rectangles; +the penetrance of a state is simply the
penetrance of the rectangle into which it maps (this is
formalized in chapter four). The rectangles used are

generally not degenerate, although we define the true

penetrance of a state A to be the +true penetrance of the

point rectangle r such that f(A) & r.

71

As for the modelled component, we have already
constrained the form to be log-linear, i.e. if f =
(£1,E)re0erf}) is a feature vector and b =
(bo,bl,bz,.-.,bh)T is a parameter vector, then p =
exp[£'.b].""? (We can consider b to be normalized so that
p(a) < 1.)l Hence the range of p is the probatilistic
ranking séace [0,1]-

Now that we have decided onm a form for modelled evalua-
tion functions, we should consider how to arrive at an
ultimate one, p. Ideally, we might proceed: Calculate the
true penetrance values U(G,,x) for every degenerate
rectangle r (vhere G, is the exhaustive fsg set). Use the
points lp(r) = up{r) to provide n independent variables;
use U(G,,r) as corresponding response observations for p;

and perform a 1log-linear regression. If the (column)

]

parameter vector f results, we have p exp[f'.8]. This is
the jdeal (modelled) evaluation function. The system's plan
estimates p. The approximaticns are modelled evaluation
functions that are improved iteratively (see subsection

2.1.3) using subsets of G, and complex estimates of U (G.,r)

(described in chapters four to six).

1 Recall that the prime indicates an augmented vector
formed by the addition of a "1* as the leading element.

2 This general form is necessary somewhat arbitrary, since
features can be anything, but we do want an unchanging
one to facilitate mechanization, and to minimize the
information required from the user for any particular
problem., A possible, again standardized extension is
proposed in chapter eight.

72

The approximating technique involves finding elementary
penetrance values W(G,r) for a small set of final state
graphs G in certain rectangles r. The center pcints of
these rectangles supply a set of independent variables
(attributes) wvhile the logarithes of the elementary
penetrance values (specially adjusted to estimate true ones)
determine the corresponding response, for a weighted regres-
sion which finds an estimate b of f, for log{p] = £f'.b.
(The weights depend on error estimates -- small errors mean

large weights.)

fw
[]

I+
)
9]

ROR ESTIMATION

We have an expression for the elementary penetrance of
a rectangle, but we would alsc like a measurement of the
reliability of this value as an estimator of the true
penetrance in the first iteration (see section 1.6). In
addition, we require error estimates for least sguares
fitting of the modelled evaluation function (chapter fcur),
for purposes of clustering (chapter five), and for revision
of estimates of the +true penetrance (chapter six). In
clustering, for example, the error of a penetrance plays a
part because it is precisely penetrance values (of
rectangles) that are being grouped. We want to know fairly
certainly whether two penetrance values are dissimilar, and

the 1larger the error, the nmore disparate the penetrance

73

values must be before such an assertion can be made (and a
split performed).

Let f be a feature vector. Suppose we have scme final
state graph set G, and rectangle r, with counts g(f,G,r)
and t(£,G,r). Let us abbreviate these values by g and t,
respectively.

There are two sources of e¥ror in the penetrance
U(G,r) = g/t . One relates to the magnitudes of g and ¢t.
For example, 1,20 is less reliable than 10/200.

The other error source is one about vhich we know
little. For the first iteration, the search is breadth-
first, so if the graph traverser is to have any success, the
training set must generally be composed of easy problenm
instances, not randomly selected. Hence the final state
graphs that result are not random. Unfortunately we have no
reliable vay to estimate the bias that results in W(G,r)
from the (tentative) assumption that they are.

This predicament 1is perhaps not as serious as it
appears at this stage, however, for the system is designed
so that feedback tends to correct earlier errors. This will
become apparent later on in our development.

Let us begin with an error estimate based on the first
mentioned source, that which relates to the magnitude cf the
count values. Because of the system design, and especially
in view of the existence of the second kind of error, ve

need only an approximation.

74

3.4.1. COUNT ERROR

We have g = g(G,r) and t = t(G,r) while G = G{8,P)
(8 being an evaluation function and P a problem instance
set). Let us assume that the nodes which contributed toc the
total count t were chosen randomly from the exhaustive fsg
set G,, rather than by 8 and P. Then, £for a given
rectangle r, t is a random variable over (G} which has
essentially a binomial distritution. Let N be the number of
states A in G, such that f(A)e r. Thus the variance of ¢
is Npg, where p is the probatility of t and ¢ = 1-p. We can

estimate p by t/N, so the estimated standard deviation s is

t t
N— (1 - =] .
N N

If N 1is large compared with t, the expression becomes

approximately /t. A similar argument gives an estimate of
the estimated standard deviation of the good ccunt g, as
VE-

Since Wwe have assumed a log-normal distritution for
penetrance, it follows that the standard deviation of the
logarithm of a penetrance will translate into a deviation
factor for the penetrance itself. So let us express an
estimated deviation in this manner. If the good count and
total count are altered by one standard deviation estimate
in the exbression for the penetrance, and if this is divided

by the original penetrance &/t , we obtain

75

1
1 +—
E+\/E g g .
— = . if gd>0, t>1.
t - vt t‘ 1 -
vt
So we define the count deviation factor (df) (of he pair
(g, t))
1+ W
devc (g, t) ==

def 1 - /o
where g'=g if g> 0 and g’ = zval if g= 0, and t > 1.
The 1logarithmic count deviation (of g, t) is lndevc(g,t) =
log[devc(g,t)]« Note that the 1lower 1limit of 1lndevc is

zero, and that of devc is one (both imply no error).

-

3-4.2. NON-RANDOMNESS ERROR

Now let us consider the other source of error in the
elementary penetrance W (G,r) as an estimator of the true
penetrance. (This occurs in the first iteration when the
evalution function is 8, = constant but the training set P,
is not random; instead it is composed of easy prcblen
instances.) ¥We can only make a rough guess of the effects,
but when the search is breadth-first, the graph traverser
vanders around aimlessly in the attribute space, beginning
with the starting state. Many of the nodes developed are
perhaps "worse" than the starting state (i.e. farther fron
the goal than it is), and they therefore have no chance to

lead to a solution, since better nodes are also created at

76

the same 1level in the state graph. Nevertheless these
poorer nodes are developed indiscriminately, along with the
good ones. Consequently, U(G,r) may be as small as zero for
rectangles r that enclose wmainly these relatively pcorer
nodes. If, on the other hand, the starting state had been
farther from the goal, scme nodes similar to these "™poor"
ones may actually have been in a solution; i.e U(G.,r) may
be significantly different from U(G,r), or from W (G,r).

In an attempt to gquantify this error, the user-

specified deviation factor (df) devu is used. For all our

experiments, deva wvas selected to be a function of the

counts: devu (g, t) = 1+ 1 /Q/SOmax(zval,g)/t- {The
constant '50' was chosen arbitrarily -- its effect is shown
in later examples.) So lov elementary penetrance means high
error.

The logarithmic user-specified deviation is 1lndevan =

log (devu).

In iterations after the first, an extension of devu
estimates the non~randcmness bias caused by the fact that
the evaluation function is non-trivial. The next chapter
defines this extension, and proceeds to utilize the various
error factors. (These and other error estimates are central

in chapters five and six as well.)

&
[]
3
by
td
o]
|=t
[=]
£
[
%
-
=
by
<
2
'3
-3
bt
-
-4
o
%
o2
it
H
3
it
o
fow
4
L -]
[77]
[o -]
Ui
3
=

In this chapter, we define the full evaluation func-
tion, and in order to do so, we first introduce the concept
of a "region", which groups am attribute space rectangle,
its penetrance, and the penetrance error. The use of the
region also facilitates an outline of the entire iterative

process, given toward the end of the chapter.

4.1. REGIONS

We shall find it useful to express regions in two

foras, "reduced® and "unreduced®".

4.1.1. UNREDUCED REGIONS

Suppose we are given some integer (attribute) space A,
and also a final state graph set G. Define an unreduced

region (in A) to be a five-tuple

{{=]

(r(R), 7(}), T(R), k(R), e(R)), where r(R) is the rectangle

of B (inA), 7Y(R) = g(G,r(R)) is the good count of R (for

G, T(R) = t(Gr(R)) the total count of R (for @), K(R)

the pultiplier of R, and e(R) the multiplier deviation fac-

tor (df) of BR.
The meanings of the last two elements, k(k) and e(R)
vill not really be clear until chapter six, but we <can say

now that they relate to the past history of a region. k(R)

77

78

is a mwmultiplier for 7Y(R) / T(B), and will be used so that
the expression Y{R) / T7{(R) . k(R) estimates the true
penetrance. We shall see later on that generally k(R) # 1
vhen the count functions are applied to fsg sets G = G{(9,P)
such that & # constant.

We define a function over the set of unreduced regions
in an attribute space: If R is an unreduced region, then

the penetrance of R

Y(R) / T(R) - k(R) , if 7Y(R) > O
val (R) ==
def

zval / T(R) . k(R) , if 7Y(R) = 0.

Let R = (r,7,T,k,e) be an unreduced region. Suppose,
first, that R has been obtained from ; fsg set G, in the
first iteration, i.e. G, = G(8,,P,) where 8, = constant,
wvhile ¥ = g(G,,r) and T = t(G,,r). Since the search was
breadth-first, the penetrance val(R) 1s considered to

estimate the true penetrance if k is assigned the value one.

At the end of the last chapter, we defined devu(7,T) to

be 1 + 1/</50max(zva1,7)/1'. In the case of the first
iteration, devu 1is an estimate of the non-randomness error
caused by non-representative (easy) problem instances. He

can now extend devu to estimate the non-randomness error in

79

iterations after the first, when the search strateqgy is non-
trivial (and problem instances may still be non-
representative). Since generally k # 1 in these cases, if
we wish to relate devu to val(R), it is necessary to alter
the definition of this deviation factor. Let us use the
(arbitrary) expression 1 + 1/&/33;;I7§; {(vhich is simply our
original estimate if k = 1). To simplify notation, we
retain the name "devu" and define the non-randomness devia-~

tion factor (df) of a regqion R to be

devu(R) = 1 + 1/ /50 val(g) .

This can sometimes be quite large. For example, if val (R)

2 x 10°° (a not unreasonable value), devu(R) = 101.

Another function, the (total) deviation factor (d4df) ggi

an anreduced region R = (r(R), 7(R), T(R), k(R), e(R)) is
dev (R) ot devc (Y(B), T(R)) . devu(R) . e(R) ,

wvhere devc is the count deviation factor. The logarithmic

total deviation of R is lndev(R) = log[dev(R)].

4.1.3. REDUCED REGIONS

If R is an unreduced region, then the reduced region

{(of R) is the triple

(R) == (r{B), val(R), dev(R)).
def

L

2

80

The penetrance val{Q) f a reduced region Q is its second

element and the total deviationm factor dev(Q) of a reduced

reqion @ is its third element.
When there is no danger of ambiguity, we <refer to

red (R) simply as Re.

Example 4.1

Example 3.2 showed three different rectangles and their
counts. In reqion formulation with unity multipliers and

unity multiplier df's, these are:
F]=(r1,20,79,1,1); R2=(r2 .0'31,1'1); 333(13,0,261'1,1,1).

Their penetrance values and total deviation factors (if

devu = 1) are:

val (R;) = 0.25 dev(R,) = 1.38

val{R,) = 0.016 dev(R,) = 2.94

val(R;) = 0.0002 dev(R;) = 2.46
So the regions, reduced, are simply: red (R,) =
(r,, 0.25, 1.38); red(B,) = (r,, 0.016, 2.94); 1xred(E;) =

(ry, 0.0002, 2.46).

If devu(R) is defined as 1 + 1//50val (R) then the
regions become: (r,, 0.25, 1.77); (r,, 0.016, €.2);
(r,, 0.0002, 27.). As desired, the deviation factors are
higher for low penetrance values, with the use c¢f devu.

This permits subsequent revisiocn (discussed in chapter six).

81

4.2. THE FULL EVALUATIGN FUNCTION

Py

As we shall see later in this chapter, there is a cer-
tain set of regions, which will be termed cupulative
regions, that is modified at the second step of each itera-
tion. These special regions contain the entirety of ac-
cumnlated heuristic information about the state-space
problem and attribute space to which they refer, and it is
by these regions that we form both components of our evalua-
tion function. Since cunmulative regions are altered once
for each complete iteraticn, the evaluation function is
dynamic too (it is recreated at the third step of an jitera-
tion).

We now examine the reasons for the use of both ccmpo-
nents, rather +than one or the other alone; after which we
proceed to define the full evaluation function in detail.
(Exactly how the cumulative regions are created and revised
is the subject of chapters five and six.)

To repeat, the full penetrance function is composed of
two parts (this vas earlier mentioned in section 2.1). One,
the grouped evaluation function », is defined directly from
the cumulative regions {R}. It is piecewise constant; the
grouped penetrance of a state A is val(R) if f(A)e=r(R).
And the oﬁher component, the mcdelled evaluation function p,
is also é product of the cumulative regions, but indirectly
through a regression. (p{d) = exp[£f(R).b].)

The two components form a synergisn. Without the

82

grouped function, the modelled one might always remain a
constant. This ié because there must be more regions than
features, for a meaningful regression, and, generally,
little useful information can be gleaned from the initial
breadth-first search. Inv any case, for early iterations,
the grouped penetrance v sometimes discriminates states ac-
cording to a feature which is not yet in the model. This
may allow solution of otherwise unsolvable harder procblen
instances (and consequently the function can converge in
fewer iterations). It is important to note that, in the
first iteration or two, there is simply not enough (ac-
cunulated) informaticn to generate a good modelled function
p (recall from the introducticn that a feature can possibly
not even enter except for harder problem instances).

On the cther hand, the modelled penetrance (or some
suitable substitute) seems essential. If it 4is not in-
cluded, in early iterations not enough discrimination cccurs
to solve harder problem instances (not enough pepetrance
categories yet exist), and in later iterations some regions
inevitably become “"perverted™: their penetrance goes awry
and the graph traverser repeatedly wanders off in the wrong

part of the state~space and is never corrected.

These assertions may be better appreciated if we con-
sider a hypothetical exanmple. Pigure 4.2 shows a set of
four regions from which an evaluation function might be com-

puted. The grouped component ¥V has only 4 categories, but

83

ir one area, there is differentiation according to f,. Sup-
pose that there is just a weak discrimination here, i.e.
that there 1is not much difference in the penetrance values
vy and v, (but v, >> v, and v, >> v;), so that the modelled
component Q@ = exp[by, + b, f,] has no £, term. Then p per-
mits 25 categories in the range [0,24], but all depend on f,
only. If the two components are combined, 38 categories are
available, 26 of which discriminate on the basis of both

features together.

A
f2
4-
1 (ryovyre,)
2' (rl'vl’el) (l"z,va,ez)
| (rs,vs.es)
" " 4 8 12 16 = 20 = 2¢ £

Pigure 4.2. Hypothetical Penetrance Function.

Because p contains information from all the regioms,

it is less likely than vV to be erroneous. If the one split

84

in the dimension corresponding to f; is realistic, a judi-
cious combination of v and p is an improvement; if <this

differentiation is anomalous, p damps its influence.

Summarizing, the grouped penetrance is generally more
sensitive to incipient feature discrimination, and so can
"lead"™ the modelled one, but the latter restrains any
malformation in the former. Once a feature is entrenched,
the modelled component is nmore discriminative (i.e. more
penetrance categories exist); but, to become established,

it initially relies on the grouped one.

4.2.1. GROUPED PENETRANCE

Let us define precisely the direct component. Suppose
we have a feature vector £ = (f,,f,, <. ,f,), and a set of
regions R = ({R,,B), <.. ,R.} in the attribute space A
defined by £. Let x be a point, and r a rectangle, both in
A . Denote by |IX,r|| an attribute space distance between x
and r: |ix,rl} = i (if 1lp;(r) £ x; < up;(r) then 0 else
min{ ix;~- lp:(x) 1}, ll;p],; {(x)- x;11)- We define the grouped

penetrance of a state 2 (for R),

val(R) , 1if f(A)=r{(R), ReR
V(R,) =

gag_(val(o)). if f(A)#r(R), VRe= R,

wvhere @ = {Q=R | VReR, [{£@),c(Q 1} £ II£(2),c(R)]]}-

85

(I.e. use the penetrance o¢f the region closest in the at-
tribute space, or that of the "best"™ region if there are
ties in distance.) If there is no danger of ambiguity in
the specification of R, we can abbreviate V(R,A) to V(A).

We also define the grouped penetrance deviation factor

(df) (for A and R) in the obvious way:
devy (R,2) == dev(®) ,

where, as above, R is the region vhose rectangle surrounds
f(a), or, failing enclosure, the "best closest"™ one from R.
If there is no danger of ambiguity, we can refer tc this df

as devv(i).

4.2.2. MODELLED PENETRANCE

In chapter three we decided to construct all nmodelled
evaluation functions so that they estimate the true
penetrance. We also decided on a standard form of any such
function: p(d) = exp[f'(A).B] where A is a state, § is a
parameter vector, and £ is a feature vector. ¥e are now
ready to see how to use (cumulative) regions as data to
determine the parameter vector. A set of regions R
specifies the regression information. The rectangle r (R) of
a region Re R supplies the independent variables -- the
center of r(R) 1is used <«- while the logarithm cf val(R)

(i-e. the logarithm of an estimate of the true penetrance

86

of r{R)) provides the response variable. The logarithamic
deviations lndev(R) determine the weighting in the 1least
squares fit.

One purpose of the system is to discover which features
are relevant, and of those which are more important;
generally this information is not known a priori. Thus, an
algorithm which discriminates among and selects variables is
appropriate; so the 1INMSL stepwise regression procedure
RLSTEP (subsection 1.6.3) was chosen. The confidence level
1-a or uncertainty level @ is a parameter of this algoritha.

The details c¢f the regression can now be formalized.
We have previously defined the vector functions lp and up to
refer to the extreme corner points of a rectangle (subsec-
tion 3.1.1). At this time we need to access +the center
points, so we define an appropriate vector function. If r

is a rectangle, then the center point of r

cp(r) == [1lp(r) + upi(r)] / 2.

Suppose that we have a featare vector f =
(f,,£2+ «-- ,f.) and corresponding space A, and a set of
regions R = (R +Ry¢ ==« (R, } in A. Let x = cp(x(R;)
and y; = log(val(R;)).

The normal equations X'V 'Xb = X'V 'y have the solution
b= (xv'x)"' xTv 'y, where X is an » x (n+1) matrix of iﬁ-
dependent variable observaticns, y is an m x 1 vector of

corresponding response cbservations, b is the parameter vec-

87

tor which best fits the data (least squares), and V is the
variance matrix of y ({see Draper & Smith, 1966). To adapt

this to our situation, we need an (n+1) x (n+1) selection

matrix J which has elements Ji; such that J;; =0 if i » S,
Jy; = 1 (constant parameter always included), and, for i>0,

Jis1,is1n = 1 if the ith independent variable is in the model
(otherwise J;,,,i+1 = 0). The normal equations then become
(JXTVT'X + (I-J))b = JX"V 'y (where I is the (n+1) x (n+1)
identity matrix), and their solution is b =
(JXTV7'Y + (I-3))"' IXTVv 'y,

Now we <can substitute the values in which we are in-
terested. Let J be the selection matrix determined by
RLSTEP. Let X be the a x (n+1) matrix formed with x;*
(1 <Jj< m as rows. Let the m elements of y be the Y; . and
finally, let the non-zerc elements of V be vi; =
[lndev(Rj)]z. (In other vwords, each center point and
logarithmic penetrance from a region count an amount which
is weighted by the inverse of the 1logarithm of its total
deviation factor.) The parameter vector b results (which
vill have by = 0 if J;4;,¢+; = 0). And § = x.b where x is a
point in the attribute space A, and ? is the predicted
value of the lcgarithm of the penetrance.

So if A is a state of the space S, the modelled

penetrance of A (for region set R and uncertainty level a)

p(R,a,d) == -exp[f(R)'.b] / max{f' (B).b].
def Beg

88

The divisor normalizes p so that p(A) < 1. Hence the
range of p 1is the ranking space [0,1]. If there is no
danger of ambiguity, we can write this as p(R,A) or simply
as p(a).

We shall later have reason to refer to a related func-
tion, over a set of regicns. If R is a region, then the
modelled pepetrance of B (for R and @) is
pval (R,a,B) == -exp[cp'(r(R)).b] / max[£'(B).b].

def 8=sg

We also need an expression for the error. Let X* be
the matrix obtained by contracting JX, deleting columns
which are zeroed (as a result of the corresponding feature's
not being in the model -- so the dimensionality is reduced
to the trace of J).' Define similarly the other starred
matrices and vectors in the following. The variance of y
for a particular attribute vector X is given by
X'*(X*Ty*-1 x*)" 1 x*Tg2 , and o? is estimated by the regres-
sion residual mean sum of squares, s?. So we define the

logarithmic modelled penetrance deviation (for R, a and 1)

lndevp (R,a,k) P _f_' (A)i (X*Tvn-l x*)‘l ﬁ' (A)-l‘l's2.
def

(And dewp = exp{lndevp).) Define the modelled penetrance

df of a region pvaldev (and its logarithm 1lnpvaldev) in an

analogous way.

' It is necessary to eliminate the rows consisting of
zeroes, Since otherwise the matrix X'v-'X is singular.

89

4.2.3. THE COMBINATION

Now that we have defined the grouped penetrance and the
modelled penetrance of a state, we arrive at the gquestion of
how to <combine +them into a single estimate of the true
penetrance. Let us inspect a different but related problen.
Suppose that x is a random variable over a population S, and
suppose that a sample of size N is drawn from S which
results in an estimated mean X. X is a random variable over
samples of size N, and it can be shown that its standard
deviation is o A/N where o is the standard deviation of x.

NowAlet us suppose that two samples are drawn, cf sizes
N, and N,, resulting in estimates of the mean of x, denoted
by X, and X, respectively. The respective standard devia-
tions are o AW, and o A/N,. A single estimate of the mean
of x could be derived by calculating (N; X, + N, X,) / (N, +N,)
whose standard deviation is o /VN; +X,.

Next, let us suppose that the values of N, and N, have
somehow been lost, but nevertheless we do have estimates s;
of o /A/Ni (i=1,2). Then we could estimate N, to be o%/s;?2.
If wvwe substitute for N; in the original expression, we ob-
tain an approximation of the mean of b 4 which is
(X,/s2 + X,/s,2) / (V/s,2+1/s,?), and the estimated stan-

dard deviation {again substituting for N;) is

1 /Q/1/sﬁ +1/s,2 . The contribution of X; is larger if its
error estimate is lower; the error estimate of the combina-

tion is less than that of either X; or X, separately.

90

We now return to our original problem and define quan-
tities anologously. Since the penetrance is assumed to have
a log-normal distribution, ¥e weight lorarithms of
penetrance values according to logarithmic deviations. But
in cases in which the +trace of the selection matrix J,
tr(Jd), is greater than the size of the region set R {i.e.
vhen not enough data is present for the size of the model),
the grouped penetrance is used solely. The (full)
penetrance of a state A (for R and a),

R R 4

log(v(a)) log (p(a))

+
(1ndevr(a))? (1ndevp (2))?

exp
1 1
+

(lndevy (a))? (1ndevp (1))?

if R has more than

tr(d) elements,

8(R,a,d)

v(h) , if R has between one and

tr(J) elements,

0.5 , if R = 9.

We can abbreviate 8 (R,a,3) tc 8(R,A) or to 8(A) if there is
no danger of ambiguity. Clearly, the range of 6 is the
ranking space [0,1] (since » and p have this range).

We define 8val analogously to pval. If R is a region,

91
then the full penetrance of R (for R and a) is

8val (R,a,R) the weighted average similar to the above

def
expression for 8, only with val replacing
vV, pval replacing p, and the error terms

appropriately substituted.

The full penetrance deviation factor (df) (fox R, a
and 1) is
1
exp
1 1
+
_ (1ndevy (a))? (1ndevp{a))?
deve (R,a,d) = A

def
if R has more than

tr {J) menmbers,

devv (3) , if R has between one

and tr({J) members,

oo, if R= ¢.

Define +the full (penetrance) deviation factor of a re-

gion dev@val (and its logarithm, lndev8val) in an analogous

waye.

92

4.3. QUTLINE QOF ITERATIVE REVISION

In section 2.1 we began a description of the iterative
system, detailing the first, or solving step. It was stated
that +the full evaluation function from the previous itera-
tion, together with the training problem set for the current
iteration, determine the final state graph set for the cur-
rent iteration; i.e. G; = G(8;_, ,P;). Let us now consider
the second step (which manipulates regions) and the third
step (which is a regression). Although we cannot yet for-
mally describe the details of the creation and alteration of
regions, we can define some basic terms and relationships.

As stated in 4.2, the second step of an iteration ac-
cepts a special set of regions, called the cumulative (re-
gion) set, along with the final state graph set, and com~
putes a new cumulative set. More specifically, the cumula-
tive region set C,;., from iteration I-1, together with the
final state graph set Gy of iteration I determine the

cumulative region set C; of iteration I. Let us denote

this mapping by C:; then we have C; = C(C;,»G;)- (Ini-
tially, ¢c, = ¢.) (Cy is also dependent on @;_, but this
relationship is expressed in G;.) This constitutes the

second step of iteration I or the region handling step of

iteration I. The complex mechanism for the region handling

step is the subject of chapters five and six, although an
overview is presented shortly.

The third step of iteration I, or regression step of

93

iteration I is the calculation of the full evaluation func-
tion from the cumulative region set for iteration I (this
procedure was detailed in the previous section); sc if 2 is
a state, and a an uncertainty level, the full penetrance of
iteration I is 9;(a,}) == €(Cy,a,d). If there is no

danger of ambiguity in the choice of a (which in ©practice

is often fixed throughout the series of iterations) we can

write this 6;(1). We can say that 8, and C; are
associated.

Thus for an entire iteration, we have:
(1) G = G(8z., ,P;) ., (2) € = C(Cy, +,Gy) o and
(3) 8 = 8(Cy)-

We can think of a cumulative region set C; as the es-
sential set of structures (see subsection 2.1.2) fcr our
graph traverser, since C; directly determines +the grouped
penetrance and indirectly determines the modelled

penetrance. The mapping C is the plan.

The following fills in scme sketchy details of the re-
gion handling step in the context of the entire iterative
process. Suppose that a feature vector £ is given (deter-
mining the space A). Llet us examine the first iteration of
a series. "CLUSTER"™ (chapter five) generates the first non-
empty set of cumulative regions C,. It doés this by
beginning with the single region R =

(r, 9(£,Gy,1), t(£,G,,r), 1, 1), where r 1is the smallest

94

rectangle which will surround all the points in cor-
responding to states in G, = G(8,,P,) (with 8, = 0.5).
CLUSTER tentatively splits the rectangle r into twc smaller
rectangles. Many such tentative splits of r are examined;
and the splits occur in each of the attribute space dimen-
sions. The "best™ of these is selected, and this best split
is made permanent if the two subregions are "dissimilar"
enough. The criterion for dissimilarity is based on the
counts of the subrectangles for G; and on the count errors.
If the two subregions become disjoint, the process is
repeated with each subregion as the inspected region, and
the splitting continues until nc further discrimination can
ocCur. If the feature set is "useful®", then there is even-
tually more than one element in the resulting region set
C, . If R'eC, is a subregicn with rectangle r', then its
counts are g(G,,r') and t(G,,r').

C, becomes the cumulative region set for the regres-
sion step of iteration one. The new full penetrance func-
tion 8, = #8(C,) becomes something other than the constant
0.5: either V, or else a veighted average of », and p, if
the number of regions in C, is large enough to warrant the
regression, as we discussed in the last section.

This completes the first iteration in the formation and
modification of the full evaluation function. Succeeding
steps are a little different. CLUSTER becomes just part of

a larger process; it is used in the latter two of a three-

95

stage algorithm, "REVISE".

The first stage revises penetrance values. Suppose
Re Cy_,- To improve the accuracy of the penetrance
astimate, REVISE modifies val(R) (and dev(R)) according to
the elementary penetrance W(G,,r{(R)) and also acccrding to
{W(G;,r(Q)) | 0=C_,}. The elementary penetrance of the
other regions must be taken into account becanse the non-
trivial search strategy has altered the true meaning of the
count functions, in such a way that their ratio no longer
reflects the true penetrance, but rather a veiled
penetrance.

REVISE then proceeds to refine each updated region
(second stage), using CLUSTER for splitting in a way similar
to that in the first iteration, so that, generally, the
number of regions gradually increases over a series of
iterations.

The third stage involves enlarging the cumulative re-
gions to accommodate any outlying new attribute vectors.

The situation, however, is more complex during later
iterations when 8; is not a constant. In addition to the
inherent difficulty surrounding the veiled aspect of new
2lementary penetrance values, there is a systematic bias in
the values, which shculd be taken into account when two

subregions are split. REVISE is the subject of chapter six.

In this chapter, we come to the heart of the systenm,
the clustering algoritham. This algorithm decides whether,
and how, a region R should be split, using the counts and
deviations of subrectangles of R. Our clustering algorithm
is in some ways similar tc some well known algcrithas;
splitting is incorporated. In other respects, hovever,
"CLUSTER" 1is more unusual. The distance is determined by
the experience of the system (specifically, thxcugh the
count functions), and it is non-metric. Another significant
feature of our algorithm is that the finél nuaber of
clusters is not known a priori, but rather is determined by
the data. The precise meaning of these assertions will
become clearer in what fcllowus.

¥e begin with <the distance function, which will

determine whether two regions are "similar" or nct, and if

not, how "dissimilar™ they are.

5.1. DISTANCE

We want regions to represent volumes in an attribute
space, each of which has a fairly uniform penetrance. And
we desire multiplicity of regions only to represent
diversity of penetrance. Since a distance function in
clustering is designed tc code dissimilarity and since it

can determine the extent of clumping, we would like our

96

97

distance to reflect divergence cf penetrance. Thus we would
like the distarce between two regions to be high if their
penetrance values are quite different, especially if their
errors are low.

To derive a suitable distance function, let us begin
with the confidence interval for estimates of the mean of a
normally distributed <randomr variable x. The interval is
X - t,,sNT < u < X+ ta,, s/A/N for uncertainty level
@ , standard deviation estimate s and sample size N. Let R,
and B, be two regions. We temporarily assume that
U(Ge,r(R))) = U{G,,r(R,)) (vhere G, is the exhaustive
breadth-first fsg set of chapter three). Let u; be the
penetrance U({G},r(R;)) (j=1,2) for G G, . Since we have
assumed a log-normal distribution, x; = log(g;) is a
normally distributed random variable over graphs G € G,.
Let us suppose that ij = log(val(Bj)) represents the natural
logarithm of a penetrance 0({G,r(R;)) for G=G, of size N.
Let s; be the estimated standard deviation of x;. We make
the additional assumption that sj/Vﬁ is approximated well by

(=1
-
H

1ndev(R;) {c.f. subsection 4.2.3).

Then, substituting in the confidence interval, we have
T, ~tap d; < B < % o+t d and I, -t a, < p <
X, + ta, d; where g is the true mean estimated by both ¥,
and X,, assuming they were selected from the same popula-
tion. The superscript for t reflects the fact that t is a

function of sample space size N (slowly varying for 1larger

98

N), as well as of a, but let us approximate both tﬂ; and

téz by the confidence factor c. Henceforth we shall
arbitrarily choose a value for c. The quantity 1.5 for c
corresponds roughly to the reasonable assignment of 0.13 to
a (vhile larger values mean smaller a -- i.e. larger c
implies greater assurance). Combining the +two confidence
intervals, we nowv have X, - cd, < X, + cd,, or
(X,-X,) - c(d, +d,) < 0.

Suppose x; 2 X,. On the basis of the above simplifica-
tions and deductions, we would expect that if E =
(x,-X,) - c{(d,+d,) is in fact negative, then r(R,) and r(R,)
are from the same penetrance population; but the more posi-
tive E 1is, the more sure we would be that r(R,) and r(R,)
determine disparate true values. Thus E is a reasonable
expression with which to measure penetrance disagreement.
It can be rewritten E = (X, - cd,) - (X, + cd,;), which is
the difference between the "lowest 1likely" 1logarithmic
higher penetrance x, and the "highest 1likely" 1logarithmic

lovwer penetrance «x,. From E we derive our distance func-

tion.

Suppose we are given +two unreduced regions, R, =
(ry .7 +T1,1,1), and R, = (r,,7,+T,,1,1), and suppose that
val (R,) 2 val(R,). {(Note that the multipliers are exactly
one for both regions, as are their deviations -~ this is the
only case required -- see CLUSTER in the next section.) We

define the distance between R, and R, to be

99

dist (R, ,R;) ==) logf{val(R;)] - log[{val(R,)] + bias
def

- c[1lndevc(R,) + 1lndevc(R,) + biasdev]

otherwuise.

If val(R,) < val(R,) , dist(R,,R,) == dist(R,,R,).
def

Bias and biasdev are two terms which will not be fully
defined until chapter six. For iteration one, however, and
in fact vhenever the full penetrance function 9; = Vv, (i.e.
when it does not include the modelled component), bias and
biasdev are both exactly zero. 1In defining dist, we have
used the count error rather than the total one ({subsection
8.1.2 defined the deviation factor of a region to be the
product devc . devu . e). This is because, in this case,
the non-randomness error, often estimated by devu, is
instead taken to be exp(biasdev), and because the multiplier
deviation factors e are unity whenever dist is used.

If dist(R,,R;) £ 0, we say that R, and R, are similar;
otherwise they are dissimilarxr. Obviously, the larger the
sum of the logarithmic deviations of R, and R,, and the
larger the confidence factor ¢, the greater the ratio
val (R,)/val(R,) must be in order to cause R, and R, toc be
dissimilar.

Note that dist 1is ‘"cautious", since it implies

dissimilarity only if the two penetrance values are

100

disparate enough tc¢ overcome their error sum, which may

overweight the distance.

Example 5.1

In example 4.1, we calculated the penetrance values and
count deviations for three regions R, = (r,, 20; 7%, 1, 1),
R, = (£, 0, 31, 1, 1), and R, = (rs, 0, 2641, 1, 1) to be

0.25, 0.016, 0.0002, and 1.38, 2.94, 2.46, respectively.

Suppose the confidence factor ¢ = 1.5 and bias = biasdev =
0 then dist (R, ,R,) = log (0.25) - log (0.016) -
1.5[10g(1.38) + 1log(2.94)] = +0.65, so R, and R, are
dissimilar. A diagranm showing this and the other

relationships is given in figure 5.1, vwhere log[val(R;)] is
a central value and c.lndevc(R;) gives an "error band". The
diagram does not reflect the distance between R, and BR;;

since 7(R,) = 7Y(R,;) = 0, dist (B,,R;) = -oo.

Rs

K N.,rﬁ'w]_ e LT
0.0001 0.001 0.01 0.1 i.

penetrance —>

Figure 5.1. Penetrance and Error Bands.

101

5.2. CLUSTERING

OQur algorithm tentatively and variously splits regions
R into two, R, and R, (in one attribute space dimension at a
time) and retains the split if dist (R, ,R,) > 0 and if
dist(R®,,R,) is a maximum of all possible splits (i.e. if R,
and K, are the most assuredly dissimilar with regarxd to
penetrance). The algorithm continues splitting the subre-

gions until no longer warranted by the data.

5.2.1. THE ALGORITHN

Suppose we are given a feature vector f =
(£,,£3 o<, £,), 2 set G of final state graphs, and a re-

gion Ry, called the parent region. In the algorithm below,

!.

t

represents the i-th basis vector (with a "™1* in +the ith
position and zeroes elsewhere).
Span is the length of a subrectangle in the direction

along ¥, {(fixed for each i). As the algorithm shcows, the

i
positive integer parameter, maxspansteps, can possibly
increase span, thereby 1limiting the number of tentative
boundaries (successively) inserted. It is designed to speed
up CLUSTER in cases in which some features have a very large
number of values; 1in practice it can usuaily be oo (which
implies no restriction; i.e. span = 1).

Mintau is another limiting positive integer parameter;

it is the nminimum total ccunt allowed for a prospective

102

subregion. Throughout all experiments, its va;ue has been
20 (this provides a greater assurance that few anomalous
samples arise).

Two "temporary" rectangles, r;, and r,, are used to
record the extreme cormer points of tentative splits.
Another, r'*, retains the cormner points of one of <the two
parts of the best split encountered.

Note that in CLUSTER, the multiplier deviation factors
of the temporary regions R, and R, are unity when dist is
used, because the error cf the parent region has nothing to
do with the splits. The multipliers are also unity at this
point. Since only the counts determine divergence of
penetrance, the multiplier values are irrelevant.

(The algorithm is on tpe page following.)

We call the partitioned set, CLUSTER(f,G,R,), the

output set of CLUSTER (for parent region R,, feature vector

£ and fipal state graph set G). If the output set has more

than one member, we can say that the feature vector £ is
useful (within R for G). Similarly the particular fea-
tures of £ in wvhose dimensions splitting occurred, are
useful. Useful features discriminate (among states)
(according to G)-.

If there is no danger of ambiguity, we can abbreviate

CLOSTER(£,G,R,) to CLUSTER(G,R,) -

=

L]
[~

103

CLUSTER(£,G,R,)

the largest subgraph of G containing no edges, such

that £(A)=r(R,) for all A€G e N;

N
]

{Ro}3

ile 3 an unmarked R« R; comment find best boundary;

|

a := 1p(r(R)); b := up(r(R)); bestdist := =oo;

{length = (b-a) . ¥.;

span := mnaxl1, entier(length / maxspansteps)];
for k:=1 step span until length -~ span do;

lp(r,) := a; ap(r,) := a + k¥span*y;;
ip(r,) =:= a + (k+1)*span*y;; up(r,) := b;
Ry = (ry, 9(N,X,), t(N,x,), 1, 1);

Ry 3= (r;, g(N,r;), t(N,r,), 1, 1);

distance := dist(R, ,R,);

if distance > bestdist and t{N,r;) > mintau (j =

1,2) then (r' := xr,; bestdist := distance);

b

b 8

f bestdist > 0 then do; comment split permanently;
Ry = (', g(N,r*'), t(N,c*), 1, 1);
Ry := (r(R)-r', g(N,r(R)-r'), t(N,r(R)-r'), 1, 1);
R:= R U (R ,R,} - {BR};

S

else mark R;

104

{ta

xample 5.2

Let us again consider the standard fifteen puzzle
example. The same ccmputer results as presented in example
4.1 are 1listed again below, kut this time in the 1light of
the clustering algorithnm.

The final state graph set G, = G(8,,P,) resulted from a
breadth-first search (8, = 0.5). P, had four problenm
instances whose goals were all at level nine -- these were
the hardest instances solvable with 68,. The parent region
for CLUSTER was R, = (r,, 20, 2721, 1, 1), with ip{x,) =
(1,0,0,0) and up(r,) = (17,2,0,4). The output set had three
regions R,, R,, R;, which are given in table 5.2. CLUSTER
first split R, into B, and R' = (r*, 20, 110, 1, 1) with
ip(r*y = (1,0,0,0) and yup(r') = (6,2,0,8); then R' vas
further divided into R, and E,. The distances between R,,

R, and R; are those indicated in example 5.1.

Table 5.2. CLUSTER Output

b R; ip(r;) ap (r;)
1 (r, ,20,79,1,1) (1,0,0,0) (5,2,0,4)
2 (r;,0,31,1,1) (6,0,0,0) (6,2,0,4)

3 (r;,0,2641,1,1) (7,0,0,0) (17,2,0,4)

105

5.2.2. PROPERTIES OF THE ALGORITHM

First we can see that the procedurs always halts. At
the start, the region set R is just {R;}. The first part
of the algorithm (inside the "while®) is a double loop, the
outer one repeated n times, and the inner one also a finite
number of times, since rectangles have a limited extent.
This part of the algorithm sets bestdist and rt.

The other segment of CLUSTER either marks R, (if
bestdist < 0) or else it splits R, into two, removes R, from
R, and adds the two subregions R, and R, such that r (Ry) =
r(R,) Ur(R,) =r*'U r(Ry)-r' (the counts of the subregions
also summing to those of the parent). Let P be the number
of points p in r(R,) such that p is in the rectangle of an
unmarked region. And let the length of the rectangle of R,

in dimension i be d; = up;(r(Ry)) - 1lpi(r(Ry)). Then the

]

volume of the rectangle is ¥ ii d;. Initially, P = V.

If R, is marked, (P = 0 and) CLUSTER stops; othervise
the situnation is as it wvas at the outset, except R now
contains two (unmarked) regioms R, and R,. Thereafter, on
each pass through the "while" loop, an unmarked region R is
selected from R, and R is either marked (if bestdist < 0)
or split. (On a pass through the "while"™ 1loop, any
rectangle which is not split is immediately marked (since
then bestdist < 0). Note that a degenerate region is alwvays

marked, since, in this case, length - span < 0 and thus the

"for Kk:= ..." loop is not executed.) Hence the nuamber N of

106

unmarked regions in R either decreases by one (if R is
marked) or increases by one (if R is split), on each pass.
Since the union of rectangles of all sutregions
generated from R, is exactly r(R,) at any time, N < V.
Purthermore, the number P of "unmarked" points decreases
each time a region R is marked (by the volume of Tr(R)).

Thas CLUSTER halts.

Now 1let us consider the complexity of the algorithn.
Suppose that a feature vector f = (f,,f,,...,£f,) defines an
n-dimensional attribute space A, that G is a final state
graph set, and that R is a parent region, these constituting
input for CLUSTER. There are several factors affecting the
speed of CLUSTER; they arise from the three nested loops.
(The second segment of the outermost loop, which records a
permanent split, takes relatively little time and can be
ignored.)

Let us consider these factors from the inner loop,
outward. In the innermost 1loop, all other steps take an
insignificant amount of time ccmpared with the calculation
of the counts, since in practice the number of nodes in G
is hundreds or thousands, and each node 1A requires a
computation to determine if its attribute vector £ (2) is
enclosed by one of the two tentative subrectangles r;, and
) DI (The computer representation carries the attribute
vector with each individual state.) Let us choose as our

unit of complexity the time taken for determination of the

107

validity of lp;(r;) £ f£:() < up; (r;) (for both j=1 and
j=2). Then the time reguired for a single pass through the
"for k:= eee" loop is n [t(N,r(R))] {(The computer
implementation of the count functions actually maps states
in G to point regions only once, and thereafter the system
ascertains directly whether these point regions are enclosed
by subregions of the parent region BR. Thus, only points in
A need to be tallied, rather than states in G; +the latter
is generally larger -- this advantage is lessened, however,
as the number of features and their range are increased.)

The second factor affecting the speed is the total
number of possible tentative boundaries that can be inserted
in a rectangle. (This corresponds to both "for" loops.) Let
us consider the case for which maxspansteps =oo. In dimen-
sion i, the number of boundaries is the 1length d; =
ap;(r(R)) - 1p;(r(R)), so the total number for all dimen-
sions is agudi = igl[up;(r(a)) - 1lp.(x(R))]-

The third factor gcverning speed is the eventual number
k of permanent splits, since the whole counting process for
various tentative rectangles must be repeated twice more
each time a split is made permanent. This factor varies as
2k+1. One upper limit of k can be determined as the maximunm
number of boundaries that can be inserted. This rumber is
the volume V =a§%di' This is generally very much larger
than another limit which relates to the total count of r(R)

for N. Since every subrectangle must have at least mintau

-108

state images, k £ t{(N,r(R)) / mintau (mintau > 1). In fact
k is generally much smaller than even this, since permanent
subregions must satisfy the stringent distance criterion for
dissimilarity, so that in practice k is usually very small
(four 1is the 1largest observed). (Actually a large k is
desirable, since it means high differentiation.)

Thus the total time that CLUSTER requires for a given
parent region R is T < n [t (N,r(R))] [iZ::Id;] [2k + 1], but in
practice it is never more thanm Kn [t(N,rc(R))] [:é‘:ld‘] {vhere
K is a small integer constant). If we write D = wmax{(d;),
then we have T < KDn? [t (N,r(R)))]« (If maxspansteps < D, it
can replace D in this expression.) The most important fact
is that the number of features n can easily be increased; if
each feature has roughly the same range of values, the tinme
increases approximately with the square of n.' (If the fea-
ture ranges are huge, maxspansteps can limit the number of

boundaries in appropriate dimensions, with little practical

consequence.)

One interesting fact aktout CLUSTER is that it can
sometimes partition a parent region into subregions such
that some are similar to each other. Por instance, in
example 5.2 (see also example 5.1), the parent regicn R
first split into R*' and R,, then R* split’again, into E, and
R,. Of course R, and R, are dissimilar (otherwise the split
t Experiments indicate that with about ten or twelve fea-

tures, the region handling step typically still takes
less time than the solving step.

109

would not have occurred), and in this case, so are R, and
R3. However, R, is similar to R;. (Because dist (R,,R;) <
0, dist(®R,,R,) £ dist(R,,R;) + dist(R,,BR,) and
dist(R,,R;) £ dist(R,,R,) + dist(R,,R;) cannot both be
valid. Hence, this situation of similar subregions could
not arise if the triangle inequality held.) This has a
desirable effect, however, since subregions differentiate
the attribute space, as long as some pair is dissimilar (and

this is necessarily the case).

A 4

Figure 5.2. Perverse Penetrance Divergence.

It should be noted that some feature sets can possibly
confound CLUSTER. For example, suppose that the feature

vector is £ = (f,,f,); consider the situation illustrated

110

in fiqgure 5.2 where the elementary penetrance values u =
W(G,r) are as shown. In such a (saddle point) situation,
certain distributions of point regions would result in no
splitting, since CLUSTER observes one dimension at a time.
The problem appears to be more of a theoretical nature,
judging from experiments. Even when there are strong
interactions amongst features, there seem there seem to be
numerous splits. Moreover, the systen vas designed

primarily for reasonably well behaved feature sets.

5.3. SHRINKING REGIONS

In chapter four, the modelled evaluation function was
defined in terms of the established regions R, taking the
center point of r(R) as the representative attribute vector.
This assumes that the unweighted geometric centers are in
fact the centers of gravity. We could simply ignore any
possibility that r{(R) may have an uneven distribution of
points (early experiments suggested this would be
acceptable) ; however, our confidence might be greater if
the plan were to take account of the point distribution
within a cluster. One way of accoaplishing this is to
shrink regions after splitting. Pigure 5.3 illustrates how

a more representative center point can result.

111

2 no points "R

R L e L T TR

v

Pigure 5.3. Effect of SHRINKing

The following describes such a method, peculiar to this
particular system realization (it can be bypassed on first
reading). An alternate scheme, which finds the actual
center of gravity, is outlined in chapter eight.

Suppose that £ = (f,,f,, <. ,f,) is the relevant fea-
ture vector, and R is a set of (unreduced) regions of
cardinality m cutput by CLUSTER (for £ and fsg set G). We
define an algorithm SHRINK, which reduces the sizes of
rectangles of regions to enclose minimally the attribute
vectors corresponding to G, as long as the shrinking does

not leave gaps between rectangles (just the peripheral

112

boundaries are affected).

Again, ¥; is the ith basis vector. The algorithm uses
twvo functions, pain and pmax: I"x I" —> 1I". If a =
(a,s2,s «e- ,a,) and b = (b, ,b;, «-. ,bn), then pmin(a,b) =
(min(a, ,b,), min(a,,b,;), eeee., min(a,.,b,.)). Max is defined
similarly. SHRINK uses tvwo temporary rectangles r' and =r",
which it defines by setting their extreme lower and upper
points. Finally, the algorithm alters members of the region
set R = (R ,Rysecs,B,} by (possibly) changing their
rectangles. SHRINK accomplishes this by selecting a region
Re R, then defining r' so that it minimally surrounds the
points within r(R), and finally testing whether shrinking
r{R) to r! (in one dimension at a time) would result in a
gap. A gap would result if r", which is a slightly enlarged
r(R) (in the testing dimension), intersects scme cther
rectangle r{(Q) (Q= Q). In the first iteration, e = R,
because no regions other than those in R are involved. But
in post-initial iterations, @ is a superset of R — @ is
the whole established set then, not just the parent of R,

since gaps are not desired anywhere.

113

SHRINK (G,R,Q)

for j=1 until m do;

-—

comment find rectangle r' which minimally encloses
points in R;;

S := {f(A)=R; | A=G «G} = [P,sBysr ==+ +Bs}3
ip(r') := ;3 up(r') := -ox

or k:=1 gﬁtil s do;

ip(r') := min(lp(xr'),p«);
up(r') := max(up(r'),p.):

all

comment shrink R; to r' in dimension i if no gaps result;

Q@ = @- {R;j} = {0,,Q0;s ~ee= +Q.};

for iz:=1 until n do;

[1p(r") := lp(r(R;)) - ¥;: @p(z") := ap(r(R;));
for k:=1 until q do;

[if c" A r@0 7 ¢ then go to L;
lpi(r (®;)) == 1p:(x");

L: (similar statements for upper boundary points)

comment {R,,R,, ... ,R,} is the output region set;

The resulting set SHRINK(G,R,Q) is the output set

SHRINK (for G, R and Q).

114

ERATION OF A SERIES

5.4. THE FIRST ITERATION

We are now in a position to define exactly what the
full evaluation function is after the end of the first
iteration. In chapter four we stated that the initial
penetrance function 8, is always a constant, 0.5. Let P, be
the +training groblem set for (step one of) the first itera-
tion. We determine the final state graph set for the first
iteration, G, = G{9,,P). This is the first, or solving
step.

The second, or region handling step is as follows.
Suppose that the relevant feature vector is £ =
(£19f25 «ce ,£.) Let A represent a state in G € G,. Pind
the rectangle r which minimally surrounds all f(a), for all
LeG = G, Set R := (r, g(£,Gy,xr), t{(£.,G,,1), 1, 1); R
becomes the parent region for the clustering algorithm, as

we calculate:

R := CLUSTER(G, ,B) ;
R := SHRINK(G,,R,R);

C, := {red(R) | ReR};

The set C, is the (reduced) cumulative reqion set of itera-

tion one. We can denote this C, = C(8,,G,) where the plan
C represents the above three instruction algorithm (for a
first iteration only; post-initial iterations require the
complex procedure detailed in chapter six).

It should be noted that for iteration one, all regions

118

of the <cumulative set have their multipliers and their
deviations exactly one (before reduction). This is because
G, came from a breadth-first search, so the elementary
penetrance values estimate the true ones directly.

Fipnally, the third, or regression step is to find the
full evaluation function of the first iteration 8, = 8(C,)

(see section 4.2).

Exapple 5.4

The parent region R, = (r,, 20, 2721, 1, 1) of example
5.2 had the smallest rectangle which could enclose all
attribute vectors for the first iteration. (The total
number of states developed was 2721.) The oatput set of
CLUSTER was the set of three regions listed in table 5.2.

Table 5.4 shows the effect of SHRINK.

Table 5.4. SHRINK Output

B R; ip(r;) up(r;)
1 (xr, 220,79,1,17) (1,0,0,0) (5.,0,0,3)
2 (r,,0,31,1,1) (6,0,0,0) (6,0,0,4)

3 {r,,0,2641,1,1) (7,0,0,0) (17,2,0,3)

6. REGION HANDLING FOR A POST-INITIAL ITERATION

Post-initial iterations are gqualitatively different
from the first iteration in only one of the three steps. ¥We
outlined the three steps of an iteration in section 4.2:
The third, or regression step creates the full evaluation
function from the cumulative region set {the cumulative, or
established region being the basic structure, carrying
attributes and corresponding penetrance). The first, or
solving step uses a graph traverser, guided by the evalua-
tion function, operating on the problem instance training
set, to produce a final state graph set G. The second, or
region handling sfep (the plan) utilizes the information in
G =-- specifically the ccunts, from which are computed the
elementary penetrance values -~ either to establish a region
set (first iteration -- see section 5.4), or to update this
cumulative set (post-initial iterations), by increasing the
amount, and the accuracy, of its information. This chapter
is entirely devoted to region alteration in these later
iterations.

The region handling step, cr plan, is now more complex,
however, one of the reasons being that the elementary
penetrance values no longer directly approximate the true
ones. Nevertheless it is still the elementary values +that
serve as the essential instruments for region manipulation.

The plan has other necessary complexities, and it

incorporates three distinct substeps to handle them all.

116

117

The first substep uses the elementary penetrance in an
indirect way to revise true penetrance estimates of +the
established regions (without altering their rectangles).

In addition to updating penetrance values of the
established regions, this chapter describes how these old
regions-can be further subdivided using CLUSTER and the new
data. Thus the rectangles are refined -~ further
discrimination occurs in the attribute space.

Also, sometimes the established region set does not
accommodate all of the attribute space maps of the recent
final state graph set G, so the the rectangles of the old
regions are extended to surround all new attributes. After
this, another round of possible splitting takes place.
(Extension occurs after penetrance revision, rather than
before, because penetrance values are adjusted as part of
the extension process, and this chosen substep ordering
permits greater accuracy since the first substep revises
penetrance.)

This chapter is therefore divided into three sections
(plus one which sums up the entire process), each of which
formalizes the particular substep of the post-initial region
handling step: (1) penetrance revision of cumulative re-
gions, (2) region —refinement, and (3) extension, and

subdivision of extensions.

6.1. REVISING PENETRANCE OF ESTABLISHED REGIONS

First 1let us consider how we might revise renetrance
values of established regions (without disturbing their
rectangles) . At the end of chapter five it was stated that
the elementary penetrance of a rectangle (i.e. the count
ratio) becomes its true penetrance estimate for the first
iteration. This is because the associated evaluation func-
tion 1is then simply a constant (i.e. the search is breadth-
first). But now, for later iterations, the evaluation func-
tion is non-trivial, and consequently the situation is more
complex, as the following discussion attests.

Consider a breadth-first final state graph G, which has
resulted from the solution of a problem instance P rand
constant evaluation function 8,; and, superimposed on G,,
imagine another fsg G; which has a solution of P resulting
from a best-first search with a non-trivial functicn 8. For
simplicity, suppose the two solutions are identical. If o
is a good evaluation function, the total count t({G,},r) <
t({Gy},r) for most rectangles r, vhereas the good count
g({6s).r) = 9g({Go},r) for all r. Hence the elementary
penetrance W({Gg},r) is typically greater than W({G,},r).
Generalizing this tendency, we expect that, for fsg sets G,
ug = W(G,r) is normally larger than the true penetrance u, =
U{GgssL)- Since the evaluation functions are non-trivial in
the post-initial iterations of our system, the corresponding

elementary penetrance values are consequently not

119

approximations of the true ones.

If we could somehow convert the elementary values to
reasonable estimates of the true ones, however, we could use
the resulting quantities to revise former cumulative
estimates (say, by averaging). In an attempt to realize
this goal, we postulate that the elementary penetrance
u, = u,", where u, is the true penetrance and h is a
constant whose value is zero or greater. We call h the
Strategy-power exponent. This relationship has the property
that the elementary penetrance is one vhenever the true
penetrance is one. Note that, if the evaluation function 9
associated with u; is a constant, then h will be close to
one. If O determines a strategy that is worse than breadth-
first, then h will tend to be be greater than one. For
normal situations, in which € is a good function, however,
the strategy-power exponent h will be less than one, and the
better 8 1is, the closer h is likely to be to zero. (If 6
were a perfect function, h would be identically zero.) For
values of h that are intermediate between one and zero, ug
u,* suggests that the evaluation function has more
difficulty in areas of low penetrance, which may often be
equivalent to the assertion that the function bhas 1less
success evaluating states which are far from the goal.

In exploratory experiments, when the true penetrance

was replaced by estimates from cumulative regions in the

above postulated relationship, log-log plots showed a rough

120

linearity (but see chapter eight).

Now the mechanism for the revision of penetrance can be
outlined ({the details are the topic of the subsections to
follow). Use the true penetrance estimates of each
established region R, along with the elementary values fronm
the counts.of the current fsg set (these being housed in
"immediate® regions whose rectangles correspond with the
established ones), and estimate h, by performing a log-log-
linear regression. Then u, = u,'/h . To obtain an improved
estimate of the true penetrance, average u, with the fcrmer
true penetrance estimate val(R) of the cumulative region R

{weighting according to errors).

UMULATIVE REGIONS

Suppose we have a cunmulative region set R =
{R, yRyyee-sBm} s and a resulting full evaluation function 8
for R, which has in turn determined a final state graph set
G = G(9,P). Define the (gnpodified) immediate region set

(for R over G}

{(r(®), g(Gr(R)), t(GT(R)), 1, 1) | R=R]}.

IR,G)
de

o]

If there is no danger of ambiguity, we can refer to I(R,G)
simply as 1I.
As just discussed, we postulate that the elementary

penetrance u, = u,", where u, is the true value, and h is a

121

positive constant. Suppose R« R, R'=1I, and r(R) = r (R').
Then the elementary penetrance u;, = W(G,r(R)) = val(R'), and
the best estimate of u = U(G,,r(R)) is supposedly 98val(R)

{subsection 4.2.3), so we hypothesize that, for all R and R!
log[W(G,c(R}))] = log(val(R')) = h * log(8val(R)) (6-1)

vhere h is a constant. (Though the true penetrance has been
replaced by an estimate, we retain the "h" for simplicity.)
We can abbreviate log(8val(R;)) to x; and log(val(E;'))
to y;; then we have the model y = hx. Now, the reliability
of each datum varies, so we wvweight the values (as in subsec~-

tion 4.2.2). Let the estimated variance-covariance matrix

be given by
2
5
s,? O
vs? = .
O s,2
wvhere s; is a (logarithmic) standard deviation estimate for

R; ' vhich we detail shortly. 1If we write the estimate of h
simply as h (again for notational simplicity), we have that
h = (x"v'x)"' x"v:'y, where x and y are the m-dimensional
vectors composed of the x; and y;. Thié becomes

— XilY;

2 —
i=1 S
2
‘2

i=1]

0

122

The predicted value of y is § = hx. The variance of h, hvar
= V() = (x"V''x)"'o?2 . If the model is correct, o? is the
variance of the model error € = y; - hx;. The value of

hvar = v {(h) is

2
i (v; —hx;)
= 332
o= Xj2 »
2
j=1 sz

Now, x; = log(®val(R;)) and y; = log(val(R;')), and
not only vYy;, but also x; has an associated error. The
logarithmic deviation in y; is lndev (R;*) (subsection 4.1.2)
and the 1logarithmic deviation in x; is 1ndev@val(R;)

(subsection 4.2.3). It is equivalent to assume no error in

) &3

j and to translate the actual x; error to a compcnent of

the y; error. Thus we ha ve S;j = lndev (R; ') +
h . lndev8val (R;). Since h 1is not known initially, the
procedure for its calculation, given in the next subsection,

is iterative. (This is a fixed point type iteration.)

6.1.2. SETTING MULTIPLIERS CF IMMEDIATE REGIONS: KMCD

Now we are in a position to define the procedure KMOD
vhich essentially applies the regression described in the
last subsection, to convert the elementary penetrance of

each immediate region to the true penetrance estimate based

123

on equation 6.1. Because of the requirements resulting fronm
the iterative nature of KMOD, the immediate regions are left
in unreduced form, which necessitates the computaticm of
their multipliers. Let 8, R and G be as above, again with
I = I(R,G) the immediate (unreduced) region set over R for
G. Suppose Re=R, R'e«=1I, with r{(R) = Tr(R'). After
computing the strategy-power exponent h, KMOD finds the true
penetrance estimate u, = u//* = [W(G,r(R))]"". Thus, to
modify val(R') = ug . Kk(R') to become u,, k(R') is simply
set to u, / ug.

An estimate for the multiplier deviation factor is also
needed. Expressing the quantities logarithmically, we have
log(uy) = (1/h)logiug)e. If we allow h to vary by its
estimated standard deviation +/hvar (and disregard any
error in the «counts, which is taken into account when the
regions are later reduced), we have log(u,) =
{1/(h £ Jhvar)] log(us). If Jhvar/h is small, this expres-
sion is approximately {1/h ¥ Vhvar/h2] log(u,). When this
is expreséed as an error factor (in the non-logarithmic
form), it beconmes ag Ve /n Combining it multiplica-
tively with the user-defined df -- which accounts for non-
randomness in the counts -—- results in the multiplier d4f

shown in the algorithm below.

124
KMOD (8,R,I)

lasth := 03 h := 13

while |h - lasth} / th} > tolerance do;

for j:=1 pntil m do;

(k(R; ') == 1;
:= log(8val (R;);

Y; = log{val(R;*)];

s; = 1lndev(R;') + h * lndevéval(R;);

lasth := h;
h z= ,E} (x;v;/s;2) / ,)ﬂj‘ (x;2/s5;2) 3
1= =
wer i= Lot/ B e

for j:=1 until = do;
ug = val(R;") (= ed% = ¥W(Gr(R;)));
4 = exp(y;/h);

k(R; ') == u, / us;

e(Rj') == u,~vhe/h % devu(R;');

The resulting set of regions M(R,I) = KMOD (8,R,I)' is
called the pmodified immediate (region) set (of I for R)-

{The parameter "tolerance" was 0.1 for all experiments.) If

1 Recall that the cumulative region set R determines the
full evaluation function 6.

125

there is no danger of ambiguity, we can refer tc M(R,I)
simply as M, as we have done above with h, which is

actually also a function of R and 1I. He «call h the

strategy-pover exponent (relating R to I).

6-1.3. COMBINING CUMULATIVE WITH IMMEDIATE REGIONS

Now it 1is a comparatively simple matter to use the
modified immediate regions to update the corresponding
cumulative ones =-- by taking an average of the two. Since
the reliability is different for each of the two members of
a rectangle-matching pair, ve weight the penetrance values
accordingly. 2s in subsection 4.2.3 we weight 1logarithamic
values by the inverse of their squared logarithmic devia-
tions.

Let R = (R ,R;y ««« ,B.} be a set of regionms. {(We
define the average for any number of regions, rather than
for Jjust two, because we use the general case later in this
chapter.) The average penetrance of the regions of R

g 1

log (val(R;))

= lndev 2 (R;)

1

1ndev 2 (R;)

126

And vwe have the deviation factor of the average of R

devav(R) -
d“ J / = lndev2(Rr;)

Hence, if R is an established region, and @ is a

corresponding mddified immediate region (i.e. if r(R) =
r{Q), with both val(R) and val(Q) representing true
penetrance estimates), then the improved estimate is
avgval({R,0}) {and the newvw deviation factor is

devav ({R,0Q})).

6.1.4. THE PENETRANCE REVISION SUBSTEP

Finally, we are in a position to sum up precisely how
immediate regions {(which house elementary penetrance values)
are used to revise the true penetrance estimates of the
cumulative set. Suppose that a cumulative set and its full
evaluation function are R and 8, respectively, and let G
be the final state graph set for 8. The penetrance revision
algorithm, which constitutes the first substep of the post-

initial region handling iterative step, is given below.

127

UTLREV(R,9,G)

Create I, the unmodified region set for R over Gj
M:= KMOD (9,R,I);

Q := (red(B) | Re=M};

U = {fT | r{(R) =r(Q), R=R, Q=@ and

T = (r(R), avgval ({R,Q)}), devav{{R,0})) };

The first three statements of UTLREV provide a new
estimate of +the true penetrance of the rectangle cf a re-
gion, based on its elementary penetrance and equation 6.1,
while the final statement averages this estimate with that
of the corresponding established region, to give an imrproved
true penetrance estimate.

The set U = UTLREV(R,8,G) is the penetrance-revised
(region) set of R (for 8 and G). If Ris C,_,, the cumula-
tive set of iteration I-1; 8 is 8;_;, , the full evaluation
function of iteration 1I-1; and G is G,, the final state
graph set of iteration I; then UTLREV(8;_, ,C;_; ,I;) is the
penetrance-revised (region) set of iteration I. A side
effect of KMOD is the calculation of h; = h(C,,,I;); this
Strategqy-power exponent of iteration I will be used again

later.

128

6.1.5. THE STRATEGY-POWER FACTCR

Let us consider a "local™ measure of performance of an
evaluation function 9 -- within a rectangle r. Suppose that
P is a problem instance set. Then the associated fsg set
G = G(9,P) determines the elementary penetrance u =

¥W(G,r). We define the strategy-power factor of r (for 8 and

P) to be
H(r,9,P) oy u, / g = W(G,r) / U(G,,I)

(where uy = U (G,,r) is the true penetrance of r). (If there
is no danger of ambiguity, this can be abbreviated to H(r).)
H(r) generally represents the ratio of nodes developed
in a typical breadth-first search, to the number developed
using the evaluatioﬂ» function 8, for the problen'instance
set P, vwithin the rectangle r; so H{(r) is a measure of the
performance of ® within r. (Strictly, this interpretation
disregards the fact that the good counts can vary from one
search to another, but the effect of this inconstancy in the
good counts is perhaps not very significant, since sclutions
might at worst be a few times longer than the shortest,
vhereas the power factors are frequently very large.) The
elementary penetrance can be considered to be an absolute
measure of the worth of 6 in r, while the power factor H(r)
can be thought to be a normalized quantity, a measure of the
efficiency of @ in the area r of the attribute space.

In order to obtain an estimate of H(r), the true

129

penetrance could be replaced by (for example) the penetrance
of an established region R with rectangle r. If R is a
cumulative region set associated with the full penetrance
function 8, and G = G(8,P) is an fsg set resulting from the
problem_ iﬁstance set P, then ¥({G,xr(R)) / val(R) {or
W(G,r(B)) / 8val(R) } (Re=R) is an estimate of H(r(R))e.

It ‘should also be noted that if the true penetrance u,
is approximated by the penetrance of a region (Q output by
KMOD (i.e. if Q¢ 1is a modified immediate region whose
penetrance is ug'/t), then the resulting estimate of H (x(Q))
is exactly the inverse of the multiplier k(Q) of Q.

Since uy = u,", we also have that the strategy-pover
factor H(r) = ®(G,r) / U(G,,xr) = ug/u, * u,"/u, =
ah-1. If h=1, H{(r) = 1 for all r (this would be the case
if G were from a breadth-first search). If h=0, u, = 1 for
all r, which is the ideal.

An} illustration of these relationships is included in
example 6.1 below.

The stategy-power exponent could conceivably be used
(perhaps with a standard problem instance set) +to¢ compare
the estimates of the power factors based onm H(r) = u,"' ,
with the estimates obtained from H(r) = u,/u,, to test the
behavior of 8 within local rectangles r, and to motivate a
search (possibly mechanized) for new useful features in

areas of poor discrimination.

130
Zxample 6.1

The followihg is a continuation of our standard
fifteen puzzle example. The cumulative set C, was
{ (r,, 0.25, 1.8), (r,, 0.016, 6.2), (r,, 0.00019, 27.) }-
The training problem set for the second iteration consisted
of twelve puzzle instances whose goal levels ranged between
twelve and fourteen. (Even the differentiation of the
attribute space into only three regions allowed soluticn of

harder problem instances. There is a discussion of this

phenomenon in Michie & Ross (1970).) The unmodified
immediate region set was I, = { (r,., 67, 197, 1, 1),
(r,, 19, 106, 1, 1), (r,, 27, 1783, 1, 1) }. Applying

KMOD resulted in the computaticn of the strategy-power expo-

nent h , which became 0.55, and the procedure alsoc gave the

modified immediate set M, = { (r,, 67, 197, 0.41, 1.7),
(r,, 19, 106, 0.25, 2.7), (r;, 27, 1783, 0.032, 18.) }.
Reducing the mcdified set, wWe obtain: Q, =

{ (r,, 0.4, 2.7, (r,, 0.044, 3.6), (r,, 0.00049, 22.) }.
And merging @, with C,, via avgval, we have the
penetrance-revised set, U, = { (r,, 0.20, 1.6),
(r,, 0.032, 2.8), (r,, 0.00026, 9.4) }. (Notice the
magnitudes of the deviation factors are reduced.)

The estimated true penetrance of the second revised
cumulative region @, (of U, = (Q,,Q,,Q }) was u, = 0.032 =
1/32. Since the elementary penetrance u, = u,", we would

expect the search strategy of the first iteraticn to have

131

made use of exp(O.Ssiloq(0.032)) = 0.15 of the states
mapping to that region, or about one in 7, as opposed to one
in 32 for a breadth-first search. Comparing this figure
with the corresponding region R, of the unmodified immediate
set I, = (R,,R,,R;}, we find that about one in 6 was
actually used. A similar calculation for the third region
pair Q,, R; shows that while only about one in 3800 states
would be used in a breadth-first search, the penetrance
function 6, theoretically improves this to one in 85, and
the actual value from the third immediate region R; is one
in 66. For the first regicn pair, the values are: one in
4.9 in a breadth-first search, one in 2.4 with 8,,
theorectically; and one in 2.9 with 8,, actually.

The strategy—pgwer factor estimates (using U,, I, and
H(r) = ug/u,, and the revised true penetrance estimates
val (Q;) for u,) are 1.7, 5.7, and 59. Using H(r) = uyh-?

gives 2.1, 4.7 and 38.

132

6.2. SUBDIVIDING ESTABLISHEL REGIONS

After the cumulative regions are modified as described
in the preceding section, each region of that <resulting
penetrance-revised set is possibly refined (i.e. the
rectangles are allowed to split further). This additional
differentiation of the attribute space is highly desirable
since it increases the amount cf information comprising <the
evaluation function.

Rectangles can be further subdivided in post-initial
iterations because new final state graph data are available
after each solving step, and (recall from chapter five that)
it 1is the good versus total counts for the £sg set that
determine the distance, which is the essence of CLUSTER.

The continued splitting is basically similar to the
clustering that occurs during the first iteration of a
series. In the latter, a single all-encompassing regionm is
supplied to CLUSTER {chapter five). In our present case,
CLUSTER is called once for each region of the (penetrance-
revised) established set, with that region taking the role
of the parent region. The algorithm SUBDIV (to be described
in this section) 1is the device which accomplishes this
refinement.

But, as discussed in the preceding section, the fact
that the evaluation function @ is non-trivial means that the
strategy-pbuer factors are not unity (i.e. the elementary

penetrance values do not estimate true ones). Thus the

133

multipliers of the newly split regions must be adjusted
accordingly (using a suitable operation involving the rparent
region). Furthermore, if the modelled component of 8 is not
a constant, the elementary values within a parent region
(for CLUSTER) are biased, so the multipliers have to be
adjusted for this effect as well. To set the multipliers,
SUBDIV calls the algorithm KFIX, which accounts fcr these
two factors in two separate stages.

The distance function (used by CLUSTER) is also
affected by the bias, so the full definition of dist is

given in this section as well.

6.2.1. ALGORITHMS SUBDIV AND KFI

et o e—— e e—

Suppose a fsg set G has been determined by a full
penetrance function 8, and that & is associated with a
cumulative region set R. Suppose, also, that U =
OUTLREV (R, 8,G) = {R,sRys <ee ,E,.} is the resulting
penetrance-revised set of R, h the corresponding strategy-
povwer exponent, and hvar its estimated variance. The second
substep in the revision of R is a refinement of the regions

of U, and is defined by the algorithnm:

134
SUBDIV(9,G,h,hvar,U)

comment U = [Ry,Ry,eee,R0};
for j:=1 until m do;

T, := CLUSTER(G,R;);

T; := SHRINK(G,T,;,U);

KFIX(8,h,hvar,R;,T;)

S = sUBDIV(8,G,h,hvar,U) is the subdivided (region) set

of U (for 8, G, h, and hvar).

The algorithm KPIX sets the multiplier values for each
subregion in T;e. This 1is essential since the elementary
penetrance values {u; = W(G,r(T) | T=T;} do not directly
estimate true omnes {u,} (recall the relationship u; = uyh
from the previous section). In our present case, this
phenomenon of non-unity power factors has two aspects.
Consider one of the parent regicns R, with subregions T
partitioned by CLUSTER. The first aspect concerns the whole
set T together: If the strategy-power factor H(r(R)) is
estimated to bhe H? = avgval(T) / val{(R), then the true
penetrance of T« T can be approximated as W(G,r (T)) / H'.
Since CLUSTER has set Y{T) to g(G,r(T)) and T(T) to

£t (G, r(T)) (see subsection 5.2.1), the approximation is

135

effected if k(T) = 1/H*, for all T=T.

The second aspect of the disparate penetrance
phenomenon has to do with the non-uniformity of power
factors within the rectangle r(R) of a parent region B&.
Within the boundaries of r(R), the (modelled component of
the) evaluation function has caused the search strategy to
favour the ™good"™ areas of the rectangle, and this has
supposedly biased the poorer elementary penetrance values
upward. In subsection 6.1.2 we made appropriate adjustment
for this bias over the set of cumulative regions; now we
must adjost biased penetrance values, within R, in order to
find reasonable true penetrance estimates for its new subre-
gions.

If R is the parent region and T T is one of its
subregions, +the difference of the 1logarithms of their
predicted true penetrance is 1log(8val{(T)) - 1log(89val(R)).'
From equation 6.1 it follows that the predicted difference
in logarithmic elementary penetrance is h [log(8val(T)) -
log (8val(R))]-. The difference in these two expressions is
vhat we could call an expected bias in the elementary

penetrance. Hence we define
bias == [1-h] [log(8val(T)) - log(8val(R))]-

Consequently, if h = 1 (which occurs if the search is

1 Note that the modelled component , alone, without ,
could be substituted for 8, since T and R have the sanme
former grouped evaluation.

136

breadth-first), bias = 0. Or if the modelled penetrance p
= 0, bias = 0. Otherwise, the lower the wvalue of h, the
higher is the bias. This is what we would expect, according
to our previous discussions: we have the elementary
penetrance ﬁs = u,", where u, is the true penetrance (see
6.1.5 . If uy'"Y and u,(?) are the true penetrances of two
rectangles, then the ratio of the corresponding elementary
values is u ") / u /@ £ gtk s g Dk = (g, , 1,2 yh.
This decreases as h does; i.e. the elementary penetrance
values appear to indicate less true penetrance disparity as
h decreases.

Adding bias to a difference in 1logarithmic elementary
values dg = log[W(G,r(T))] - log[W(G,r(R))] converts d; to
an estimated logarithmic true penetrance difference. To see
that this is valid, let us write the logarithmic difference
of predicted true penetrance log(8val(T)) - log(8val (R)) as
30 {(see the definition of bias, above), and the resulting
predicted 1logarithmic elementary penetrance difference
h [log(8val(T)) - log(8val(R))] as 35. Then bias = 4, - 4,.
Hence d; + bias = 45 + 30 - 35 = 30 if 4, = 35.

Since a true penetrance estimate is desired for the re-
gions output by SUBDIV, KFIX is designed to alter the
multiplier k(T) of a subregion T of its parent region R by
computing the product of k(T) and exp(bias).

In order to approach the error in estimating the

multipliers, we can approximate the various contributions

137

separately. For example, let us write the bias
[1-h] [log (8val (T)) - log(8val(R))] (R being the parent re-
gion and T a subregion) as [1~h].d, and consider the devia-
tion in the expression due to hvar, the estimated variance
of h (neglecting, for the present, any error in d).
Allowing h to vary by one standard deviation, +this becomes
[(1=h) + Jhvar] d. Thus the deviation caused by the
uncertainty in h is tiasdev = { Jhvar).jdi =
(Jhvar / [1-h]) . lbias]|. As for the other error sources
in the calculation of the multiplier of a subregion, vwe
roughly estimate their contribution as a product of the
respective deviation factors, so that the entire error
estimate is that product times exp{biasdev].

In the following formalization of KFIX, let 8 be the
full evaluation function, h the appropriate strategy-power
exponent and hvar its estimated variance. Let T =
{Ty+Tys =<« 4Ty} be a set of regions whose rectangles form a
partition of the rectangle of a parent region R. KFIX
adjusts the multipliers of the regions of T in two stages,
as suggested above. First any bias within the parent region
R is ignored, and the estimate of the inverse strategy-power
factor of R is computed, to give a single multiplier wvalue
for all subregions of R. Then the bias is taken into

account, to alter the subregions individually.

138
KPIX(®,h,hvar,Rr,T)

compent T = ([T,,T;, eee »T¢};

comment first convert strategy dependent penetrance of
immediate set to true penetrance estimates:

k(T;) =:= val(R) / avgval(T) ;

e{(T,) := dev(R) * devav(T)

comment correct for any bias;

for j:=1 until k do;

[bias := [1-h] [log (8val(T;)) - log(8val(R))]:
biasdev := (Jhvar s/ [1-h]) * {bias};

k(T;) := exp(bias) * k(T;);

e(T;) := e(T;) * deveval(T;) * devlval(R) * exp (biasdev);

N

6.2.2. THE FULL DEFINITION CF LCISTANCE

At the beginning of chapter five, we defined dist, the
distance functicn for the clustering algorithnm. At that
timé, it was stated that the two terms, bias and biasdev,
vere zero unless the modelled component of the evaluation
function was non-trivial. This bias is exactly what was
introduced in the preceding subsection. So we can now fully
define the distance (which is necessary since SUBDIV uses
CLUSTER) .

Suppose that R, and R, are two regions with wval(Rr,) >

139

val (R;), and let h; be the strategy-power exponent of itera-

tion I. Also, let 8;., be the full evaluation function of

iteration I-1. Then the Jdistance between R, apd R, for

iteration I is

- 00

» if g(R;) =0 (3=1,2)
dist(R;,Rys01

A

h;,hvar;) ==

= log{val({R,)/val (R,)] + bias;

~c[1lndevc(R,) + lndevc(R,) + biasdev;]

othervise.

vhere bias, = [1-h;] log{8,_ ,val(R,) / 8,_,val(Ry)] and

(Jhvar; / [1-h;]) . (bias;].

i v m—
biasdev; ==

This addition of the bias term converts the elementary
penetrance ratioc to the desired true penetrance ratio
estimate (see the previous subsection) =-- we want dist to
measure dissimilarity of true penetrance.

{An eiamination of CLUSTER (section 5.2) shows that,
when dist is called, the multipliers of R, and R, are one.
This does not influence bias or biasdev, since it is a
difference in the 1logarithms of the modelled penetrance
values of R; and R, that determines bias and biasdev; i.e.
within the parent region R, a difference in log(8) is equal
to the corresponding difference in log(p), since the grouped
component » of the evaluation function 8 is constant within

R.)

140

6.2.3. THE REFINEMENT SUBSTEP

If U; is the penetrance-revised region set, G; is the
final state graph set, h; and hvar; are the strategy-power
exponent and its variance estimate, all of iteration I, and
87y is the full penetrance function of iteration I-1, then
S; = SUBDIV(8;_, ,Gy ,h;,hvar,, U;) is the subdivided (re-

gion) set of iteration I.

Summarizing the refinement substep: In order to
sophisticate the evaluation function, we wish to
differentiate the attribute space further, which is possible
since we have a recent fsg set G that determines new
counts, and thus new distances for CLUSTER (which SUBDIV
incorporates). But because the evaluation function e
associated with G is non-trivial, the resulting subregions
(partitioned from an established parent region) need non-
unity multipliers (because the elementary penetrance values
do not approximate true ones). Moreover, even within a
parent region, ® has caused non-uniform strategy-power
factors -- we considered this phenomenon as a bias in the
elementary values. Toc modify the values of the new split
subregions, SUBDIV calls KFIX to set the multipliers -- KFIX
allows for both aspects of this bias effect of 8. (We also
needed to define dist fully, since CLUSTER relies on this
distance function and dist must measure true fpenetrance

disparity.)

141

The first example 1is from the second iteration, for
vhich the full penetrance fanction had no modelled compo-
nent; so this will illustrate only the first part of KFIX
(no bias within established regions). One of the
penetrance-revised regions of example 6.1 was R =
(r, 0.20, 1.6), with ip(r) = (1,0,0,0),
ap(r)y = (5,0,0,3). This, as a parent region for CLUSTER
in SUBDIV, spawned two subregions,

Ry = (r,,24,2%,1,1), 1p(rt,)=(1,0,0,0), up(r,)=(2,0,0,3);
R, = (£,,43,173,1,7, 1lp(r,)=(3,0,0,0), up(r,)=1(5,0,0,3).
In KPIX, avgval({R,,R,}) = 0.42. So the multiplier correc-
tion factor was val(R)/0.42 = (0.48. {And the estimated
strategy-power factor 1is 1/0.48 = 2.) Devav({(R,,R,}) was
1.2, and combining this with dev (R) gave a final deviation
factor of 1.9. The two new subdivided regions becanme
(r,, 24, 24, 0.48, 1.9) and (r,, 43, 173, 0.48, 1.9),
which, when reduced, are (r, » 0.48, 2.9) and

Por an illustration of the second part of KFIX, we need
to consider a case in which the modelled component of <the
penetrance function 1is non-trivial. This occurred, for
instance, in iteration four of our standard example. The
region of the penetrance-revised set which is of concern to

us now is R = (r, 0.001, S5.), 1lp(r) = (7,0,0,2), up(r) =

142

(10,0,2,5). With this as parent region, CLUSTER output a
set whose two members were:

Ry = (r,,13,94,1,1), ip(r,)=(7,0,0,2), ap(r,)=(8,0,2,5);

Ry (r,,8,175,1,1), ip(r,)=1(%,0,0,2), up(r,)=(10,0,2,5).
The first part of KFIX changed the nmultipliers to
val (R) favgval ({R,,R;}) = 0.001,0.098 = 0.011. (Here the
power factor 1is estimated to be 1/0.011 = 90.) This value
was further modified by the bias correction section. We

have:

bias = [1-h] [log(8val(R;)) - log(6val(Rr))]

[1-h] [log(val(R;)) - log(pval(Rr))]

[1-h] [gp'(c(R;)).b - cp'(r(R)).Db].

The only relevant parameter of the modelled evaluation
function was that for the first feature (since this is the
only dimension in which splitting occurred), and it was
by = -0.51. The value of h was 0.25. Thus, for R,, bias =
(0.75) (7.5-8.5) b, = 0.38. And for R,, bias =
(0.75) (9.5-8.5)b; = -0.38. Thus the final values for the
multipliers vere: k(R,) = 0.011*exp(0.38) = 0.016 and

0.0073. The errors will not be

k(Ry) = 0.011*exp (~-0.38)
calcualated here, but the final penetrance values were
val(R,) = (0.016) (13/94) = 0.0022 and val (R,) =

(0.0073) (8/175) = 0.00036.

143

6.3. EXTENDING REGION BOUNDARIES AND FURTHER SUBDIVISICN

—-— 27— e ~——— e

Especially during earlier iterations, when the problem
instances which the system has seen are atypical (easier),
the cumulative regions do not generally cover all the
attribute points mapped from the new final state graph set.
So some of the outer established regions need to be extended
to engulf the new points. After that, penetrance values are
appropriately adjusted, and <further splitting is allowed,
similar to that described in the preceeding section.

As do the other two substeps, this third and final
substep relies on the counts for the fsq set (from the
solving step) to modify penetrance.

First let us examine a means to surround the outlying

points.

6.3-1. BOUNDARY EXTENSICN

Let R = {R,,R;, ee. ,R,} be a set of regions. Let G
be a final state graph set, and £ a feature vector. Define

the set of states B = {AcG =G| £(A)¢¥ B VR« R}, and the

set of attribute vectors S fp Il p=£f£(d), A=B}, called
the outlying point set for R and G.

The following procedure extends the regions spatially.
It uses the vector functions min and max defined in section

5.3, and the attribute space distance || }t defined 1in

4.2.1. ENCLOS finds, for each pcint, the closest region (in

144

ENCLOS (R,G)

R' R;

S

the outlying point set for R and G;

while S # ¢ do:

-

choose some pe=S;
elim := 0;

success := false;

while not success do;

[¢ := minimum ||p,r(R)i] such that R = R' an

iR, (R) Il > elim;
@ := [R<R' | [IBr(R)Il =c = {Q,,02¢+2-,Q,};
overlap := true; j = 1;
while overlap amd 3j < q 4do:

comment temporarily store corner points in rg;

ip(r,) = minlp, 1p(r(Q;)) J:
up(rq) := max[p, up(r(Q;)) 1;

if 3R = R' such that r(R)Nr, # ¢ then j:=j+1 else

comment extend rectangle of region Q; to be r.;
overlap := false;
Q;* = (rq, val(Q;), dev(Q;));

R := R'U {0;'} - [0;}:

e
(a3

if not overlap then success := true else elim := c;

n
(1]

= the outlying point set for R' and G:

5

the attribute space) which can be extended without
intersecting another region. It defines a candidate set of
regions @ vhose rectangles have a distance ¢ from a selected
point p=S. 1Initially, ¢ is the smallest distance from p to
the rectangle of any region. If no region of R can have its
rectanglevextended to engulf p without intersecting ancther
rectangle, a new candidate set @ 1is defined bty setting
elim := ¢, and including regions vhose rectangles have a
distancevjnst larger than elin.

If S is a subdivided cumulative region set, and G is
a fsg set, then the set S' = ENCLOS (S,G) is the uncorrected
extended (subdivided) region set of S8 (for G) (uncorrected
because the counts for the outlying points have not yet been

incorporated into the extensions).

6.3.2. MODIFYING PENETRANCE OF EXTENSIONS

— s i s o S — ——— e s ot

When a subdivided region set has been extended, its old
penetrance value may be an inaccurate estimate of the true
one for the extension (and recall that the center pecint of a
rectangle is used in the modelled evaluation functicn). We
can utilize +the former +true penetrance estimates, the
corresponding elementary values (of both the extended and
unextended rectangles), and the relationship between true
and elementary penetrance postulated in section 6.1, to

obtain estimates for the true values of the extended

146

rectangles.

Suppose that S' is an uncorrected extended set of re-
gions whose unextended counterparts were S. Let G Dbe
a set of final state graphs. Form immediate region
sets from both S and S*: I =
{(r(R), g(GyT(R)), t{(Gyr(R)), 1, 1) | R=S}. And define
I' , similarly, fronm St We would 1like to alter the
penetrance values of the regions of S' so that they
estimate true ones.

Let & be the associated full evaluation function, and h
and hvar the appropriate strategy-power exponent and its
estimated variance. Suppose that R« S, R'= §', Q0 = I, and
o' = 17, with r (R) = r(Q) and r(R') = xr{Q'), and
r(R) « t(R'). Set the reduced region R" = (r(R'), v, e),
wvhere v and e are true ©penetrance and deviation factor
estimates defined in the following.

We have v = val(R") = val(R).[val(R™)/val(R)] =
val (R) .[8val (R") /8val(R)] = val (R).[9val {(R')/8val (R)]
(since #8val depends only on the rectangle of a region).

From equation 6.1 wve have log[@val (R)] =

(1/h).log[val (Q) J. So #@val(R) {val(Q)1"". similarly
@val (R') = [val(Q')]'’*. Substituting in the expression
for v, e obtain: val(R") = val(R).[val(Q')/val(Q)]'/~.
Note that this makes use of the o0ld true penetrance

estimates, the stategy-power exponent, and the elementary

penetrance disparity in the unextended rectangles versus the

147

extended ones.

The algorithm below adjusts the penetrance values
according to this expression, and roughly estimates the
error (in a manner similar to the approximating done in

subsection 6.1.2).

COREXT(8,G,h ,hvar,S,S')

corment S

{Ry,Ry, e« ,R,} is a subdivided set,

s* = {(R;',Ry', «<.. ,R,.'} is the uncorrected extended
set of S
Form immediate sets I = {Q,,Q;¢ «-- ,0,.}, from S,

and I' = {Q,',0,', ec< ,0Q0.'}, from S*;

if r(R;') # r(R;) then do;
val(BIj") C:= val(R;) * [val(Q;")/val(0;)]1'’*;
dev(R;') := devu(R;) * val(Q;')'Iﬁ:th**val(Qj)‘ﬂ:::/“;
comment (R,',R,', ... ,RB,.'} is the output set;

The set E = COREXT(8,G,h,hvar,S,S') is the (corrected)

extended (region) set of S' (for 8, S, G, h, and hvar).

6.3.3. SUBDIVIDING THE EXTENSION

Let E Dbe a corrected extended region set and S the
unextended (subdivided) counterpart of E; let G be a final
state graph set, and 8 its asscciated evaluation function,
with h and hvar having their usual meanings. Then extension

subdivision proceeds:

EXTDIV(8,G,h,hvar,S,E)

== {R*'< E| R' ¥ R VReS};

X := SUBDIV({(8,G,h,hvar,V) U (E~-V) ;

X = EXTDIV(®,G,h,hvar,S,E) is the gsubdivided extended

(region) set of E (for 8, S, G, h, and hvar)-.

6.3.4. THE EXTENSION SUBSTEP

Suppose © is an evaluation function, G is a final
state graph set, h, hvar the stategy-power exponent and its
estimated variance, and S is the subdivided set (of section

6.2). The full extension algorithm is given below.

149
EXTEND{8,G,h,hvar,S)

S' := ENCLOS (S,G):
E := COREXT (8,G,h,hvar,S,S8');

X := EXTDIV(®,G,h,hvar,S,E);

The first statement extends the rectangles, ignoring
penetrance. The second corrects the penetrance values so
that they remain estimates of the true ones. And the third
statement subdivides the extensions.

The set X = EXTEND(,G,h,hvar,S) is the final (region)
set of s (for 9, G, b, 2and bhvar). If 68, , is the full
penetrance function of iteration I-1, and G,, h;, hvar;, and
S; represent the usual variables, of iteration I, then C; =
EXTEND (8;_, ,.‘GI ¢« hy, hvar,, 8;) is the final or established

or cumulative (regqion) set of iteration I.

Example 6.3

The following is from iteration three of our standard
example; it illustrates both extension and extension
subdivision (i.e. the extension substep). The relevant re-
gion from the subdivided set was R = (r, 0.00001, 40.5),
ip(r)=(11,0,0,0), up(r)=(21,2,1,0) and the corresponding
uncorrecﬁed extended region was R' = (r', 0.00001, 40.5),
ip(r*)=(11,0,0,0), wup(r')=(58,2,2,0). Note that extension

occurred in the first and third dimensions.

150

The corresponding immediate regions vere Q =
(r, 86, 378, 1, 1) (from R) and Q' = (r', 129, 2377, 1, 1)
(from R'). According to COREXT, the multiplier for the
corrected extension is given by k(R') = [val(Q')/val{Q)]'/+.
The strategy-pover exponent h was 0.34, so k(R') =

[(129/2377)/(86/378) 1'793¢ = (0.24)?° = 0.015. Hence,

after adjustment, val(R') (0.00001) (0.015) = 1.5 x 1077,
This converts the strategy-dependent penetrance to an
estimate of the true penetrance. (The deviation factors
will not be calculated here.)

Subdivision also took place. Two regions resulted;
the immediate subregions were Q, = (r,, 129, 457, 1, 1),
lp(r,)=(11,0,0,0), up(r,)=(30,2,2,0) and Q, =
(r;», 0, 1920, 1, 1), 1p(r,)=(31,0,0,0), up(r,;)=(58,2,2,0).
XKFIX(®9,,hy,hvar;,R*, {Q,,0Q,}) gives (intermediately, for
i=1,2) k(Q;) = val(R'),/avgval(fQ,,Q,}) = 1.5x1077 ,0.24 =
6.4x1077. The bias for Q, is (0.66) (-0.72) (20.5-34.5) =
6.6. And the bias for Q, is (0.66) (0.72) (44.5-34.5) = =-4.8.
So the final values are Kk(Q;,) = 6.4x10 7 *exp(6.6) =
4.6x10"* and k(Q,) = 6.4x10 " *exp (-4.8) = 5.3x107°. And
val(Q,) becomes (129/457) (4.6x107%) = 1.3x10"* while
val(Q,) is (0.5/1920) (5.3x10"°) = 1.4x107'2.

151

6.4. THE ENTIRE PROCESS OF REVISION

In section 5.4 ve saw precisely how the regions are
created in the first iteration of a series. Now we can
summarize the exact process of region revision for itera-
tions after the first. This amounts just to the sequence of
three substeps of the three sections preceding this one. If
C;—y is the cumulative region set of iteration I-1, 8;_, and
G; the associated full penetrance function and final state
graph set, then C;, the cumulative (final) region set of
iteration I is calculated (for I > 1) by the plan C (see

sections 4.3 and 5.4):

C(6:-,, C;_,,G;)

U; = ULTREV(8:_, , Cr_, +G;); (6-1.4)
Sy = SUBDIV(®;_, , Gy, h,, hvar:, U;); (6-2.3)

Summarizing, the ﬁirst substep (with UTLREV) wuses the
true penetrance estimates u, from the 0ld established re-
gions, along with the corresponding elementary values Ug
{count ratios); it assumes a relationship ug = uo“, and
revises the true penetrance estimates by averaging. This
does not alter the rectangles. But the second step
SUBDIVides the rectangles, again utilizing the new counts;

it adjusts the penetrances appropriately (considering the

152

elementary values to be biased). Finally, the third substep
EXTENDs the regions from the second substep to cover

outlying points, and refines the resulting rectangles.

If ve were to focus attention on the region handling
step we would notice that over a series of iteraticns, some
regions becone subdivided because of newly perceived
differentiation in penetrance, and some remain intact,
reflecting continuing wuniformity of penetrance. The whole

iterative process could be considered as an ongoing resolu-

tion of penetrance in the attribute space.

7. EXPERIMENTAL RESULTS AND SYSTEM PROPERTIES

The system was tested using the Honeywell 66/60 at the
University of Waterloo. The first two steps were
implemented in PL/1, and the regression step in Fortran. To
reiterate, the user must supply the feature procedures (for
the solving step). He also chooses three systenm paiameters
in the three respective steps: the cutoff M, the confidence
factor c, and the confidence level 1-a. Their values can be
altered by the user at each iteration if desired. In addi-
tion the user must select training sets.

This chapter describes the effect of the system when
used with two different state-space problems, formula
manipulation and the fifteen puzzle. The results are
discussed in two respective sections.

Aside from the detailed results, some general
tendencies can be detected -- i.e. there are prgperties
exhibited by the plan within the context of the particular
problem and feature set. This 1is not to say that the
properties definitely generalize to all state-space
problems, nor to all feature sets for a given gprotblean,
although there are frequently similar inclinations in the
cases investigated {and although certain of the
characteristics might be expected from the system design).
Below are summarized some hypothesized properties of the
system; the extent to which they may generally be valid is

considered in the two sections to follow (where the discus-

153

154

sion is interspersed with the detailed results).

P1. The splits are predominantly "correct" (i.e. the varia-
tion of the penetrance of regions versus their
attribute representative is as would be expected).

P2. Although <the modelled evaluation function does not
necessarily reflect the splits precisely, it generally
does. And from iteration to iteration, there is a
loose correlation between the number and consistency of
splits (in the region handling step), and the frequency
of appearance of a feature in the model and its share
of the sum of squares (in the regression step).

P3. Irrelevant features generally do not enter the model.

P4. A feature is rejected when subsumed by another, but not
if the more general one is absent.

P5. The evaluation functions created from the regions have
generally good performances.

P6. The functions improve in later iterations (i.e. chapter
six is vindicated).

P7. The model is stable from iteration to iteration.
P8. The system is self-correcting.

P9. There are generally consistent results if an experiment
is repeated with different training sets.

P10. There is convergence (i.e. the parameters stabilize).

P11. The convergence is to a local optimum of evaluation
function performance.

P12. The plan is efficient.

The fifteen puzzle problem was chosen for its relative
simplicity, so that the finer aspects of the system could be
tested. In contrast, the intractable formula manipulation
problem was selected to determine the limits of the systen
under unfavourable conditions. Let us begin with this

latter problen.

7.1. PFORMULA MANIPULATION

We have defined the fifteen puzzle and some features
for it (chapter two), and to some extent we have also
observed 1its character. Now we do the same for our cther

state-space problen.

7.3-1. THE PROBLEN

Our problem of formula manipulation is a restriction of
theorem provinga. With the apparatus described below it is
possible to mechanize the proofs of some simple theoreas
which can be expressed in terms of a transformation of a
{starting state) atomic formula (i.e; a formula without
logical connectives), into a goal (atomic) formula.
Shoenfield (1967) can be consulted for more general defini-
tions than the ones we use.

A constant is a symbol with a fixed meaning. (#e wuse
the symbols 0, 1, a, b, and ¢ for constants.) 1 variable
can take on any constant vélue. (The symbols x, y, and =z
are reserved for variable names.)

An n-ary function £f is a function mapping the n
dimensional cartesion product C" of the set of constants C
into C. We define a term inductively:

(i) A constant, or a variable, is a tern.
(ii) If u,, uy4eee-, u, are terms, and if £ is n-ary, then

fu,uj...1, is a term.

156

A binary predicate P is a subset of C x C (i.e. a

binary relation). If u, and u, are terms, then Pu,u, is a
formula, which indicates that the pair (u,,u,) is in the
relation P. (In our particular theorems, the only predicate
that appears is the equality predicate.)

In the above definitions, terms and formulae are both
in Polish prefix form; for clarity, we sometimes use the
more familiar infix form, for example a=b in place of =ab.

In our formula manipulation problem, states are
formulae.

We next require the operators of the problem. These
are inference rules, combined with axionms. There are two
rules of inference.

The first is egquality substitution. Suppose that
B" = 8" is an axiom and A is a formula which ccntains a
term u, and that u and B’ have a most general aunifier o ,

i.e. that g = g*. 0 = u.o .' 1Infer A! by replacing in

A.o some single occurrence of f with §'.o .2

The other inference rule is modus ponens. If
' —> &' 1is an axiom (*—>" means "implies”), and A is a
formula, and if ' and A have a most general unifier o,
then infer §'.o .

In the following subsection, examples are given of

axioms and their use with these rules to become operators.

! See the definition of unification in Nilsson (1971).

2 This is a simplification of paramodulation. See Robinson
& Wos (1969).

157

7.1.2. PROBLEM INSTANCES

This subsection serves tc illustrate the definitions of
the previous one, and also to present the standard problen
instance set used to measure the performance of evaluation
functions. (As well, the method of generating training
instances 1is given.) The set has five members, which are
all very simple theorems from group theory. In the
following, the theorem, its starting state, goal state,
operators (axioms), and a solution for each are shcwn. (In
addition, to be disregarded until the subsection to follow,
the first three attributes of a seven attribute vector are

listed for each state.)

T1: In a group, the identity is unigue. 2Axioms used:

Ax1 =.xfx1 xx7' = 1

Ax2 =, fxx1 x'x = 1

Ax3 ZeaXYZaX.YZ (xy)z = x(y2)
Ax4 =Xy —> =,.XZ.Y2 X =y =—> XZ = YZ
Ax5 =XY =D TeZX.ZY X =y =—> 2Zx = zZY
Ax6 «X1x x1 = x

Ax7 . 1xx 1x = x

Solution (showing, in order, prefix form, infix form, axionm,
first three attributes):

=.abb ab = b 3 2 1
=, .abx.bx {ab)x = bx Axd 7 6 2
=.2.bx.bx a{bx) = bx Ax3 7 6 2
=.al.bfb al = bb™! Ax1 5 5 2
=.,a11 al = 1 Ax1 2 2 1
=al a =1 Ax6 0 0 0

The next two prcblem instances use exactly the same

seven axionms.

158

T2: The inverse of the inverse of a is a.

=ffab (ah!' =b»p 3 2 2
=.1££fab 1{a)' = b Ax7 4 4 3
=..xfxffab (xxHY(ah'=5>» Ax1 8 7 3
=,x.fxffab x{x-(a-)'] = b Ax3 8 7 4
=.a1db al = b Ax1 2 2 1
=ab a=25> Axb 0O 0 O
T3: Cancellation law.

=.ab.ac ab = ac 4 4 1
=.X.ab.X.ac x{ab) = x(ac) Ax5 8 8 2
= . Xab. X.ac (xa)b = x{(ac) Ax3 8 8 2
=.1b.fa.ac 1b = a-{ac) Ax2 7 7 2
=b. fa.ac b = a-l{ac) Ax7 5 5 2
=b. .faac b = (ala)c Ax3 5 5 3
=b.1cC b= 1c Ax2 2 2 1
=bc b=c¢ ’ Ax7 0 0 O

T4: If any two idempotents of a group are permutable, their
product is an idempotent. For this, axioms Ax1 - Ax7 vwvere
used, in addition to:

Ax8 =, ab.ba ab = ba

Ax9 =,aaa aa = a

Ax10 =.bbb bb = b

Solution:

=e..ab.abc (ab) (ab) = ¢ 5 4 1
Z..e.ababc {{(abjya)b = ¢ Ax3 5 4 2
=.. 8. babc a(ba)t = ¢ Ax3 6 4 2
=.ea.abbc a{ab)t = ¢ Ax8 5 4 2
“ee-dabbc ((aa)b)b = ¢ Ax3 6 4 2
=,..aa.bbc (aa) (bb) = ¢ Ax3 6 4 1
=.a.bbcC a(bb) = ¢ Ax9 4 2 1
=.abc ab = ¢ Ax10 0 0 O

TS: If Vx(x2?=1), the group is commutative. The axioms used
vere Ax1 - Ax7, and:

Ax11 =.aal aa = 1
Ax12 =.bb1 bb = 1
Ax13 =, .ab.ab1 {ab) (ab) = 1
Ax14 =..ba.bal {ba) (ba) = 1

Solution:

159

=.abc ab = ¢ 2 0 O
=.1.abc 1{(ab) = ¢ ax7 4 2 1
=...ba.ba.abc [(ba) (ba)) [ab] = ¢ Ax14 9 8 2
=,.,.ba..ba.abc fba]l (ba) (ab)] = ¢ Ax3 9 8 2
=..ba.b.a.abc [ba)k{a(ab))] = c Ax3 9 8 3
=..ba.b..aabc {ba){b{(aa)k)] = ¢ Ax3 9 8 3
=.e.ba.b.1bc (ba])[b(1b)] = c Ax11 7 6 2
=..ba.bbc : {ba) (bb) = ¢ Ax7 S 4 1
=..balc (ka)1 = ¢ Ax12 3 2 1
=.bac ba = ¢ Ax6 0 0 O

These five problem instances might seem easy to solve
using a graph traverser, but the state-space is very large,
and 1if the search is breadth-first, the exponential growth
rate is extreme. The equality substitution, especially, can
result in large numbers of offspring, since substitution can
be made for any term. With the axioms Ax1 - Ax7 (these
prodide tvelve basic operators, since *=" is cummutative),
an estimated growth rate is very roughly 4%*4%/2 | yhere 4

is the search level.

The problem instances used for training were obtained
as follows. TFirst, the goal state:
(1) The first symbol of a partial formula G is ®=w,
(2) Randomly choose a symbol and append it to G. If G is
not a substring of any well formed formula, go to (1).
If G is a formula, stop,; it is the goal. Otherwise,
go to (2).
Fron each goal formula G, a starting state was
generated by repeatedly applying randomly selected axioms.
This method allowed the creaticn of problem instances of any

desired (maximum-length) shortest solution.

160

7.1-3. FEATURES

All our features {£; | 1 <i 7} for formula manipula-
tion measure differences between a given state A and the
goal G. (They are similar to those of (e.qg.) Popplestone
(1967).) For each one except f,, we define some function ¢§
and write £, (A,G) in terms of §(A) and £(G). (Tt is not
necessary, but we define all the features so that they are
"penalties”, in order to simplify the relationships.) See
the preceding subsection for numerical examples.

We begin with f,, which tries to match terms of a state
A with terms of the goal 6, and totals the remaining
uncorresponding symbols. To define it, vwe first need a
simple concept relating two terms: v=w if v=w or if v
= fvV3...v, and w = fw,w,...%, and Vi (v, = w, or one

of v, and v, is a variable).
£f,(4,6) (term matching)

comment G = Pa,a;---.a, {(where the a; are single symbols);

£, := length(A);

¥hile there remains an unmarked symbol in A do;
[Pind the longest unmarked teram v in A3
m := length(v);
If 3i so v=a;a;,, -+ G,,..,s, Where no a;,; is marked then

Hark ai » a"_+‘ g ®wesegy and a;_,m_,;

£, = £, - m;

Mark all the symbols of v;

161

The second feature compares the structure of a given
formula A with that of the the goal G, ignoring differences
in symbols. To define the feature £f,, we first need a

recursive function which compares two terms or formulae:

structsc (B, C)

comment B = ;83 ceeaPry C = 0818, 0naedp;:

f m =0 then structsc =1
else if n = 1 then structsc := 0

else structsc

(1]

= 22 structsc(B;,5;);

From this, we define £, (3,6G) = length(A) -

structsc(A,G) + length(G) - structsc (G,2).

The third feature compares depths of fanction nesting
in the given state A and goal G. First we require a recur-
sive function. If B = f8,;f7<.-..f8.1is a term or a formula,
then If n = 1 then depth(B) = 1 else depth(B) = 1 +

max{ depth (8;)]« And £, (A,G) = max{ 0, depth(A) - depth (G)].

The last four features are all defined in terms of a
single primary binary function "count"™, which gives the
number of symbols of a specified class in a formula B. Let
S be the set of symbols. Count maps (B} x 2° into the set
of natural numbers, so that ccunt(B,T) is the number of

occurrences in B of a symbol of TsS. Prom count we define:

£f4(2,6) max{ 0, count (A, {.}) - count (G, {-}) J-

fS (A'G)

max{0, count (A, {f}) - count (G, {f})].

162

max{ 0, count (A, {fa,b,c}) - count(G,{a,b,c})]-

rh
o
—
b
-
@«
o
n

()]
~
—~

o
-

(2]
—

[}

max{ 0, count(A, {1}) - count(G, {1})].

The evaluation functions created by the plan for this
feature set are not very high performance ones.

One difficulty is that the fast node growth of this
formula manipulation problem inhibits system functioning.
According to +the <rough estimate of breadth-first node
growth, the number generated at level d is 4%*4/2 , g0 for 4
=0, 1, 2, 3, eeee, the values are 1, 8, 260, 32000, ee-ce
This means that the first iteration, with its trivial
evaluation function, cannot solve problem instances shose
shortest solutions have a length of more than two or three.
(And in post-initial iterations, the situation is not much
better.) Hence the good count (number of solution ncdes) is
generally low. Furtheracre, because the growth rate is so
high, most nodes generated are not developed, so the total
count is also low. 1In turn, the small values of the cocunts
cause little splitting (see the definition of dist in
chapter five), so not much discrimination is gained in a
single iteration (i.e. the evaluation function cannot
improve much).

Because of the nature of this problem, tvec systenm

parameters were set so as to effect faster results. The

163

one, ¢, was given a value of 1.0. (Recall from chapter five
that ¢ influences the likelihocd of splitting -~ smaller
values are egquivalent to 1lower confidence levels.) This
means that splitting occurs if the M"sureness" of a
penetrance difference is only about 70%. The other systen
parameter, a, vwas set to 0.25. (Recall from chapter four
that 1 -a 1is the confidence level for entering features
into the modelled penetrance function.)

The results of one iteration series are summarized in
tables 1.7.1 to 1.7.3, which give the relevant values for
the solving step, region handling step, and regression step,
respectively.

Table 7.1.1 shows the results for the solving step over
three iterations. The second column gives the maximum
shortest solution lengths of the problem instances preseﬂted
(this training set having been generated as described in
subsection 7.1.2). The third column lists the number in
this set, and the number of those which were solved. The
fourth column shows the average number of nodes developed
before a solution was found. This column also gives the
average number of nodes generated. In every case, the
cutoff (maximum allowed generated before abandoning the
search) was 5700, and in instances for which no solution wvas
found, the contribution to the average could only be known
to be larger than 5700, so the corresponding entries reflect

this. The final coluamn shows the average solution length

164

Table 7.1.1. Solving Step.

Iter- Max Number Solved, Avg Nodes Average
ation Depth Total Developed, Path Length
Generated
1 2, 3 9, 9 33, 632 2.2
2 3, 4 10, 15 >63, >2700 3.2
3 3- 6 8, 11 >30, >3300 4.5
Table 7.1.2. Regicn Handling Step.
Feature Number
Iter- ‘ :
ation 1 2 3 3 5 6 7
1 1, 1,
2 3,1 3, 1, 1,
3
Table 7.1.3. PRegression Step.
Parameter Number
Iter.. — —— . . e ! o e e e o] Er-
ation 1 2 3 4 5 6 7 ror
1
2 0.22 -0.16 -0.22 -1.05 -2.26 =2.62 | 0.11
3 -0.06 =0.19 ~-0.23 -1.27 -2.01 { 0.12

165

(approximate when not all instances were solved). This
column suggests a slight progressive improvement in evalua-
tion function performance.

Table 7.1.2 lists the splits in each iteration. The
entries are pairs; the first number of the pair gives the
splits that occurred in the expected manner (i.e. reflecting
the expected penetrance versus attribute variation), and the
second integer gives the numter <that occurred in the
contrary direction. A blank indicates no split. The table
shows that three regions existed at the end of the first
iteration, and twelve at the end of the second. In the
third, there was no further differentiation.

. Table 7.1.3 shows the parameters b; for the modelled
penetrance function p = exp[f.b]. (The final column gives
the residual error for the lcg-linear model.) No regression
was performed in the initial iteration (so the seccnd rcw of
entries in table 7.1.1 are for the grouped function v,
only). In the second iteration, all features but £, and £,
entered the model. TIteration three parameters were similar
{except the accepted features were f£,, f,, £f,, and £,),
since the regions had been altered only by having their
penetrance values revised, not the rectangles.

The performances of the evaluation functions are
indicated in table 7.1.4. The triple entries give number of
nodes developed, number generated, and solution length (if

any found before cutoff), respectively. Since early experi-

166

ment showed 1little difference in general performance in
later iterations, whether the full evaluation function € or
just the modelled compcnent p was used, the simplest choice
was to make measurements for p only. The +table gives the
performance with the five standard group theory instances of
subsection 7.1.2 (any solutions were similar +to those in
that subsection). The functions tested were 85, ¥V, , P, , O3
and also two others, p,, and p;, . These latter ¢two vwere
obtained from p3; by slightly disturbing two or three

parameters b; of pj. The function pj3, is identical to p,

Table 7.1.4. Evaluation Function Performance

Theoren
£n T;—mw““m“. T2 — T3 Tuv B ';;' B
- >5700 >5700 >5700 >5700 >5700
4 >5700 >5700 >5700 >5700 >5700
P2 22,314,5 85,2342,7 79,2564,5 26,364,8 >5700
Ps 21,302,5 98,2714,7 43,1046,7 26,364,8 >5700
Pi. 55,1266,5 >5700 13,272,7 26,364,8 >5700
[19,274,5 192,5289,7 23,366,7 26,364,8 >5700

167

except bs = by = -2.0, and p;, is the same as p;, except b
= by = =-1.1, and b; = =0.75.

The functions p, and p; show a definite improvement in
performance (if d = 7, 49+4%2 £ 19'%),

Another experiment resulted in ten regions before
splitting stopped. Although the other parameters were
similar to the ones above, those for £, and f; were posi-
tive, which gave a poor evaluation function. This cccurred
largely because the systeam parameters ¢ and 1-a were set so
low, and suggests that interactive quidance is required when
the system is pushed to the limit.

The comparative performance of our graph traverser with
P; is not impressive; for example, Popplestone (1967), using
similar features, pbtained significantly better results,
albeit with a more sophisticated traverser (using partial
development). (E.g. T5 was solved, and with only a few tens
of developed nodes.) See also Huet (1971).

Despite the intractability of the problem, there is
evidence for «certain of the properties hypothesized at the
beginning of this chapter. The splits are predominantly as
expected (P1). The evaluation function performance is
perhaps reasonable considering the simplicity of the graph
traverser and difficulty in obtaining information for
penetrance differentiation (P5). And the final functicn p,
was constructed by solving 35 problem instances {(giving only

88 solution nodes in total) (P12).

168

This section describes substantial results obtained
with the fifteen puzzle, vhich is more manageable than +the
problem of the last section. Although there are about ten
trillion states in the state-space, the exponential breadth-
first growth rate is only about 2¢ (vwhere d is the level).
Moreover, in some intuitive sense, this puzzle seems rela-
tively simple, having considerable "structure®".

There are four subsections. The first describes
details, particularly of +tvwo main experiments, and at the
same time, some properties of the system are further
examrined. Thé second two consider the computational cost of
the main results, especially in comparison with more direct
methods of parameter tuning. Finally, the fourth subsection

relates the present research tc some other work.

7.2.1. EXPERIMENTAL RESULTS

-— A S D A G DR S A Y i, viams.

As with the previous problem, puzzle instances were
obtained in two ways. The training set was generated as
follows. The goal (illustrated in chapter one) was progres-
sively transformed toward an ultimate starting state. The
randomly selected successive operator applications were
terminated when the desired path 1length d was reached.
Hence d became the upper limit on the shortest solution for

the resulting problem instance.

169

The other generation method supplied instances for
measuring the performance of evaluation functions. Bach
"average"” puzzle instance of unknown difficulty was created
by randomly selecting hexadecimal digits, and appending thea
to a growing string (barring earlier occurrence), ccontinuing
until it reached the proper length of sixteen. {And of
course odd permutations were rejected, since they are
unsolvable.) A standard set of such random puzzles was
produaced.

There are two major experiments reported bhere. (An
abbreviated version appeared in Rendell, 1977.)

The three tables below summariZze the results for
experiment one, a series of seven iterations which used all

six features of subsection 2.2.2.

Table 7.2.1. Series Cne Solving Step

Iter- | Max Number Solved, Average Average
ation | Depth Total Developed Path Length
1 8,9 6, 6 580 8.3
2 15 ' 7, 14 >>931 ~18
3 75 12, 15 >532 ~ 88
4 15 9, 12 >705 ~96
5 75 11, 12 >u62 ~95
6 100 9, 12 >717 ~98
7 100 8, 12 >740 ~111

170

Table 7.2.1 lists information about the particular set
of puzzles for each solving step. The second column gives
an upper 1limit d for the solution length of the training
puzzles. At the outset, when the search is breadth-first, 4
can be about nine at most, if the puzzle is to be solved.
Except for the first iteration, when the cutoff was 2200, a
maximam of 1500 nodes was allowed. The third column lists
both the number of instances in the training set, and also
the number solved before the graph traverser abandoned the
search. The fourth column gives the average number of nodes
developed before a solution was found. (The number
generated was typically élightly greater than twice the
number developed.) When the traverser failed to solve a
problem, only a minimum value could be known; accordingly
the average number developed has a lower limit (reflected in
the table by '>'). Similarly, the entries in the £fifth
column, which indicate the average solution length, are

approximate where indicated.

Between a couple of hundred and a thousand different
attribute space points resulted froama the solving step

{increasing in later iterations).

171

Table 7.2.2. Series One Region Handling Step

Feature Number
It?r_<~ﬂy“_w_WM(w_www_“yA”,.“MMw,MMMW,f_TMMﬂHW-”ﬁ,hqdmw To-
ation 1 3 2 @ 3 | 4 g 5 j 6 tal

1 2, 2
2 3, 1, 5 2, 6
3 2, 2, BRR .1 7
4 1, 1. 2,1 | 5
5 1, 1, o1 3,2 8
6 1, 1, s, 1, 8
7 1. 2,2 5, o1 11
Total| 10, 5,2 3, 6, 9,3 5,4 47

Table 7.2.2 summarizes the results of +the region
handling step. Most of the splits which occurred were
"expected" and a few were "unexpected"”, or contrary to the
general trend. These two categories are listed separately,
separated by conmmas. Below each feature number, the
"expected™ splits are to the left, and the "unexpected™ to
the right. A blank indicates zero.

The confidence factor c was 1.5 throughout.

172

Table 7.2.3. Series Cne Regression Step.

Parameter Number

Tter- R B e e

ation 0 1 2 » 3 4 ! 5 6 Error
1| (1.46) (-0.88) (0.07)
2 4,34 % -0.70 -1.92 -2.24 0.13
3 2.16 ; -0.79 -2.61 1.17
4 0.92 E -0.57 -0.84 =-2.43 2.30
5 | -1.46 7 ~-0.52 <=0.65 3.12
6 -0.90 | -0.49 -1.77 =-0.52 1.96
7 -1.03 -0.41 -0.83 -1.67 =0.47 1.65

Table 7.2.3 lists the parameters b; computed by the
regression step for the log-linear modelled penetrance func-
tion p = expf{f.b]l. Blanks denote 2zeroes, the stepwise
regression procedure having rejected the corresponding fea-
tures. The entries are bracketed where the number of re-
gions had not yet reached the number of features (and the
model was in fact not used). The "error" column lists the
logarithmic residual regressior errors. For each iteration,
a confidence level of 0.85 was used.

Comparing tables 7.2.2 and 7.2.3, we can see that the

non—-zero parameters calculated by the systen do not

173

necessarily conform strictly to the splits of the region
handling step (of the same iteration). In fact, a feature
can enter the model despite no split having occurred in the
corresponding dimension. PFor example, in iteration twvo,
there are +twc splits in the sixth dimension, but the sixth
parameter is zero. 1In contrast, there has been no split in
the fourth dimension at this pcint, but the fourth parameter
is non-zero (this effect is caused by SHRINK). However,
there 1is a general strong agreement between the number and
consistency of splits for a feature in the region handling
step, on the one hand, and the likelihood of its being in
the model, on the other. Por example £, has a total of ten
splits overall, all of which reflect "expected™ penetrance
variation (table 7.2.2 clearly shows £, to be +the most
prominent feature), and it is also the only feature never to
leave the model. (In addition, it is consistently the fea-
ture that absorbs the largest part of the regression sum of
squares.) At the other extreme, one might easily predict
from table 7.2.2 that f; is not likely to be prominent in
the model (and in fact it never enters). This discussion
more or less restates properties P1 and P2 (moreover it is
the general pattern exhibited in other experiments).

It is apparent from table 7.2.1 that the evaluation
function improves, but before we examine its performance in

detail, let us consider another series of iterations.

174

The second experiment required fewer iteraticms before
convergence. It used just the first four of the above fea-
tures, the ones that appeared in the final model of that
series. The training set consisted of entirely different
puzzle instances. The results are summarized in tables
7.2.4 to 7.2.6, which are analogous to tables 7.2.1 to
7 2.3 (As Dbefore, the confidence factor ¢ (for region
splitting) was 1.5, and the confidence level (for regres-

sion) was 0.85.)

Table 7.2.4. Series Two Solving Step

Iter- ? Max § Nuaber 501ved,? Average Average
ation } Depth g Total ; Developed Path Length
| | 3

I 9 4, 4 | 713 9

2 12-14 12, 12 2u8 | 14

3 ‘ 50-75 ‘ 8, 12 >637 | ~84

s | 100 | 7, 12 >660 . ~104

5 100 12, 12 j 373 104

6 100 13, 14 | >367 . ~102

Table 7.2.5.

175

Series Two Region Handling Step

Feature Number

Iter- - T
ation 1 i 2 3 ; 4 Total

1 2, ; 2

2 2, ; 1, 3

3 1, % 1, 1 3, 1 7

4 1, 2, 3

5 s 1 1

6 0
Total 6, 3, 10 1 3, 2 16

Table 7.2.6.

Series Two Regression Step.

Parameter Number

Iter- -

ation 0 1 2 | 3 4 Error
1 (1.01) {-0.81) | {0.02)
2 0.73 -0.72 = -2.42 0.21
3 0.25 -0.51 -2.15 -1.62 1.46
4 0.70 ~0.56 -2.18 -0.67 1. 22
5 0.59 -0.52 -2.17 -1.14 -0.52 1.08
6 0.45 ~-0.49 -2.27 -1.34 -0.53 0.89

176

As might be expected, it seems that more iterations are
required when there are more features (experiment one needed
seven iterations, whereas in series two the model was nearly
static after the fourth iteration).

We shall shortly 1look into the effectiveness of the
evaluation functions generated in these experiments, but
first let us examine some additional properties exhibited by
the system, at least in the context of these two examples.
These two series of iterations (and others) show the general
stability of the systen. The parameter values tend to
change Jjust gradually from one iteration to the next (P7).
Tables 7.2.2 and 7.2.5 seem to indicate that the zregion
handling step does succeed in revising penetrances tcward
their "correct" values, since the regression error decreases
whenever splitting does not predominate. This correction
amounts to a stabilizing negative feedback.

There is a related tendency: Often, when a parameter
is zero for an ™important” feature, an iteration causes
splits in that dimension, and the parameter becomes non-zero
(e.g. series one, iteration 6). This 1is what one would
expect. (In fact the plan corrects itself to a greater
degree than this. 1In an entirely different experiment, the
tvo system parameters ¢ and a were 1.0 and 0.25, respec-
tively, and positive parameters arose. This resulted in a
temporarily poorer evaluation function, but the bias term in

the distance function nov caused many "correct"™ splits in

177

the corresponding dimensions (see the full definition of
dist in chapter six). This, in turn, meant an immediate
correction in the regression step -- evidence for P8.)

There is also a consistency over different iteration
series (P9). Series twoc gives results very similar to those
of the first experiment. (Compare tables 7.2.3 and 7.2.6 —-
some corresponding parameters are identical.) Furthermore,

the models converge (P10).

Table 7.2.7. Performance of Functions

Series Jne Series Two

Iter-| Percentage | Nodes Path Percentage | Nodes Path
ation Solved Devel. Length Solved Devel, Length

2 97 >550 ~125 77 >703 ~116

3 68 >831 ~120 94 >614 ~118

4 94 >568 ~126 100 427 116

5 67 >770 ~122 100 371 118

6 94 >5710 ~141 100 371 1138

7 100 353 ; 113 - - -

Table 7.2.7 indicates the performance of the modelled

evaluation functions generated in both series. 1A sample of

178

thirty-tvwo completely random puzzle instances was used. The
cutoff (upper limit of generated nodes) was 2200 (i.e. a
maximum of about 1100 could be developed). As in tables
7.2.1 and 7.2.4, any unsolved puzzles count as having
greater than 1100 nodes developed, so the average values are
sometimes approximate.

From table 7.2.7, it can be seen that the performance
improves very quickly at the beginning, then more slowly.
In series two, the modelled penetrance function provided by
iteration 2 already solved three quarters of the completely
random puzzles, while the evaluation function of series one
iteration 2 solved nearly all of the standard set. However,
excellent performance was not attained until jiteration 7
(series one).

Let us examine in more detail the statistics cbtained
from the performance measurements of this best penetrance
function, which we can denote by p*. Another eighteen
random puzzles were added to the sample, so p* was tested
with a total of fifty. All vere solved; the longest solu-
tion was 178 and the maximum numker of states developed for
any instance was 975. The average number developed before
solution was 353.5, and the sample deviation was 180. (The
average effective branching factor was very small, less than
1.005.) let us assume that the distribution of the number
developed before solution is log-normal. Froam the numerical

values it was determined that the estimated logarithmic mean

179

and standard deviation were 5.77 and 0.48. If these are
taken as the true logarithmic mean and standard deviation,
it follows that ninety-nine out of one hundred randon
puzzles will be solved by developing no more than 970 ncdes.

The system has calculated parameters which are locally
optimal (series one) or else very close to it (series two)
(P11) « To test this, the parameters of p* (iteration 7 of
example one) were varied one at a time (actually those for
f, and f; vwere varied together; £, and f; are similar) and
the resulting linear polynomial was used as an evaluation
function with the standard set of thirty-two random puzzles
{again with a cutoff of 2200 -- or about half +that number
developed). The average solution length and number of
developed nodes are graphed in figures 7.1 and 7.2. Both
the path length and number of nodes devoloped are plotted on
each graph; the scale on the left refers to average number
of developed nodes, and that cn the right, to average solu-
tion length. Dots with circles represent nodes develcped.
(Open symbols indicate the lcwer limits in cases where not
all puzzles vere solved). And crosses represent solution
lengths. (Typical estimates of the standard deviations were
about two hundred for developed nodes and about twenty-five
for path lengths).

Although series two did not produce parameters which
are 1identical to those of series one, the only discregpancy

arises on the flat portion of the f,, f; curve, and this is

180

700 —

1

\.A l y
600 — B —140

S .
\

500 — R -130

\1

X,
\‘

100 — -120
300 ; 110

b, /4 b,/2 b, 2hb, 4b,

Figure 7.1. Performance of system-generated
evaluation function p* (series one iteration
7)), vwith disturbed values of the
parameter b,. The graphs show the average

first

nodes developed (circled points and scale

left) and average solution lengths (crosses
standard
random set of 32 puzzles. The center line
represents the value computed by the systen.

and scale on right) vs bk, for the

181

700 —
i
600 — kJ -14
, . -13
V4
,.’(x
(] ‘
. e -12
-~ X
L
11
2b, ab,
700 —
TX— —-14
\\g
500 — "~ —13
400 — - —121
constarnt
300 : T + T T 11¢
/4 /2 ‘b, 4b, x2 x4

Figure 7.2. Average nodes developed and path
lengths vs b, (upper) and b,;, b; (lower

graph) .

182

only a little above the minimun.

It is interesting that the locally optimal parameters
are in a nearly integer propcrtion.

A few program runs were made using the best modelled
function p*, but adding slightly negative parameters for f,
or f4. No improvement could be found.

In experiment one, there is evidence for hypcthesized
properties P3 and P4. The fifth feature fs is subsumed by
f, (see subsection 2.2.2). And £f; was rejected. When a
different experiment was conducted, using just £, and £5, £
of course played an important part. (Again a local optimunm
wvas found; the parameters b; and bs; were in the approximate
ratio 1:4; and 69% of the standard random puzzle set were
solved, with an average number of developed nodes of >811

and average solution length of 122.)

For the final iteration of experiment one (which gave
p*), several plots were made of the residuals. Although the
patterns were not strong, the results indicated that an £,?
term might be beneficial, and that there seem to be some
possible interactions. We return briefly to these subjects

of residuals and nonlinearity in chapter =ight.

183

This subsection considers the computational cost of the
fifteen puzzle experiments. In addition to the those
already reported, various test runs were made to estimate
the complexity introduced by elements of the systen.

The seven iteraticns of experiment one took a total of
63.6 minutes on the Faculty of Mathematics Honeywell 66/60
computer at the University of Waterloo. HNinety-one percent
of this was required by the solving (and point-generating)
step (step one -- the graph traverser). The other nine per-
cent was taken by the region handling step (step two). (The
regression step needed an insignificant time -- less than
one half of one percent of the whole.) Step one used an
average of 91k words, and step two 59%.

The six iterations of experiment ¢two required 25.6
minutes, with only five percent of this (1.3 minutes) being
used for region handling. In contrast, 4.2 times this
amount was used for region handling in iteration one {(or 3.6
times, per iteration). According to subsection 5.2.2, the
speed of CLUSTER decreases with the square of the number of
features; here this factor is (6/18)2 = 2.2 The
discrepancy 1is caused by the facts that in experiment one,
both the number of regions and the number of attribute
points are generally 1larger (both CLUSTER and SHRINK are
called once for each established region).

In an attempt to reduce costs, experiment two (four

184

features) was repeated twice but with more permissive values
for the confidence factor ¢ (region handling step) and
confidence 1level 1-a (regression step). The values were
c=1.3 and 1-a = 0.55. 1Also, for both these experiments (2a
and 2b), fewer puzzle instances were used in training -- six
for each iteration except the first two (which had one, two
or four).

After seven iterations, experiment 2a gave the
parameter vector (const, -0.38, -0.90, -0.46, -0.56). Using
the same random test set as before (32 instances), the
evaluation function solved 100%, with an average number of
developed nodes of 355, and an average solution length of
113. Experiment 2a required 13.6 minutes in total.

For experiment 2b, further economy was obtained by
lowering the node development cuttoff (to 700). Here,
however, eight iterations were needed before convergence.
The resulting vector was ({(const, =-0.64, -1.18, -0.62,
-0.78) . 1Its performance was 100% solved, average nodes
developed 356, and average solution length 118. The total

time used vas 9.5 minutes.

Among the factors influencing the graph traverser speed
is one aspect of the data structure for nodes. After their
generation, new states need to be compared to old ones for a
redundancy check (the former are dismissed if they already
exist). An ordered binary tree is implemented. Froa

experiment it was determined that over the cutoff range ever

185

used (for the fifteen puzzle) the speed was almost indepen-
dent of the tree size. About 25 nodes per second vwere
generated and retained (with four features when there was no
attribute point generation).

Raunning step one takes slightly more resources if
attribute points are generated. In order to save space and
to speed 1later clustering, counts are used rather than
multiple point instances, and the linear search implemented
to locate points is slow. With this scheme, these data
typically required about 10%-15% of the total storage. And,
typically, their generation also needed 15%-20% more time.

(Our) features cost little, only about 7% extra <time
. for each (relative to the case without point generation).
Consequently, there seems to be 1little question that
increasing the number cf features (for at least the ones we
have been considering) can be cost-effective. For example,
comparing p* with the optimal distance score and reversal
score function p* (100% vs 69% puzzle instances solved, 353
vs >B11 average nodes developed, 113 vs ~122 average solu-
tion length), we have: The 1latter developed 130% more
nodes. Also, the quality of the p* solutions was worse, by
B8%. But the marginal cost of two extra features is only
about 148%. In this case, at least, "expert knowledge buys

expert performance".'

I See also the discussions in Gaschnig (1979).

186

7.2.3. LESS MECHANIZED ALTERNATIVES

Let us now compare our main fifteen puzzle results with
more direct methods. The easiest is simply to vary the
parameters systematically, beginning with some reasonable
gJuesses. But this would obviocusly be inferior; perhaps
thousands of test instances would need to be solved.

However, there is the possibility of probit (or 1logit)
analysis,' a technique which can avoid regions and directly
fit ipdividual points to discover a relationship between the
penetrance u and the attribute vector x. Proportions such
as our penetrance (or their difference from unity) usually
have an "S" shaped distribution (steadily rising, assymtotic
to one), and this curve can be formalized as (e.g.) the
curulative normal distributicn. The u-transformation that
will 1linearize this function is the probit. oOur individual
penetrance observations are binary, either zero or one,
depending on whether the corresponding node was in a solu-
tion., The methcdology appropriate for fitting binary data
is called wmaximum 1likelihcod, which uses an iterative
process. In the case of the probit transformation, a
parameter vector b is computed 2 wvhich will maximize the

likelihood of the cumulative ncrmal value of x'.b predicting

! See Bartlett (1947) and Finney (1952).

2 A program which incorporates the probit transformation
and maximuam 1likelihcocd was obtained from Dr. Re
Shillington, Policy BResearch and Management Services,
Saskatchewan Health, Eegina.

187

the observed u's.

In experiments with this direct method, the overall
procedure was similar to the operation of the system, but
without the region handling step of the latter: First a
training set of problem instances was solved, then the
resulting data were analysed to compute parameters for the
succeeding iteration. {Both hest subset feature selection
and forcing were used.) Note that the data points vwere
utilized directly, without conversion to estimated true
penetrance. Also, there was no accumulation of penetrance
information from iteration to iteration.

Features f, through f, were chosen. The conditions
were pmatched to those for the system experiments -- easy
puzzles were chosen for the first iteration, then harder
ones as their solution became more likely. For each itera-
tion a few thousand d&ata points resulted (one for each
training graph node). Perfcrmance measurements were also
similar; a random set of 32 puzzles was used, and average
numbers of developed nodes were compared.'

These experiments involved about forty program execu-
tions in all, varying the nunbers (4 to 30) and difficulty
of training problem instances (shortest solution 12 to 28).
Generally the consequent evaluation functions were good but

none performed as well as those found by the systen. The

1 This was the same standard random test set used in
earlier performance measurements.

188

magnitudes of paramters b, to b, were consistently lower
than optimal. This was because of an inherent limitation of
the approach, described in the following typical outcome.

The only relevant feature in the first iteration was f,
(distance score). 1Its parameter b, was -0.52.

Eleven puzzle instances with maximum shortest solution
length between 24 and 28 constituted the training set for
the second iteration; eight of these were solved. Now the
other three features entered the model. The nev parameters
wvere b, = -0.56, b; = -0.51, and b, = -0.39. However, b,
became -0.004, much smaller than in iteration one. This of
course was because the first iteration (using a breadth-
first search) reflected the true penetrance more accurately,
whereas the second had points biased by the non-zero
parameter -0.52. The resulting second iteration parameter
vector is almost equivalent to one which has b, any negative
finite quantity, and the other parameters all nminus
infinity. This vector resulted in an average number of
developed nodes of >679, with 81% of the standard random
test set being solved.

A more sensible vector can Le obtained by selecting the
unbiased value for b, from the first iteration, and the
other (unbiased) parameters from the second.' This gives a

vector quite close to the (locally) optimal one found bty the

! These parameters are unbiased except for the fact that
they were nct obtained from breadth-first searches for
random puzzles.

189

system, and the performance of this vector was good: The
average number of nodes developed was >436, with 94% of the
puzzles solved (compared with 353 and 100% for p*).

Next, a third iteration was attempted, using the
appropriately mixed parameter vector from the first two
iterations: (const, -0.52, -0.56, =-0.51, -0.39). This time
a more serious prchlem arose. The parameters actually
became positive (const, 0.04, 0.09, 0.14, 0.09).' Without
some scheme for blending these data with former penetrance
information, they are coampletely useless. (In contrast, the
system provides a means for gradual adjustment of cumulative
information, with feedback seemingly correcting "wrong"
modifications.)

But the costs of the two successful iterations of the
above process vwvere as follows: The two solving steps took
8.5 minutes. The maximum liklihood routine, operating with
the user forcing exactly the desired variables (this being
the most advantageous), took a total of 3.1 minutes. And
the entire procedure was 11.5 minutes.

Summarizing, this direct method may be wuseful for
introduction of new features, but not for refining
parameters. It might be expected to give fairly good
results when there is little or no interaction amongst fea-
tures, and wvhen the non-randomness of early training problem
instances is not too important.

1 Attempts to incorporate feature interactions gave rise to
similar incapacitating effects.

190

Since the parameter vector discovered in this way is
close to (locally) optimal, a traditional method of
optimization could now be nmuch more effective. To test
this, a number of experiments were conducted which £fitted
the four parameters b, through b, to a performance response
surface (here the parameters b; have become independent
variables). The minimum was located by differentiating. An
observation vas obtained by selecting the vector
(b, ,by,b;3,b,) then solving a (usually) randcm puzzle
instance to obtain the number cf nodes y developed in the
search. Many parameters of this process were varied,
including the number of points fitted, the ﬁypes of terms in
the response surface model, and transformations both of the
b;*s and of the y's. The procedure worked well omnly if the
number of points was gquite large; otherwise either the
fitted surface was not convex or else the resulting evalua-
tion function was no better than the starting one. The
sequel describes the details.

There 1is often difficulty in choosing values of the
independent variables for respcnse curve fitting. If they
are too close together, the random errors tend to cverride
the underlying relationships. If they are too far apart,
the real surface may not match the hypothesized one. In our
case the points cannot be too far apart also because bad
parameter vectors cause the graph traverser to fail too

often (alternatively, the cost of a large increase in the

191

cutoff is prchibitive). But we already have some informa-
tion from the graphs in figures 7.1 and 7.2 (earlier in this
chapter). These graphs suggest that if the coordinates of a
point close to the optimum are varied by a factor of 2 cor so
(perhaps 4 for b,), the surface has a shape well described
by a model with second crder terms. If the points are much
farther apart than this, the response y is indeterminate in
practice. So the points were selected accordingly: They
vere the cormer and all midpoints of subsurfaces of the
hypercube with center (-0.52, -0.56, =-0.51, =-0.39) and side
d in the logarithmic four dimentional space. The values of
d were 1.8 and 2. There are 81 such points (for a given 4),
but 16 of them are actually redundant because multiplication
by a constant factor leaves the vector essemrtially unchanged
in our case. This leavés 65. In the experiments, sets of
65 points provided the data; and two groups (with different
dts) were sometimes used. (Occasionally a few other
haphazardly selected points were added.)

We have additional knowledge about the character of
this situation: There is probably a discontinuity in the
surface vhere any b, 1is zero. Thus a 1logarithamic
transformation may be beneficial (and, again, <the graphs
suggest a logarithmic transformation anyway, as does the
fact that it is +the xelative values of parameters that
matter). In addition, a logarithmic transformaticn of y is

also indicated, since zero is its lower bound. Experiments

192

supported both of these conclusions; logarithmic transforma-
tions almost always improved results (there were fewer
instances of useless fits, and consequent evaluation func-
tions performed better). So log|b;} and log(y) became the
standard variables.

For number of points n even as iarge as 145, it was
found that the 15 term model with cross terms never worked
vell (the 8 term model withcut interactions was always
superior). This seems reasonable in view of the large
deviations and the shapes of the graphs in figures 7.1 and
7.2. Thus attention focused on the 8 term model.

For several different runs with d=1.8 or d=2, and n=40,
65 or 80, no improvement was found over the original vector
{(-0.52, -0.56, -0.51, —0.39).' It was clear, however, that
larger values cf n improved results. When n was increased
to 145 (d=1.8 and 4d=2), a better vector was fcund:
(-0.43, -0.72, -0.63, -0.50). The evaluation function
solved all but one of the 32 in the standard test set (97%),
vith average number of developed nodes >366 and average
solution length ~116.

The cost of the 145 points was 45.1 minutes (the cost
of the €fit and 1location of the minimum was negligible --

0.05 minutes). So the ¢tvwo stage nmethod (first probit

! Different random puzzle instances were used for each
point, except one experiment instead used a single fixed
puzzle instance for each point (n was 80). As might be
expected, the residuals were small but +the minimum was
perverted.

193
analysis, then optimization) took a total of 56.7 minutes.

In conclusion, the more elegant and automatic systenm
seems to be superior to the two stage method of probit
analysis -and optimization in terms of some combined measure
of reliability and efficiency. Two possible reasons for
this are: (1) the cumulative (and natural) regioms permit
stability through gradual penetrance adjustment, and (2)
attribute space localization of the performance measure may
result in a greater quantity of meaningful information per
problen instance; whereas the +traditional optimization
method yields ocne quantity per search (the total onumber of
nodes developed), the plan yields as many measurements as
there are regicns. Furthermore, the plan can probably be
improved; some ideas are summarized in the next and last

chapter.

~7.2.3. COMPARISONS WITH OTHER RESEARCH

This subsection considers the main product p* (which
solved all puzzle instances presented and had locally
optimal parameters) in the light of other work. Also some
of the characteristics of p* are examined.

There have been no reports of other one-way graph
traversers having such a degree of success with the fifteen
puzzle. In an early system of Doran & Michie (1966), +the

experimenters themselves varied the parameters (of a model

194

somewhat different from ours -- see section 1.2). With the
best choice, the program succeeded in solving six out of ten
of the random puzzles they tested, although that node
generation cutoff was lower (500). When Doran and Michie's
evaluation function was used with a cutoff of 2200, 84% of
our standard set were solved, and an average of >550 nodes
were developed, with an average solution length of ~138.

Of course the choice of features 1is of central
importance (ours wvas an advantageous one, selected by the
human experimenter).

A two-way traverser has solved the fifteen puzzle
(Chandra, 1972), with abcut the same number of developed
nodes. But, as mentioned in subsection 2.1.2, that progranm
had several advantages. Aside from the increased power of
the two-wvay traverser,' the program included a specific type
of problem reduction, designed especially for <the Ffifteen
puzzle. The present system is more general. Although fea-
tures are defined and selected by the user, and although
they embody specialized knowledge about a problem, the plan

screens and weights then.

Let us now consider our function p* from a different
perspective. Section 1.2 briefly summarized some of the
work of Pohl (1970) and of Gaschnig {(1979), who schematized

the evaluation function as f = (1-w)g + wh (0<w<1). We

1 See Pohl (1969) for a comparative study of one and two
way traverserse.

188

can convert our pP* +to a distance-estimating form like h,
wvhere smallest is best. We had p* = exp[=-1.03 -0.41f,
-0.83f, -1.67f; =-0.47f, 1, so if we take the natural
logarithm, then divide by 0.41 (the absolute value of the
coefficient of the distance score term), we obtain a func-
tion A which can be used to estimate the distance from the

A). For example, if, for a node a, £, {(3) =

goal (i.e. h

0, then A(A) £ the actual remaining distance

fi(3) = £,(4)
to the goal. If £f;(a) # 0 for some 2<{i<4, we generally do
not know whether A(2A) underestimates the actual distance,
but A should still be a good path length estimator. To
complete the fcrmaticn of our £, we simply take g (i) = level
of A in the state tree. '

Using this £ = (1-w)g + wA, two experiments vwere
conducted which were simplified versions of two of
Gaschnig's extensive investigaticns, although each involved
several test runs. In the first set, w was fixed at 1, and
the upper bound 4@ on the shortest sclution 1length was
varied. OUnfortunately, this prcblem specification parameter
is only an upper limit, unlike Gaschnig's for the eight
puzzle (there is no practical way of determining the actual
shortest solution length for harder instances of the fifteen

puzzle). One set of 20 puzzle instances for each of 5

values of d was tested (each puzzle having been passed

! Recall from section 1.2 that strong comnclusions can be
drawn if h never overestimates the remaining path length,
and if w<0.S.

196

through a mild filter to eliminate some shorter than d).
Although the abcissa -- real minimum path length -- is not
accurate, the graph in figure 7.3 showing average number of
developed nodes suggests an approximately linear
relationship. This is similar to what Gaschnig found with a
good evaluation function for the eight puzzle (no exponen-
tial explosion).

The second experiuent again used f = (1-w)g + wA on
a standard random set of 32 puzzle instances, ' each
presented for 7 different values of the control policy
parameter v. As with our earlier performance measurements
(subsection 7.2.1), we sometimes know just lower bounds on
the average number of developed nodes, and only approximate
values for solution 1lengths. The graph in figure 7.4
illustrates the variations. ©Note that the points are exact
for w=1 and w=0.95, and otherwise accuracy decreases as ¥
does =-- the accuracy being a function of the number (also
shown) of puzzle instances solved. Probably there is an
increasing downward bias in sclution length as w decreases,
since there should be a tendency for shorter instances to be
the ones remaining solvable (the data strengthen this suspi-
cion).

There are a number of observations here. One is that
the quality of the solutions improves (i.e. average solution
lengths decrease) as w decreases. This is what is normally

' This was the same random sSet used +to measure the
performance of p* originally.

197

Avg
Dev

400 -

300 A

200 A)

100 1

0 L] L] L] ¥)
0 20 40 60 80 100

Shortest Solution Length —

Figure 7.3. Graph of average number of nodes developed

v8. minimum solution length for evaluation function A.

198

1000 - . - 125

\ fx//T

800 - U\\] e avg [100
- Len
X7 (x)

600 - T * \U | 75

Avg x V\
Dev A
400 GK\ 50
- \-,\- -
e 4
200 L
0 T T i L O
0.5 0.6 0.7 0.8 0.9 1.0
w —>

Figure 7.4. Graph of variation of nodes developed (© & left scale)
and solution length (x & right scale) vs. weight w (see text).
The figures above the graph give the number of instances solved in

a sample of 32.

199

found, since decreasing ¥ increases the breadth-first ele-
ment. (See Gaschnig's similar experimental results with the
eight puzzle.)

Gaschnig's results showed that as the evaluation func-
tion improved (in terms of number of developed nodes before
solution), it was aided less in terms of solution quality by
decreasing w.' Our A is a fine evaluation function; it
seemrs to benefit just slightly from a decrease in w.

Pohl's (1970) theoretical vorst case analysis
demonstrated that w=0.5 is at least as fast as w=1.
However, in both Gaschnig's experiments and ours, w=1 is at
least as fast as w=0.5 in average cases.

Another interesting aspect is that while Gaschnig
discovered that for the best evaluation function he tested,
increasing w beyond a certain value did not aid speed, our
case contrasts: the higher w is, the fewer the number of
nodes developed. This dis im 1line with conjectures by
Nilsson (1971) and Pohl (1970).

As Gaschnig pointed ocut, however, one must be cautious
in making broad statements concerning general effects of

varying control policy parameters such as v and h.

1 Actually, the situation is more coamplex than this. For
some of Gaschnig's tested functions, the speed variations
vith ¥ depended on the difficulty of the problenm
instance.

8. CONCLUSIONS

This short chapter susmarizes what has been learned
about the system and menticns some possible avenues of

further investigation.

8.1. SUMMARY OF PRESENT RESFARCH

- Y 1 ——

In chapter three we hypothesized that localized true
penetrance is a useful basis for evaluation functicns. This
has been verified: moreover, the methods for estimating
true penetrance (chapter five) and of revising old estimates
(chapter six) have also been shown to be effective, as has
the method of finding a modelled penetrance function
(chapter four).' At least for some feature sets, the systenm
is well behaved; it distinguishes useful features, and the
modelled evaluation function converges, to give good
performance. And if the whole feature set is not congenial,
it appears that interaction can allow the user to gain some
helpful information about which individual features are use-
ful and to what extent they are important (in two ways -- by
observing splits, and by observing overall performance).

The plan seems more efficient or more reliable than
alternative, less mechanized methods (chapter seven).

' An examination of the residuals of the regressicn step of
experiment two (see the end of section 7.2.1) suggested
that the log-linear model for the evaluation function is
adequate, and also that the method of error weighting is

reasonable.

200

201

Perhaps one of the mcst interesting aspects is that
local optima can be found. Moreover, this occurs despite
the fact that the plan does not use any feedback about the
evaluation function in terms of its overall performance
(such as number of problem instances solved or length of
solution). Rather, the feedback is in the form of refined
statistical measurements, localized in the attribute space.
(This further validates true penetrance and its estimators.)

Furthermore, the localized performance measures may
contribute to reliability and efficiency: The cummlative
nature of the regions vpermits gradual improvement of the
evaluation function. Their splitting into natural sizes and
shapes allows meaningful use of penetrance information.

The plan seems characterizable as a variant of hill
climbing, so locai, rather than absolute optima would he
expected.

In summary, it can be stated that the design apgears
promising, especially in view of several feasible refine-
ments and extensions, some of which are briefiy outlined in

the following section.

8.2. FUTORE RESEARCH

The simplest continuation of this work is to
investigate the behavior of the plan with other feature

sets, and with different state-space problems, to determine

202

which of the hypothesized properties generalize strongly.
For example, under what conditions are 1locally optimal
parameters found? And what happens when several impcrtant
related features are present; can the best of them be
distinguished, either automatically or interactively?
Further, hov do strongly interacting features generally
influence the system?

Another straightforwvard experiment is to use the
weighted evaluation function form £ = (1-w)g + wh instead of
the purely heuristic one.

It would also be interesting to define features as
functions of operators (and states), rather than solely of
states, especially for problems such as formula manipula-
tion.

Another approach in thé system development might bé to
attempt improvement of some individual details of the
design. For example, a different data structure for
attribute vectors would allovy a better representation for
the center of gravity of a rectangle (for the regression).
If the attribute space pcints uwere ordered in each dimen-
sion, it would be easy to design a fast algorithm which uses
the total counts to give a weighted center point. {(This
would replace the inefficient SHRINK algorithm.) This data
structure would also facilitate an improved clustering
algorithnm. Although the desirability of such sophistica-

tions would depend on the tradeoff between computational

203

cost and the improvement resulting from their implementa-
tion, this particular alteration seems advisable.

Another possibility is to sophisticate the method of
adjusting elementary penetrance values to estimate true
ones. Frequently the smoothing (section 6.1) results in
outliers; these may often simply be inaccurarate cumulative
regions. Such data could be treated differently, e.g. they
could be ignored in the smoothing and perhaps their error
estimates increased temporarily. If it were later
established that some such region were not spurious (i.e if
the trend continued), it could then be trusted.

The facility already exists for extending the attribute
space into higher dimensions at the start of any iteration;
it might be useful in combination with a procedure which
atilizes the strategy-power factors and power exponent to
determine which areas of the attribute space need further
differentiation. (Once +this had been established, a new
potentially useful feature could be added.)'

Considerable difficulty is anticipated in cases where
there are marked non-linearities and interacticns among
important features. The problem of anomalous penetrance
then becomes severe, and perhaps incapacitating, for the
present systen. (In many cases, higher order models would

almost certainly be too unstable, considering the sparsity

! Other variations of current designs might include a twvo-
way graph traverser, non-rectanqular regions, Trecombina-
tion of regions, improved error estimates, etc.

204

of available data (regions) and their inaccuracy.) There are
some subtleties that can be implemented in an attempt to
meet this challenge, however. One simple modification is to
insist that one true penetrance estimate is the same as
another, wunless their errors do not overlap. This might
mean a longer convergence time, but probably greater
accuracye. It, alone, is unlikely to be adegquate though.
Another scheme would approximate a non-linear model locally:
For each region R, weight the other regions according to
attribute space proximity to R (e.g. inverse-square
Euclidean distance), then fit a 1linear model (using the
stepwise regression procedure). There would then be a
modelled penetrance function p. for each region R, and p,
would be used when a state maps into R, or the sanme
"proximity® relation could determine a weighted evaluation,
using all the p. simultaneocusly. If +this plan extension
were successful, it would constitute a standardized and
completely automated method for accommodation of general

feature interactions.

BIBLICGRAPHY

Anderberg, M.R. (1973): Cluster Analysis for Applications,
Academic Press.

Introduction

A_ Introduction

and Brain

Arbib, M.A. (1972): <The Metaphcrical Brain:
to Cybernetics as Artificial Inte lligen
Theory, Wiley.

Ball, W. (1931): Mathematical Recreations and Essays,
Macmillan.

Bartlett, M.S. {1947): "The Use of Transformations,"
Biometrics, 3, 39-52.

Bindra, D. (1976): A Theory of Intelligent Behavicr, Wiley.

Bruner, J.S., Goodnow, J.J. & Austin, G.A. (1956): A Study
of Thinkirqg, Wiley.

Buchanan, B.G., Johnson, C.R., Mitchell, T.M., &
Smith, R.G. (1979): Models of Learning Systeams,

Stanford Artificial Intelligence Menmo.
Chandra, A.K. (1972): (Stanford University Progranm).

Deese, J.E. & Hulse, S.H. (1967): The Psychclcgy of
Learning, McGraw-Hill.

Doran, J. (1967 : ®An Approach to Automatic Eroblem-
Solving,"™ Machine Intelligence 1 {(eds. Collins, N.lI. &
Michie, D.), American Elsevier, pp. 105-123.

----- (1968): "New Developments of the Graph Traverser,"
Machine Intelligence 2 (eds. Dale, D. & Michie, D.),
American Elsevier, pp. 119-135.

----- & Michie, D. (1966): ®Experiments with the Graph
Traverser Program,™ Proc. ROYy. Soc., A, vol. 294, pp.
235-259.

Draper, N.BR. & Smith, H. (1966): Applied Regression

Analysis, Wiley.

Duda, R.O. & Hart, P.J. (1973): Pattern Classification an
Scene Analysis, Wiley.

Finney, D.Jd. (1971): Probit Apalysis, Cambridge University

Press.
Praser, D.A.S. (1958): tatistics -- An Introduction,
Wilevy.

205

206

Gardner, M. (1964): P"Mathematical Games, " Scientific
American, vol. 212, no. 3, pp. 112-117.

Gibson, E.J. (1969): Principles of Perceptual Learning angd
Development, Appleton-Century-Crofts.

Hart, P., Nilsson, N.J. & Raphael, B. {1968): "A Formal
Basis for the Heuristic Determination of Minimum Cost
Paths," IEEE Trans. Sys. Sci. and Cybernetics, vol.
SsC-4, no. 2, pp. 100-107.

Hartigan, J.A. (1975): Clustet;ng Algorithms, Wiley.

Holland, J.H. (1970): *™Hierarchical Descriptions, Universal
Spaces, and Adaptive Systems," Essays on Cellular
Automata (ed. Burks, A.W.), University of 1Illinois
Press, pp. 320-353.

----- (1975) : daptation in Natural and Artificial Systeas,
University of Michigan Press.

Huet, G.P. (1971): Experiments with an Interactive Prover
for Logic with Equality, Repor 1106, Case Western

Reserve University.

Hunt, E.B. (1975): Artificial Intelligenc Academic Press.

o
-

Jackson, P.C. (1978): Introduction to Artificial
Intelligence, Petrocelli.

Johnson, W.W. & Story, W.E. (1879): "Notes on the '15¢
Puzzle," Amer. J. Math., vol. 2, pp. 397-404.

Koestler, A. (1964): The Act of Creation, Dell. {Some
other editions do not contain the important book two.)

Michie, D. (1967): "Strategy-Building with the Graph
Traverser,®™ Machine Intelligence 1 (eds. Collins, N.L.
& Michie, D.), American Elsevier, pp. 135-152.

-=-==- & Ross, R. (1970): "Exfperiments with the Adaptive
Graph Traverser," Machine Intelligence 5 (eds.
Meltzer, B. & Michie, D.), American Elsevier, PP-
301-318.

Minsky, M. & Papert, S. (1969): Perceptrons, MIT Press.

Newell, A. & Simon, H.A. (1972): Human Problem Solving,
Prentice-Hall.

Nilsson, N.J. (1971): Problem Solving Methods im Artificial
Intelligence, McGraw-Hill.

----- (1980): Principles of Artificial Intelligence, Tioga.

207

Pohl, I. (1969): Bidirectional and Heuristic Search in Path
Problems, Report #104, Stanford Linear ccelerator

Center, Stanford.

-==== (1970): *"First Results on the Effect of Error in
Heuristic Search," Machine Intelligence 5 (eds.
Meltzer, B. & Michie, D.), American Elsevier, PP-
219-236.

—w—== (1977): "Practical and Theoretical Considerations in
Heuristic Search," Machine Intelligence 8 {eds.
Elcock, E. & Michie, D.), Harwood, pp. 55-72.

Popplestone, R.J. (1967): Machine Intelligence 1 (eds.
Collins, N.L. & Michie, D.), American Elsevier, pp.
31-46.

Rendell, L.A. (1977): A Locally oOptimal Solution c¢f th
Fifteen Puzzle Produced by an Automatic Evaluatio
Function Generator, Research Report CS-77-36, Dept. o

Computer Science, University of Waterloo.

ot
o

p-l
rhisS

Robinson, G. & Wos,L. (1969): ®™pParamodulation and Theorem-
Proving in First-Order Theories with Equality,™ Machine
Intelligence 4 (eds. Meltzer, B. & Michie, D.),
American Elsevier.

Rosenblatt, FP. (1962): Principles of Neurodynamics,
Spartan.

Samuel, A.L. (1959): "Some Studies in Machine Learning
Using the Game of <Checkers," Computers and Thought
(eds. Feigenbaum, E.A. & Feldman, J.), McGraw-Hill, pp.
71-105.

———w=— (1967): "Some Studies in Machine Learning Using the
Game of Checkers II -- Recent Progress,"” IBM J. Res.
and Develop., vol. 11, no. 6, pp. 601-617.

Schoenfield, J.R. (1967): Mathematical Logic, Addison-
Wesley.

Schofield, P.D.A. (1967): "Complete Solution of the ‘*Eight
Puzzle',™ Machine Intelligence 1 (eds. Collins, N.L. &
Michie, D.), American Elsevier, pp. 125~133.

Selfridge, 0.G. (1958): "Pandemonium: A Paradignm for
Learning," Pattern Recogmnition (ed. Uhr, L.), Wiley,

Simon, H.A. (1962): "The Architecture of Complexity,"™ Anm.
Phil. Soc., vol. 106, no. 6, pp. 467-u482.

208

Slagle, J.R. & Bursky, P. (1968): "Experiments with a
Multipurpose, Theorem-Proving Heuristic Program," JACH,
VOl. 15' NO. 1' Pp‘ 85-99.

Slagle, J.R. & Parrel, C. (1971): "Experiments in Automatic
Learning for a Multipurpose Heuristic Program," Comn.
ACM, vol. 14, no. 12, pp. S$1-99.

Snedecor, G.¥. & Cochranm, W.G. (1972): Statistical Methods,
Iowa State University Press.

VanEmden, M.H. (1970): "Hierarchical Decomposition of
Complexity,"” Machine Intelliqgence 5 (eds. Meltzer, B. &
HiChie, Do)' pp‘ 361-3800

Werner, H. (1957): Comparitive Psychology of Mental
Development, International Univerity Press.

Winston, P.H. (1977): Artificial Intelligence, Addison-
Wesley.

adaptive plan 51
adaptive (systenm) 5
a (uncertainty level) 86
ancestor (of node in state graph) 47
attribute (of a state) 6,50

--- space 13,50
avgval (average penetrance of region set) 125
b (parameter vector) 9,14,39,51,71
bias (logarithmic conversion term for penetrance) 135
blocked score ({fifteen puzzle feature) 56
boundary extension 143
¢ {confidence factor) 98
center point (of rectangle) (cg) 63
Cluster (member of partitioned set) 22,101
CLUSTER (clustering algorithnm) 25,103
confidence factor (c) 98
confidence level (1-a) 86
COREXT (accounts for points in extended regions) 147
corner point (cf rectangle) (1p & up) 63
corrected extended region set 147
count deviation factor 75
count functions (g and t) 64
counts 28,64

good --- 28,64

total --- 28,64
cumulative (or established) region set 31,92,1148,149

--- of iteration one 114

--- of post-initial iterations 149
cutoff (M) 48
degenerate (or point) rectangle 63
descendent (of node in state graph) 47
dev (deviation factor of region) 79,80
devav (deviation of average of reqgion set) 126
devc (count deviation factor) 75
devy (grouped penetrance df) 85
devp (modelled penetrance 4f) 88
dev® (full penetrance 4f) 91
develop (nodes) 4,47
deviation (errcr) factor 74

average --- of region set (devav) 126

count --- ({(devc) 75

grouped penetrance --- (devy) 85

modelled --- (devp) 88

user-defined ~-~ (devu) 76,79
devu (user-defined df -- for non-randomness) 76,79
df (deviation factor) 74
discriminate 102
dissimilar (clusters) 22,99

209

210

dist (distance function) 23,98,139
distance 22,25,96,115
distance score (fifteen puzzle feature) 6,55
effective branching factor 48
effective (plan) 52
efficient
-=-= plan 51
~-- strateqy 48
elementary penetrance (W) 13,29,67
ENCLOS (extends regions to cover new points) 144
e (multiplier 4f of unreduced region) 77
error (see deviation)
established (or cumualative) region set 31,92,114,149
evaluation function 6,49
full --- 14,51,90
grouped component of === 14,50, 84
ideal modelled =--- 71
modelled component of --- 14,51,87
exhaustive final state graph set (G,) 66
EXTDIV (subdivides extended regions) 148
EXTEND {(fully accounts for outlying points) 149
extended region set 147
extension substep (of region handling) 37,148
feature 6,50
~--= vector 9,50
final region set 149
final state graph (fsg) 4,28,48,52
final state graph set (G) 53
exhaustive =--- (G,) 66
--- of iteration I (G,) 53
full evaluation function 14,51,90
=== of iteration I 93
full penetrance deviation factor 91
g {(good count function) 64
G (exhaustive fsg set) 66
Y (good count of unreduced region) 77
gnomon-blocked score (fifteen puzzle feature) 57
goal (state) 3,46
good count 28, 64
graph traverser {G) 4,47
grouped penetrance (clustered evaluation) 14,50, 84
grouped penetrance deviation factor 85
h (strategy-power exronent) 119
ideal (modelled) evaluation function 71
immediate region (set) 120
modified --- 124
unmodified --- 120
iteration 53,92,114,149

first --- of a series 114

211

k (multiplier of unreduced region)
KFPIX (adjusts multiplier of sukdivided regions)
KMOD (relates immediate to established regions)

level (of node in state graph)

line wrong score (fifteen puzzle feature)

1ndev (logarithmic total deviation of region)
l1ndevc (logarithmic count deviation)

1ndevp (logarithmic modelled penetrance deviation)
Indevu (logarithmic user-specified deviation)
lover point (of a rectangle) (1p)

1lp (lower point)

modelled penetrance (fitted evaluation)
-—- 0of region
modified immediate region (set)

non-randomness deviation (of a region)
V (grouped penetrance of state)

offspring (of node in state graph)
operator
order wrong score (fifteen puzzle feature)
outlying point set
output set

-=-~ of CLUSTER

-=-- of SHRINK

parameter
parent (of node in state graph)
parent region {(for CLUSTER)
penetrance
average --- (of region set) (avgval)
elementary ---
full -—-
-=- of iteration I
grouped --- (clustered evaluation)
modelled --- (fitted probability)
--=- of a reduced region (val)
--- of an unreduced region (val)
true ---
penetrance-revised region set
penetrance-revision substep (of region handling)
performance (of strategy)
plan
point (or degenerate) rectangle
problem instance {(P)

r {(rectangle field of region)
ranking space (range of evaluation function)
rectangle

center point of --- (cp)

corner point of --- (lp & up)

degenerate (or point) =---

77
138
124

47
56
79
75
88
76,79
63
63

14,51,87
88
124

76,79
84

47
3,46
55
143

102
113

9,51

47
25,101
13,49, 65
125
13,29,67
14,51,90
93

14, 84
14, 87

212

red (map from unreduced to reduced region)
refinement substep (of region handling)
region
corrected extended --- (set)
cumulative (or established) --- (set)
--- of post-initial iteration
--- of iteration cne
extended --- (set)
final --- (set)
immediate --- (set)
modified =---
unmodified ---
modified immediate --- (set)
parent --~- (for CLUSTER)
penetrance-revised --- set
-== of iteration I
reduced ---
penetrance of --- (val)

rectangle of --- (rx)
total df of --- (dev)
reduced --- of an unreduced =--- (red)

subdivided --- set
-=-=- of iteration I
uncorrected extended (sSubdivided) --- set
unpodified immediate --- (set)
unreduced ---
good count of -=- (v)
multiplier of --- (k)
multiplier error of --- (e)
rectangle of --- (r)
total count of =--- {7)
region handling step (second step) of iteration
regression
regression step of iteration (third step)
reversal score (fifteen puzzle feature)
p (modelled penetrance of state)
pval (modelled penetrance of region
RLSTEP (stepwise regression prccedure)

search strategy
best-first ---
breadth-first ---
SHRINK (shrinking algorithm)
similar (clusters)
solution (of a problem instance)
solving step (of an iteration)
starting state
state
state graph
final --- (fsq)
final --- set (G)
sSta te~space
<-= problen
step (of an iteration)

79
34,132
26,77
147
31,92,114,149
141
114
147
149
120
124
120
124
25,101
127
127
79

80

79

80

79
134
140
145
120
77

77

77

77

77

77

92

38

92
6,57
87

88
38,86

4,48
49
5,48
113
22,99
4,46
28,53
3,46
3,45
8,47
4,28,48,52
53

46
3,45
52

213

first (solving) —--- of iteration I
second {region handling) --- of iteration I
third (regression) --- of iteration I
stepwise regression procedure
strategy-povwer exponent
strategy-pover factor
structure {controls traverser & controlled by plan)
SUBDIV (rectangle refinement algorithnm)
subdivided region set
--- of iteration I

t (total count function)

T (total count of unreduced region)

total count

total deviation factor (of reduced region) (dev)
training problem instance set (P)

true penetrance

0 (penetrance)

auncertainty level ({a)

uncorrected extended subdivided region set
unmodified imrmediate region (set)
unreduced region

up (upper point)

upper point (of a rectangle) {up)

useful (feature)

UTLREV (penetrance-revision algorithanm)

val (penetrance of a reduced region)
val (penetrance of an unreduced region)

¥ (elementary penetrance)

zval (used in place of zero gocd count)

28,53
92

92
38,86
119,121
33,128
51

134

134

140

64
77
28,64
77
28,75
13,66

65
86
145
120
77
63
63
102
127

80
78

67

67

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

