1ali Ols BIHAE
Victoris 3., Danada
VET 2R
May 3, 19467

saln DeAngelis,

nt of Computer Science,
v of Water loo,
Waterloo, Ontario

N2l 361

Dear Mrs. Dedngelis:

m

This letter iz my order for one copy of Research
HCS-H1-12 I am enclosing a chegue for $13.00 in payment

SR Rt A R A

Reeort
for this report.

Tharnk vou.

Yours truly,
d/. Fewrren

Alan Haines

N\ A
W \%@;&9

University of Waterloo N

Waterloo, Ontario, Canada
N2L 3G1

Faculty of Mathematics
Department of Computer Science
519/885-1211

Telex Number
069-55259

Apnil 21, 1987.

Mrn. Alan Haines,

1618 CLawthonrpe Avenue,
Victonia, B.C.

V8T ZR§

Dean Mr. Haines:
Thank you fon youn Lettern of March 30th, 1987.

T am out of stock of the repornt CS-81-12 but 1T could have
Lt neprinted gon you at a cost of 65 per page. The total cost
would be $13.00. 1§ intenested would you please make your cheque
o money orndern payable to the Computer Science Deparntment, Univernsity
04 Waterloo and fowand to my attention.

1 have enclosed our 1986 reseanch hepont Listinas and hope
they ane o4 Ainternest to you.

Yourns thuly,
,/41-4,0. - /\D&Ji CWLA//
/sd Susan DeAngelis (Mnrs.),
Enct. Reseanch Repornt Distrnibution,

Computern Science Dept.

lals Clawthorpe Avenue,
Victoria, B.C., Canada
vaT zRa

March 30, 1987

Department of Computer Solence,
Unidversity of Waterloo,
Waterloo, Ontario
N2l 361

Gerntlemern:

I recently came across a reference to a University
of Waterloo publication, AN INCREMENTAL TEXT FORMATTER, #0S-81-

by Mark & ’r:.‘ua rt Brader. (€4) = (]. U+ Q.00 W x‘ ’ 3 3 l1L

still available? it available
I would appreciate anvthing

I this publication
to the public? Is there a charge”
vour can toell me.

Or a related topic, is there any information available 7/
Jescribing the internal methods and algorithms used in Waterloo .
SCript?

Tharnls vou.

Yours trualy,

Jﬂ;{l@;ﬂ

Alan Halnes

BROWN UNIVERSI TY Providence, Rhode Island +» 02912

e

N DEG vpERAMYS

Department of Computer Science
Box 1910
(401) 863-3300

July 30, 1986

Mrs. Susan DeAngelis

Department of Computer Science

University of Waterloo

Waterloo, Ontario N2L 3Gl

Dear Mrs. DeAngelis:

Thank you for your letter of 24 July. I have enclosed a check for
$11.63 US ($15.50 CDN at .75 exhcange rate) which I hope covers
reproduction of technical report CS-81-12 ("An Interactive Reformatter").

Sincerely,

Matthew Kaplan
ej/@V

University of Waterloo PN
T

o’

Waterloo, Ontario, Canada
N2L 3G1

INVOICE Faculty of Mathematics .
- Department of Computer Science

519/885-1211

Telex Number
069-55259

July 24, 1986.

Mr. Matthew Kaplan,

Depantment of Computer Science,
Box 1910, Brown Undiversity,
Providence, RI 02912

Dearn Ma. Kaplan:

I am 4in neceipt 04 your nequest fon our ftechnical
nepont CS-81-112.

I neghet that this neport L4 curhently out of stock.
The cost to have it reprinted would be $13.34 CDON (6¢ pexn
page plus $2.00 postage and handling). 1§ you are intenrested,
would you please make your cheque payable to the Unilvensity
04 Watenloo, Computern Scdence Department.

Thank you for yourn internest in our depariment.

Yours thuly,

/<ﬁi¢xtﬂjélf62 by

/4d Susan DeAngeldis (Mrs.),
Technical Report Secretany.

\)QP \- DE (.OW\?v\\’Lf‘ Salenca
| Universily of Wated\oo
WA\'L(\OD, Onkarie

@ USPS 1981

. -
Departmen?:)\ocf'\)bm‘ﬁ'ut&%?{‘ence

Box 1910, Brown University
Providence, RI 02912

Dear
I would greaﬁiy appreciate - reprint(s) of your

paper(s) _Mge X Stvart ?)fadtnn “An \acresnentad

"Yext FormeMer, (STR-R-1

which appeared in

Thank you for this courtesy. Please bill if necessary.

Sincerely yours,

An Incremental Text Formatter

by

Mark Stuart Brader
Department of Computer Science
University of Waterloo
Waterloo, Ontario

Reseaych Report CS-81-12
April, 1981

ABSTRACT

Conventional text formatting programs require an entire
docunant to be reprocessed when it is amended in any waye.
2727 was an attempt to avoid this problem by producing an
intermediate result corresponding to o galley proof, which
could be edited before the final output was produced from
it Though it worked after a fashiony it lacked the fl=x-—

ibility achieved by existing formatters, and was abandoned.

ACKNOVLEDGEMENTS

To my supervisory Prof. W. Morven Gentleman,
advice and encouragements; to Profs. Kellogg 3.
Thomas As. Cargill, for thelr useful suggestions;

And to my wife, Catherine, for her patience.

for his

Booth and

CONTENTS

(a)
{(n»)
(c)
(d4)
(=)

3
(a)
{b)
{(c)

ut

(a)
{(b)
{c)
(d)
{(e)
(f)
(a2)
(h)
(1)
(3j)
(k)
1)
{m)

Abstract . . N . - »

Acknowledgements » [L] [» . .

INTRODUCTION » . . .

TEXT AND COMMANDS . - . ™ . . .

No Explicit Commands { Automatic Recognition)

Commands From Special Keys . » . .
Commands as Invisible Text
Commands as Normal Text (Conventional

The Specialized Editor-Formatter . .

AN DORGANIZATION FOR THE NEW FORMATTER
The Galley File . » . . . » »
Paragraph Numbers . . . - . . »

Practical Considerations
A HYPOTHETICAL FORMATTER

A PARTIAL SURVEY OF TEXT FORMATTERS .

Cyphartext » » . . » L3 » . »

Din » » . . » .
Format
Nroff (and Troff)
Page~-1

Proff . » . » . . » » . . .
Quids . - - .- * » . . » » -

Roff (&ﬂd Veofft) » . . - - . -

Runoff
Script
Tau Epsilon Chi « . s e & s e
Type » - . . » .

Points of Interest in Other Formatters

»

Method)

-

iv

S 0 N oA W W

o0

12

20
21
24
26
29

42
45
48
52
53
64
74
78

(a)
(b)
{c)
{d)
{e)
)
(g)

(a)
(b)
{c)

(a)
(b)
{(c)
(ad)

©

{a)
(b)
(c)
(d)
(e)
()
(=)
{h)
(i)
j)

THE SYNTAX OF INPUT TEXT .
Plain Text
Command Initiation . . .
Command Lists . . » . .
Command Arguments
Macro and Variable Tnvocation
Literal Text » . s ¢ e

Remarks About the Syntax .

ORIGINAL SPECIFICATION - .
Controller Commands N . »
Edit Subcommands

Formatting Commands . . .

IMPLEMENTATION OF THE GALLEY
The B~Tree . . » . . .
The Text
Filespace Allocation . . .

Macros - . »

PROGRAM STRUCTURE

*
[]
[]
.

Controller Module « « o
Editor Module . s o e o
Pasgs 2 Module . . o e
Display Module
Galley File Module . . .
Syntax Module
Command Module
Block Module . a . e
Format Module . P o s

Coroutine Pumper . . . »

L] »
[] »
L .
- L d
[] -
- -
L] E
. -
» L 4
- L]
L4 *
- L]
FILE
* .
L L]
* L
L -
L] »
- »
- -
L L d
L] L J
*® -
- Ed
» L 3
Ed L]
L] »
* -

96
96
98
99

110
110
113
118
117

120
120
121
121
122
123
123
124
125
126
127

19
(a)
(b)
(c)
(d)
(2)
()
(g)

11

(a)
(b)

12
(a)
(b)
{(c)
()
(e)

13

DATA STRUCTURES IN EZ27 .
Paragraphs - » . - »
Opcodes and Blocks . .
Galley File Buffers . .
Input Stacking and Macros
Command Lists * e .
Environment Stacking . P

Pagss 2 Structures . . .

HISTORY OF IMPLEMENTATION
Vork Completed . . . -
Lesser Works Not Completed

MAJOR PROBLEMS . s s e
Which Pass For Variables?
Indexing » s » . . .
Reassigned Macros . »
Generality . . . »

Ettlciency L d . . » »

CONCLUDING REMARKS . .

Appendix I3 Features of Formatters
Appendix II: Compendium of Commands

Appendix II1: Specimens of Syntax

Bibliography . . - .

128
128
13
132

132

133
133
134

136
136
138

143
143
144
145
145
146

149

150
152
159
164

FIGURE

1 EZ27 Program Structure e« =« » s & » . « o 119

1. INTRODUCTION

*A formatter is an important tool for anyone who
writes {including programmers describing thelr
programs), because, once correct, ma terial is never
re—-typed. This has some obvious cost benefits, and
helps ensure that the number of errors decreases with
time, Machine formatting eases the typing Job, since
margin alignment, centering, underlining, and similar
tedious operations are handled by the computer, not by
the typlist. It also permits drastic format changes in
a document without altering any texte. But perhaps
mogt important, it seems to encourage writers to im~
prove thelr product, since the overhead of making an
improvement is small and there is an esthetic satis-
faction in always having clean copy available.”
[Xernighan 1976-S, page 219]

From the user's point of view, making a local change to
a computer—formatted document is indeed a low—overhead
procedure? read file into editor, make change, write to
file, invoke formatter, But the conventional type of for—
matter then has +to reprocess the entire document, though
most of it will not change at all (except in rare
“"pathological” cases).

The amendment of a few words may affect only one
paragraph? every other character in the document will be
unmoved, Usually, even if the number of lines in the
amended paragraph does change, elsewhere intact lines will
merely be moved between adjacent pages, and nothing more.

An analogous situation exists with most programming
language implementations. A small change forces the recom-

pilation of at least an entire subprogram, and often the en-

tire programe This is sonmetimes avoided by the use of an
incremental compiler, which produces in addition to ob ject
code some type of intermediate result, by reference to which
local changes can be compiled rapidly.

When a book is published, it is first typeset into gal-
ley proofs. These contain the full text of the book, but
not in pages;'they are long shee ts of continuous text,
divided into paragraphs, with all horizontal formatting com-
pletes. The galleys are proofread and the text edited at
this point. Pages are then made up and vertically for-
matted, page number references are filled in, and the text
can be edited againe.

This thesis describes an attempt to make an incremental
text formatter. it consists of Controller and Editor compo~-
nents and two formatting passes. Pass 1 takes input text
with formatting commands, and groduces a sequence of
paragraphs, each properly formatted. along with commands
controlling their vertical placement; the Editor may in-
teractively revise the text; and Pass 2 then produces com~-
plete pages ready for the output device. The Controller in-
teracts with the user, invoking +the other components as
desired.

Since the output from Pass 1 is more or less equivalent
to a galley proof, the file on which it is written is named
the galley file; the formatter's name EZ27 was chosen in
honor of the proofreading robot in the story “*Galley Slave”

[Asimov 1957]7.

2. TEXT AND CONNANDS

When text is on a computer for formatting, its parts
aust be distinguished and the formatter instructed how they
differ: where a paragraph starts, what is a centered 1line,
what is underlined, what 1is a footnote. The gommands

supplying this information can take several formse.

2(a) No Explicit Commands (Automatic Recognition)

Suppose the text is entered into the computer exactly
as it would be typed on a typewriter. Its layout could
simply imply various commands to the formatter [Kimura 1978:
Verges 1972 1. For instancey one line indented at the left
would begin a new paragraph; a blank input line would give a
blank output line; a line indented on both margins could be
centered exactly. Tabular matter could also be recognized
and treated specially.,

IfT a formatter could identify and ignore on input
whatever hyphens, formfeeds, and such things that it might
insert in the text, then formatting a formatted file could
reproduce the identical file as output: the formatter would
be idempotent. In that case, only the most recent, for-
matted version of a document would need to be stored.
Editing could be done directly on ity and the file simply
passed through the formatter again: only what had to be ad-
Justed due to the editing would change.

while automatic recognition is theoretically in-
teresting, 1té practicality is doubtful, Infallibly
distinguishing centered headings, for instance, from short
paragraphs seems difficult at least, and 1f there exist

cases where the recognition fails then the user must learn

themy which negates the principal advantage of the method.
Idempotency would also cause difficulties with footnotes,
sayy or automatic hyphenation: what is to show whether a
word hyphenated at the end of a line was divided at an ex-
isting hyphen? Macros could be implemented only by a
separate preprocessor (e.g. Trac [Cole 1976; Mooers 1965] or
Max [Nudds 1977]})s Finally, certain formatting functions
would be most awkward to implement: changes of page dimen-
sion, or of font or size in typeset text. (Anyway, typeset
output would probably be incompatible in coding with the in-
put.)

. Where this method can be useful, though, is in combina-
tion with any of the others described below: even if there
is another way to produce a blank output line, for instance,

a plank input line cen conveniently have the same effect.

2(b) Commands From Special Keys

Word processors, self-contained devices for text
editing and formatting, are now being produced in many
varieties [Right 19783 Wohl 1977]. They are <cheap enough
for businesses to use them for their correspondence, and
have thus had considerable impact on offices [Berenyi 1977;
MacDonald 19783 Mitchell 1977].

The text is entered on a keyboard, and where some com-
mand is desired, generally a special key for that purpose is
used (naturally, the available functions vary widely); other
special keys edit the texts As befits a single-purpose
device, this is a highly specialized method: the functions
are actually designed into the keyboarde Accordingly, it
cannot be easily adapted if some new function is wanted; nor

is the method suitable for a general-purpose computer system

unless special terminals are constructed. (Formatting can
be done anew whenever the text is being printed, since the
processor is otherwise idle then; the formatted text need
never be stored, so the gquestion of idempotency does not

arise.)

2(c) Commands as Invisible Text

With the preceding method, the text is stored unfor-
matted; therefore, when a formatting key is used, the fact
must be retained by inserting a corresponding code in the
text. These codes are the commands actually used by the
formatter, They do not appear when text is prinied, and are
ignored as far as possible when it is edited, though they
may be inserted or deleted along with adjacent text.

Such invisible commands can be used on a general-
purposse computer; by retaining them in its output (and in-
troducing new ones indicating, for instance, where a
hyphenation was performed), a formatter can be truly idempo-
tent. However, editing and printing software would have to
be written to ignore commands in text, yet provide a way to
enter them in the first place. { Nevertheless, this is8 the
method adopted by the team now working under the Inter-
national Standards Organization towards a family of
languages for all levels of text processing [Card 1979].)

A variant of this method [W. M. Gentleman, private com—
munication} would use short invisible commands as markers of
signliflcant places in the document. An suxiliary file of
formatter instructions, read in parallel with the text file,
would detaill what to do at each places This file could be
edited iIn the ordinary way, making practical more complex,

thus flexible, commands than in the methods described above.

2(cd) Commands as Normal Text (Conventional Method)

The commands can alsoc be character sequences that are
special to the formatter but not to the editor used to enter
and amend the text, Thus, againy, the commands can be edited
in the ordinary way, s$o they can have considerable complex-
ity and flexibilitye. The formatter and editor can then be
entirely separate, written, maintained, and even used in-
dividually. (In particular, such a formatter can easily be
added to a computer system that has none, but does have an
editor. Using the same editor for text and programs also
saves learning time [Mashey 1976].)

Because of these virtues, this has become the conven-
tional organization for text processing on general—-purpose
computers. The fullest advantage has been taken on the UNIX
system, where, in addition to a formatter (Nroff, described
below) and editor, a host of auxiliary programs [Kernighan
1978-D] can be used on the same files, sSome as preprocessors
or postprocessors for Nroff, It may be noted here that this
preprocessing does conflict somewhat with the “file inser-
tion” (discussed below) that is widely used with Nroff and
other formatters.

(On the other hand, there are also formatters combined
with an editor that acts only as an input preprocessor,
designed for non—interactive systems; since the formatter
could stand alone, these too are regarded in this thesis as
being of the conventional type.)

Since this kind of formatter cannot be idempotent, the
unformatted input text must be kept on file for editing;

some users consider this defect serious.

2{(e) The Specialized Editor-Formatter

The conventional method has another disadvantage: a
separate, general-purpose editor may be less useful than one
especially for editing (natural language) texte. This
presupposes a specialized data structure for texty which may
as well serve as the input to the formatter; thus the editor
and formatter best form a single packagee. A necessary ad-
Junct to this is a facility to take Input text and transform
it into the specialized structure. The structure could be
designed for formatted as well as {(or instead of) unfor-
matted text; then, transformation cut of the structure, for
output, would be reguired.

Since this method virtu&lly requires that a complete
text handling system be written, the designer has more flex-
ipility than with a conventional formatter. The commands
can be made invisible where this 1Is desired, and can be en-—
tered by any of +the methods described above, or even in-
teractively while text 1s not being entered. The formatter
can be idempotent as long as the text files considered are
in the special structure. QUIDS [Coulouris 1976], discussed

pelow, is an example of such a system.

3., AN ORGANIZATION FOR THE NEW FORMATTER

The distinctive property of EZ27 was to be the ability
to edit formatted text with minimal reprocessing. A program
that is only a formatter obviously cannct do this; clearly a
combined editor~-formatter approach 1s necessary,y, and EZ27
was designed that waye

EZ27 was implemented on the University of Waterloo
Mathematics Faculty Computing Facility Time-Sharing System
(IS5); this system already supports an excellent general~-
purpose text editor, QED {QED 1980] (now being replaced by a
variant FRED [Gardner 1981]), which is used with conven-
tional formatters, chiefly Rotf (descri bed below)e.
Designing an editor for a new data structure that would com-
pete satisfactorily with QED would be a major task. In~-
s tead, EZ27 was designed to accept as initial input text and
commands organized as for a conventional formatter, so that
QED could be used to prepare inputs Of course EZ27 also in-
cludes its own Editor comgponent, but this is a relatively
simple affair intended for local corrections rather than

major changes.

3(a) The Galley File

EZ27 was designed t0o operate in two passes, with
editing permitted between them. The output produced by Pass
1 is written on the galley file, which therefore must con-
taln all the information needed for Pass 2 to produce the
final outpute. It also must be directly editable, with local
changes in +the text producing only local changes in the
file. For practicality, Pass 1 should do most of the worke.

In epportioning the processing between Passes 1 and 2,

S

one should consider just what is likely to be affected by a
changey say, of one word in a document. Within the affected
paragraph, every word following the change will likely be
moved to a new location. If this does not change the number
of output lines in the paragraph, there will be no other ef-
fects anywheree. If it does, the output location of every
subsequent paragraph may change, with some lines being moved
between pages; this may change the total number of pages in
the document; but that will almost certainly be alle. (Far—
reaching effects are possible, 1if unlikely. For instancey, a
plece of text may be associated with a footnote, or its page
number may be mentioned elsewhere in the documente. If that
text happens to be moved to another page, the associated
changes could cascade indefinitely.)

This suggests that the natural dissection of the for-
matting task is between paragraph formatting as Pass 1, and
page formatting as Pass 2« The galley file should contain a
list of paragraphs, with the complete text and formeatting
information for eachs (As mentioned above, this 1is the
reason for the name “galley file”, and thus for “EZ27".) In
the case of simple running text, Pass 2 then has merely to
place the paragraphs to0o fil1l up pagesy, and handle the

dividing of paragraphs between pages.

3(b) Paragraph Numbers

Since it is essential that the galley file be editable,
each paragraph must be addressable; one fairly natural (and
easy to implement) way is by paragraph numbers, much 1like
the line numbers in many text editors.

In QED, a line's number is merely the number of 1lines

before it plus 1, S0 it can vary with changes elsewhere.,

10

OED works well only because most of the time the user does
not specify an explicit line number: the operand line is
addressed by default, or in terms of the last oney, or |is
located by a context search for some pattern. It does not
seem a good idea to allow context searches of the entire
galley file, for it will not be in internal memory; the user
should locate the desired paragraph by other means (from =a
printer proof, or by examining nearby paragraphs)es
Therefore, numbering with consecutive integers, as in QED,
would not be best for EZ27.

Most other editors regard a line!'s number as its in-
variant label. Multiples of, say,y 100 may be used ini-
tiallyy, s0o that ingertions can use integer numbers in the
appropriate range. Alternatively, inserted lines may have
numbers with decimal places, and consecutive integers be
used initially; the number of places may be limited, so the
numbers are really scaled integers, and then there 1is no
functional difference between the two variants. The APL
function editor's approach was chosen on esthetic grounds
for BZ27'%s paragraph numbering. This uses the second al ter-
native, but whenever the editor terminates it first reas-
slgns the line numbers t0 congecutive integers to facilitate
future insertions (among other reasons). Actually, this
last effect should really be optioconal, in case the user is
working from a printer proof.

In EZ27, then, paragraphs are assigned consecutive in-
tegers as they are put on the galley file, and decimals are
used to specify intermediate numbers for insertions; but
when one has finished dealing with a particular galley file,

its paragraphs are renumbered with consecutive integers,

11

3{c) Practical Considerations

Though the galley file consists in theory of a sinmple
sequence of numbered paragraphs, usage considerations must
affect its implementation. The following operations are
frequent, and each should be reasonably efficient: sequen—
tial reading of paragraphs; random reading of one paragraph;
replacement of one paragraph by a new verslion; random dele-
tion of one paragraph or a group of consecutive ones; inser-
tion of one or many paragraphs at a random point; locating
the final paragraph (for insertions after it); moving a
paragraphe.

Most processing of the text and commands should be done
in Pass 1, but there are some formatting operations that in-
herently must be deferred to Pass 2: starting a new page,
for instance, or handling a footnote. Thus, commands for
these must be put in the galley file along with the
paragraphs. The approach adopted, in order to keep Pass 2
simple, was to parse and validate the commands in Pass 1,
and write on the file a coded form, called an ppcode. Most
opcodes are logically located between particular paragraphs;
t herefore, a structure should be chosen where they can
resemble paragraphs, and opcodes and paragraphs can be num-
bered and otherwise handled in the same fashion.

However, some Pass 2 commands (such as footnotes) must
be associated with particular positions in the text, even in
mid-paragraph, and may reqguire considerable amounts of text
as operands. The latter property can be provided by a form
of ppcode that resembles a paragraph in that it has text,
but is still marked as an opcode in some way; for the
former, an invisible command must be inserted in the text

indicating the place associated with the opcode.

4. A HYPOTHETICAL FORMATTER

The terminology of text formatting is used guite diver-
gently by different writers, This thesis attempts to be
consistenty rather than following its sources, and in-
troduces sSome new terms. Any underlined term anywhere in
this thesis is taken to be defined by the context in which
it +then occurs, and willl be used consistently with that
meaning throughout, (By contrasty, a few terms8 in quotation
marks are local to particular sectionse.)

Likewise, many writers have described the features they
feel are desirable in text processing systems [Landau 1971,
eapecially pages 135-156 and [Schatzkin 1871; Seybold 1971;
Tunnicliffe 1971]; Muir 1972]. Here, the author lists what
in his opinion are the essential functions of a good conven-
tional formatter, in terms of a hypothetical one called
Hypos Some additional features that are useful but not es—-
sential are described as belonging to Hyper, considered as
an enlarged variant (a superset) of Hypoe.

The subheadings in this and the following section are
included for ease of cross—reference, as all topics are
covered in the same order throughout,. Their exact meanings

are not to be taken too strictly.

Commands and Names

The input consists of general text, which is plaipn text
interspersed with commands, distinguished syntactically.
When several commands occur with no plain text intervening,
a slightly clearer and more compact syntax called a gommand
list can be usade. The input is in the character set of the
implementation computer; the output, formatted text, in the

appropriate code to drive a (certain) typesetting machine.

12

13

For every Hypo and Hyper command that affects the
processing of subsequent text, there is another command, or
another option of the same one, that has the opposite ef-
fects this will generally not be mentioned belowe. The
control characters, which distinguish commands and such

hings {not to be confused with, sayy ASCII control

o

characters)y, can be reassigned by the Cecntrol commande.

Most commands (wherever it makes sense) that take a
numeric argument redefining a formatting gparameter (margin
position, type size, etcs) or a variable (see below) allow
it to be specified as a relative value, by implication added
t0, or subtracted from, the previocus value. In Hyper, ex—
pressions can be used in place of numbers, and a scale
designator can be appended to numeric arguments so0 that
physical dimensions can be expressed in inches, centimeters,
points, picas, etcasay and in relative units proportional to
the type size.

Symbolic names, mAaCrosy can be assigned to general text
by the Define command, The syntax denoting an lnsgertions, or
invocation, of a macro allows arguments; the macro text sup-
plied to the Define command may include markers indicating
where the text of each argument I8 to be inserted. Symbolic
names can also be assigned to integer values; these are
variables. In Hyper, symbolic names can also be assigned to
formatted text; since these cannot be invoked with argu-
ments, they do not gualify as macrosy so they are called
strings (in this case, formatted strings; they are not te be
confused with character strings, which are simply sequences
of characters), All these symbolic names may be reassigned
many timese Macros and variables may be inserted within
commands as well as in plain text. In Hyper, there are some

predefined functions that are invokecd like macros but

»

14

produce a numeric result like wvarjables; they compute such
things as the output size of some text.
The variable "pnum” always contains the current page

number, and may be reassligned.

Qrdinary Horizontal Effects
Any type size and font available on the output device

can be obtained by using the Size and Font commands respec—
tively; the latter's possible arguments are predefined sym-
bolic names. Hyper also has an Under command, which causes
characters to be underlined on output.

By default, each output line is filled with as many
words as fit, and then pad .justified, meaning that the 1left
and right margins are aligned by expanding blanks in the
line.

The Break command interrupts fillingy forcibly ter-—
minating the output line currently being built. Several
other commands &those for which it makes sense) cause such a
break as a side effect. Filling can be turned off al-
together by the Nofill command: in pofill mode, each new—
line in the input implies a breake.

Other _Jugstification modes, selected by the Just com—
mand, are left, rizbt, and center, in which each output line
is not padded but may be shifted to be aligned by one margin
or the center. {In pad mode, any line ended by a break |is
left Justified,) Hyper also has jn and out modes, which are
respectively equivalent to right and left on odd-numbered
pages, but vice versa on evenes The Title command produces a
three-part title liney of which the first part is left
Justified, t he second centered, and the third right
Justified: this is handy for titles, and simple table en-

tries.

15

When filling 1lines, words may be automatically
hyphenated to improve the fit., The Hyph command activates
this,y, and can also specify discretionary hyphenation points
different from those chosen automatically.

The left and right output margins can be reset by the
Margin command, The Indent command gives temporary margin
changes, for just one output line, as at the beginning of a
paragraphe A default jndentation (amount) can be speclfied,
so that it need not be given anew at each jndent (instance).
In Hyper, temporary indents may apply for any (specific)
number of output lines, and successive ones to the same mar-

g2in may be nested.

Special Horizontal Effects

Hypo's Tab command sets a tadb character and tab sitops
for formatting tabular datae. This works best in nofill
mode . At each occurrence of the tab character, the current
output position is calculated, then advanced to the next tab
stope. Associated with each tab stop is a Justification
mode , which is applied to the line fragment that begins
there, using the tab stops as alignment margins.

Hyper's Table command is quite different and rather
more general. It is given one or more tarle Iformats, each
being a list of the ,justification modes, and optional width
information, for each column in the table; then this is fol-
lowed by a list of table entries, which can be general text,
not just simple line fragments., After the whole +table has
been assembled, the appropriate column widths analogous to
tab stops are computed, and then the table 1Is produced.

Hyper's Column command gives multiple-column putput:
the output page is partitioned intoc two or more more columns

of equal width, the output simply being formatted as though

156

the page width were rather smaller, and the small pages then
set in parallel, Hyper's Newcol command skips output to a
new column.

Hypo's Merge command defines a merge pattern. This is
a line of characters that is compared with each output line;
wherever the regular output line has blank spacey the
character in corresponding position in the merge pattern is
printed. Vertical rules can be obtained this way, as well
as leadering, but the latter is sBomewhat awkward since
extraordinary blanks (see below) may have to be used in the
text to prevent leadering being inserted where it does not
belong. Hyper has a Leader command that specifies the exact
position to ingert leadering, and a string to repeat as the
leadering. In Hyper, another way to get vertical rules is

with the Table commande.

Yertical Effects ,

The Space command leaves a vertical space of specified
size in the output, or, in Hyper, 1t may advance to a cer-
taln position on the rage. The body or bhody size of the
output type, which is the usual line spacing as measured
from baseline to baseline, can be reset by the Body command.

As implied above, the output is finally divided into
pages, which are numbered, normally, consecutively from 1.
The Page command forces output to skip to the next page, or
the next odd or even pages The Height command resets the
size of a pagee.

By default, each page has a certain amount of top mar-
2in and bottom margin which is left blank; the sizes may be
reset by the Marg command. The Head or Foot command,
respectively, sets a heading or footing to be printed in
those margins of every page; Hypo allows multiple headings

17

and footings, and they can bhe three—-part titles. The cur-
rent page number may be Iinserted into the heading or footing
when it is printed. In Hyper, headings and footings are
considered simple reusable traps. Traps may be set at any
page location, and may include general text (any commands in
the trap are executed when it is tripped), and thus alsos in
effect, formatted text.

Footnotes also can contain general text, and are set by
the Footnote commande. They are placed at the bottom of the
first page where theré is roomy after the command is encoun-
tered. In Hyrper, footnotes are generalized to gpe-time
trapss, which are like reusable tragps, except that they
disappear after being tripped. Both kinds are set by the At
commande

Text may >be cons idered a seguence of paragraphs
delimited by breaks. Hypo will not allow a paragraph to be
divided between pages if one portion would be very shorte.
Instead, a blank line 1Is placed at the bottom of the page,
and the line that would have been printed there starts the
next page. This widow elimination feature may be disabled,
or the critical “very short” length increased above one
line, by the Widow commande. All this also applies in Hyper
to a paragraph divided arcund a trar or between columnse. In
Hyper, glued text, a section of general text that must not
be divided, may be specified explicitly by the Glue command;
Hyper's Float command gives floatlpg glued text, which must
not bhe divided but need not print immediately (other plain

text could fill the paged.

18 '

Lnput/Output Effects

General text may be inserted not only from a macro but
from a file, by the Read command. File ipsertion enables a
large document to be edited in parts of handy size (this
thesis comes from over 30 flles); alsoy, it allows a set of
common macros or initializing commands to be used with
several different documents.

The Index command appends formatted text to an jndex
file, as for a table of contents (with page numbers obtained
from Tpnum”). In Hyper, there is also a Write command,
which appends text still in the input form to a work file,
which could later be used in a Read commands Any variables
and macros invoked in the text are inserted, but commands
are copied and not executed. Hyper also has a System com—
mand, which is like Write except that the text is passed as
a command to the system instead of written to a file, and
{where the installation allows) a Pipe command, in which the
text is sent to another programe

The If command gilves conditional processing of some
general text, and thus conditional execution of commands;
the Note command is for unconditional omission, giving com~—
ments. Hyper also has a While command that causes some
general text to be inserted in the input repeatedly until
some condition is false. Conditions are specified by rela-
tions among numerical expressions, or by string equality or
inequality.

Since some input devices may have a limited character
set, the Case command 1is available to provide automatic
translation of gcase escape sequencese. That is, a gcage
escape character can be chosen, and each letter in the input
translated to upper case, or lower case, or sismply the op-

posi te case, except when preceded by that character, which

19

reverses the case of the letter and itself vanlishes.

Since the typesetter?'!s character set may be larger than
the computer?’s, the Char command is available to obtain the
additional characterse. It can change the normal output as-
sociation of some input character otherwise unused (such as
an ASCII control character, if ASCII i1s the character set),
to be some output character otherwise wunavailable; another
option simply makes the command behave like a string whose
value is the desired characters Alsc obtainable with Char

is +the extraordipnary blank, which prints as a blank but is

otherwise treated as an ordinary graphic characters

The Literal command takes +the following (specified
amount of) input gquite literally, ignoring any characters
with speclial syntactlic meanings (If this would be needed
frequently, the Control command should probably be used.) In
Hyper, the Trans command controls automatic transliteration
of cutput, which provides an alternative to the Char com-
mand, and another way t0 output control characters: any

output character can gimply be mapped into any other.

5. A PARTIAL SURVEY OF TEXT FORMATTERS

Before choosing the commands and syntax of EZ27,
various conventioconal formatters were studied. Thosey, and
some others, are compared in this rather long {(but perhaps
interesting in its own right) sectione. First, CypherText,
DIP, FORMAT, NROFF (with -ms, TROFF, EQN, and TBL), PAGE-1,
PROFF, QUIDS, Roff {(and Vroff), RUNOFF, SCRIPT, TEX (with
Basic format), and TYPE are described in detail; then, soms
distinctive features of various other formatters are
described.

For uniformity's sake, the various names will be writ-
ten with only the first 1letter capitalized (TEX will be
called Tex, though properly 1t would have to use Greek
script letters in lower casa),. Likewise, the present tense
is used throughout, though, as the reference dates Indicate,
some descriptions are surely out of date, albeit +the most
recent found. {The Honeywell Computer Journal is defunct,
for instances.) Some of these names have been reused for
several varlant or even entirely different formatters, for
instance “Runoff” [Roistacher 1974], but each description
makes clear which formatter i3 being described.

Each description (including Bypoy as mentioned above)
lists topics in the same order. Several features that are
more or less identical among most or all of the formatters
are described below; each detailed description assumes
these, unless otherwise stated.

The formatters are of the conventiocnal type. Input is
in the form of a file of ordinary characters, consisting of
general text, made up of lines separated by npnewlipe
characters (sometimes represented as "<nl>%; thus “<ni>:*

means a newline followed by a colon)e. The output from the

20

21

formatters falls into two types: pongospaced (having all
characters the same width, like these) and typeset.

Filling and pad justification are default, but nofill
and left and center modes are availables There is a bresk
commandy and some other commands also cause breaks.
Automatic hyphenation is optional, and discretionary
hyphenation points are supporteds.

The fornatters of monospaced text support underlining;
those with typeset output allow selection from a range of
type sizes and, independently, fontse. Body size can be
selectedy and vwvertical space (blank lines) left where
desired.

The left and right margins can be reset; the left mar-
gin <can be changed tenporarily for the first line of a
paragraphe

Output is automatically divided into pages. The page
height and top and bottom margin sizes can be reset, There
are commands to start a new page, and to reset the page
numbers.

File insertion is supported.

S{a) Cyphertext

Cyphertext, desligned at the Cyphernetics Corporation
{ Anhn Arbor, Michigan), is a general-purpose formatter for
typeset text, It can drive various typesetters and also
produce monospaced proofs. The jisplementation language is
PDP-10 mssembler because “FORTRAN was felt to be too awkward
and inefficlient” for the purpose and nothing else was
avallablee.

The source [Moore 1970] for this section is not a com—-

plete manual; certain points are not explained.

22

Commands and Names

A ™/” begins or ends a command list; commands within a
list are separated by *;7's., A command may be followed by a
space and one or more arguments delimited from each other by

“,"tg, Extra blanks are allowed at least after a *," or

‘;', and newlines appear to be equivalent to blanks every-
where, The “/” at least can be set +to ancther character,
but apparently not within a document.

Strings and macros are both supported, but macros may
only be used as commands, whereas strings can be inserted
only as command arguments or in plain text. (And there |1is
the ™map” command, which assigns a string to a 1-character
name) every time that character occurs in the input, the
string is inserted at once, before any syntax scanning for
commands.) To insert a string (of the ordinary kind) into
text, one uses an "@” followed immediately by the string
name {(presumably delimited by a following blank), or alter-
natively the string name is menticned in an ®*include” com-
mand: *dstring” or “/include string/". Macros, or strings
used as arguments, are simply referred to by name in the
command list: “/macro argument, argument/® or “/command
string, otherargument/”.

The text assigned to a macro or string is given within
the command list as an argument, delimited i1tself by either
*u? 59 ™7 characters (the reference is actually +typeset
with %" and "7"0 characters, but these are very rare on com-
puter systems). A macro'’s parameters are referred +to by
local names 1listed in parentheses after i1ts name. Thus
“/define gap (amount), 'space amount!/” defines a sSynonym
for the “space” commands (The macro text has no “/"'s since

it can only be used as a command anywaye.)

Strings in Cyphertext serve also as variables. The

23

values asslgned to them, and other numeric arguments of com~
mands, may be given as expressions.

A predefined string gives the page number, but it is
read-only:? it cannot be reassigned. Other predefined names

give the date, time, and output positione.

Ordinary Horizontal Effects

There is no way to specify discretionary hyphenation

points.

Special Horizoptal Effects

Tabular output appears to be suppor ted. Assigning (by
"set”) a value to the reserved name “field” creates a list
of output columnsy each with agssoclated margin positions and
Justification mode (left, center, right, or pad). Par-—
titioning of output between fields 1s by the *nextfield”
commands I+ is not clear whether this mechanisem can be ap—
plied to give right justification, and permanent changes to
the left margin, in ordinary running text; no other way to
get these effects is described, Useful in tables is the
*leader” command, which repeats its single-character argu-

ment as a leader to fill the output line.

Yertical Effects
Cyphertext can autcematically leave vertical space

between paragraphs, as well as Iindenting the first line of

eache

Reusable traps are supported at the top and bottom of

the pages

24

Input/Qutput Effects

Conditional input can be obtained by the “skipif” com-
mand, which takes as arguments a relational operator and two
numeric expressions (in that order). If the relation is
true, commands and text are ignored (though parsed) untlil an

Yendif” command is encountered.

5(p) Dip

Dip was written at the Tata Institute for Fundamental
Research (Bombay, India). It contains a device-independent
portion that can handle monospaced or typeset text, and
postprocessors for various typese tters; there is even a
monospacing postprocessor for typeset text, as for proofing.
Dip?'s intended user community was compositors rather than
computer people: it “inrplements a minimal but complete set
of composition primitives.” The implementation language |is
FORTRAN 1V, for portability.

The source [Mudur 1979} for this section is not a com-

plete manual; certain points are not explaineds.

Commands and MNanmes

A command occupies one line starting with ™7

’ except
that o ™<” on that line effectively starts a new line; in

other words, “*<nl>**, and sometimes “<*x", starts a command

and “<® or a newline ends it. (This is not quite accurate

*+ ¥ at the very beginning of the input would also

since a
indicate a command. For purposes of discussion it is being
assumed, in fact, that a virtual newline always precedes the
input, so that a newline does precede each line.)

N

The command name follows the and may be given

either in a long form or as an acronym: “alter left margin”

25

or t*alm”. In the long formy, 5 characters of each word are
significant; the blanks between words are therefore man-
datorys It is also possible to define a synonym for a com™~
mand, or rename 1t altogether. Scale designators are al-
lowed for physical dimenslions.

Commands may always be specified with associated
“*scopes®”s. The characters *<”7 and “>7 form pairs, with
nesting allowed; when *{" terminates a command, its scope is
the general text up to the matching *>%. This is recom-
mended for relatively short sectlons of text. Also
avallable are “blocks”, apparently defined by paired com—~
mandsy which render any commands within them as local to
themes The character “*" at least can be reset.

Two blank lines in succession indicate a new paragraphy
but “of course” this feature is optional; Dip also supports
some special handling of punctuation on inputy but just what
is not explained, except that it can be changed by command.
Since Indla is multilingual, Dip was designed not to be
restricted to English text.A

Macros are available, but no details of syntax are ex-

plained; the only example given is “in pseudo Dip (to avoid

further explanation of Dip commands)?.

Ordinary Horizontal Effects

Subpscripting and superscripting, regarded as additional
fonts, are supported.

Right Jjustification 1is available.,

The automatic hyphenation facility does not support
discretionary hyphenation points, but does have a built-in
hyphenation exception dictionary, vhose use is optional.

There is a command to update the exception dictionary.

26

Yertical Effects

There are commands for headings, footings, footnotes,
and *blank space for figures”, Vertical justification |is
available. More general “trap” concepts were specifically

excluded as inappropriate to a compositor~oriented system.

lpput/Qutput Effects

There are commands for conditional input, which are not
discussed in detail, The current output position can be
tested, as c¢an whether the page 1s a right- or left—hand
ones The conditional text is apparently specified 1like
other commands' scopes.

There is a command to translate output into block
capltals; no other case translation commands are mentioned,

Ordinary file insertion is not supported, but macro

libraries (on random—-access files) can be accessed

dynamically.

S(c) Format

Format [Berns 1969] was written at IBM and ™is a
single, productiony batch processing progrem .. best suited
for documents which do not require the highest quality
printing and which are characterized by high revision
rates.” Its ocoutput is monospaced. The implementation

language 1s IBM FORTRAN 1IV.

Commands and Nanes

Input 1s initially in Rcontrol card mode”, wherein each
1ine is taken as containing one command. {(The first three
letters are significant} the rest cf the line is only ex-

amined for arguments.) The “G0” command switches to “text

27

mode”, where input is taken as general text, and newlines
are totally ignored (except in nofill mode). In text mode,
the sequence *)7 initiates a command 1list, and another
blank terminates {it; each command consists of one or two
characters only. The “V” command switches back to control
card mode.

On input, maltiple blanks are interpreted the same as
single ones; the *N-8-2 multipunch” character is an extra-—

ordinary blank.

Ordinary Horizontal Effects

There is no automatic hyphenation, though lines may be
broken at actual input hyrhens.

Functions affecting the document layout are generally
separated by Format into two kinds of commands : "layout
control” commands (of the control card type) specifying what
is to happen, and “text control” ccmmands (of the single-
character type) indicating where. Margin changes of all
kindss and tabbing, work that way: one control card has a
list of pairs of left and right indentations, another has a
1list of tab stops, and a third gives the indentation for the
beginning of each paragraph. The corresponding text control
commands then select a pair of indentations from the 1list
{either permanently or as a hanging indent), advance the
output to the next tab stop (filling with either blanks, or

*,"tg as leaders), or start a new paragraphe

Special Horizontal Effects
Multiple-column output is available.

28

Yertical Effects

A heading may be defined, though perhaps only one line
is allowed; either footings {(on a similar basis) or foot-
notes are also supported, but not both. (These points are
not explained clearly, nor is the syntax of the relevant
commands.s) Page numbers may be printed in either one of the
top corners, or both alternatelye.

A pair of commands can delimit a section of glued text;
the alternative peed makes the following (specified number

of) output lines into glued text.

laput/Qutput Effects

Format does not support file insertion.

The "DIC® command generates an alphabetical list of all
words of 4 or more letters in the input.

The main output can be duplicated (including side-by-
side printer copies)y, sent to tape,y, or punched.

There is no conditional input, nor any way to enter an
ordinary blank followed by a “)” literally.

Input <can be from tape, and can be specified as being
in upper and lower case, or IBM Model 026 or 029 keypunch
characterss, When it is in upper case, it is mapped to lower
case, except as indicated by the case escape, which is the
"gZ#: 3£ this is used as a command it starts or ends block
upper case output. There is also a mode where the first
letter of each word is capitalized on output, as for a name,
and a mode where Format attempts to recognize new sentences
and capitalize the first letter of each one automatically.
Speclal characters can be entered as two hexadecimal digits
preceded by “1”: e.g., *1B2” gives an EBCDIC “27,

This batch-oriented formatter has its own editor, of

1t he preprocessing type. Invoked by the “EDI” control card,

29

it takes commands such as °“SINSERT”, with an input card
number and word number to indicate a position. The editor
command “SLOCATE”? lists where a given word is used; applied
to words selected from the ®DIC”'s output, this could be

helpful in (manually) preparing an indexs

5(d) Nroff (and Troff)

The names Nroff and Troff both refer to a general pur-
pose formatter [Ossanna 1977; Kernighan 1978-A] written at
Bell Telephone Laboratories (Murray Hill, New Jersey) and
modeled somewhat after Roff but with an eye to greater flex-
ibility. Troff's output is typeset (on a Graphic Systems
phototypesetter), but monospaced proof output is avaellable;
Nroff's is monospaced (but variable-width blanks are sup—
ported when the output device permits). For input com-
patibility, Nroff generally ignores functions relating to
typeset text only. Both versions are being discussed below,
except where Troff is mentioned by name: *Nroff” 1is wused

for bothe. The implementation language 1s C.

Commands and Names

In Nroff, either “<nld.” or *<nld>'” gtarts a command
{ when *1” js used, the ccmmand never causes a break), and a
newline ends it:. After the control character, the next non-
nplank character and the character after that are the command
name; the rest of the input line nay contain arguments,
generally delimited by blankse.

Some other commands, called “escape sequences”, are
initiated by the single character *\” s0 that they can occur
in the middle of an input linej the following character

names the escape sequences Any arguments follow im-

30

mediately. (They are mostly short and never need a ter-
minating newlinee. For instance, "\sl10” gives type size 10
points in Troff.) Some escape sequences produce single
characters: "\ * gives an extraordinary blank and "\\? a
literal ™\”. There are commands to reset each of the con-

" # g W b
o 9 pl y and \"o

trol characters

There are also certain implicit effects needing no com-
mand? a wholly blank (or null) input line causes a break
and a blank output line, while a line of text with some
leading blanks causes a break and a corresponding~sized tem-
porary indent. Also, the punctuation marks .7, *?, and
“31” are special in that if they occur at the end of an input
line but are placed in the middle of an output Lline by
filling, they are taken as end—-of—-sentence indicators and
followed by extra spaces

Relative values are often allowed for numeric argu-
ments, and if these arguments are omitted the action 1is to
restore the previous wvalue of the parameter, where this
makes sense. Numeric expressions may be used for arguments
as well as constants, and relaticnal operators such as >
are permitted in expressions (as in APL and B, they give an
integer truth wvalue of 0 or 1)s Arguments that refer to
physical distances may (and, in sSome cases a naive user
might not expect, practically must) include a scale desig-
nator,. Some scale units have somewhat different meanings in
Troff, including some relative units., Also, where it makes
sense, arguments can be specified with a preceding Al Bed to
indicate absolute physical position: “<nl>'sp |61i”7 causes
+the next output line to be spaced down to 6 inches below the
top of the page.

Some commands operating on considerable amounts of text

use a specified number of following input lines as thelir

3

operands: “<nl>.ce 3" centers the next 3 lines, breaking on
each. Other syntactic forms are described below.

Nroff has several commands to define macros and
strings. The basic “de” (define macro) takes for the macro
text each input line up to (and excluding) one starting with
*.e”: another command { or macro) name can be specified as a
delimiter on the “de” command, and then the text taken |is
everything up to the first occurrence of that command, which
is then executeds Also, the *di” command diverts output in-
to a ‘form&tted string (with minor restrictions in Troff);
the diversion runs until another “di” command occurs, and a
*4i” with no argument restores normality. The “ds” (define
string) command takes for the contents of a string the rest
of the input line following the string name and delimiting
planks (an initial *"" will be dropped, soc that the string
may begin with blanks, but it can never contain a newling).
For each of “de”, ™di”, and “ds”, there is a corresponding
command that works the same way except that the text is ap-~
pended to the macro or string.

Nroff also supports variables. Each may be assigned an
individual output format (such as Rowan numerals) and “auto-
increment size” (see below; default is 1).

Macro, stringy, and variable names are restricted to a
2-character maximum. The invocation of a macro or formatted
string is syntactically the same as a command: *<nl1>."” A(or
“nl>**®) followed by the name and perhaps arguments. The
places to insert the arguments on invocation are indicated
in the macro text by ®\$” (which must be entered as “\\$” on
definition) followed by a digit denoting the argument
number: *<nld.de pw <n1>\\$2th power of \\§1 <nl1d..
<ald>.pw two 5” would result in “Sth power of two”.

A “ds”-defined string is invoked by ™\ *”, followed by

32

the string name if it is 1 character, or by ™M” and +the
string name (no “)7) if it is 2 characters. A variable is
invoked similarly, except that “\n”y, "\ n+%, or "\n-" is used
instead of ™ *”; the two latter forms first add toy, or sub-
tract from, the variable its auto-increment size.

One use of macros is the provision of predefined
packages which may simplify preparation of a particular kind
{or several kinds) of document by providing relatively
specific functions which the forwmatter does not support
directlyy though the user could produce them with ap-
propriate macros or combinations of formatter commands.
Such a package, of fairly general scope, is avalilable on
UNIX for use with Nroff, under the name -ms [Lesk 1978].
Some of its features will be described below.

Although an input newline is ncrmally taken as a word
space, and a break if in nofill mode, preceding it with \Nc”
cancels these effects, so that commands may be placed within
a word of texts. This is called jpnterrupted text procegssings
On the other hand, the escape sequence "\<nl>” (a congcealed
newline) is totally 1gnored, thus permitting arbitrarily
long IJETCaI input lines.

Nroff has many predefined variables, Including the page
number, date (by components, including day of the week),
distance to next trap ¢cr end of page, and number of argu-
ments with which the macre currently being Inserted was in-
vokeds Some are read-only. A predefined function
*\wistringf” (*f” can be almost any character) computes the
width of a character string (and sets variables to indicate
the presence of ascenders or descenders) and can be used in

place of 2 number in expressionse.

33

Ordinary Horizontal Effects

The Graphic Systems phototypesetter supports various
special characters, each available in Troff by “\(* followed
by the character!s 2-character name: for instance, “\(dd”
gives “*t”. These special characters include ligatures for
“e£”, “rf£i”, “f£1”7, “£i”, and “f17; besides their escape se-
quences., the ligatures may optionally be generated
automaticelly by the corresponding letter sequences in plain
text. When not in Troff, the special characters are
represented with combinations of normal characters as far as
possibles With -ms, strings are available for various ac-

cents to be properly placed: for instancey, the string wte

places that accent, so “* a” gives “ar.

Continuous underlining is available as well as the
usual underlining of alphanumeric characters only. In
Troff, though, either kind is interpreted as a font change.
{ Conversely, the corresponding font's escape sequence in
Troff gives underlining when not in Troff.) Also, in Troff,
a font can be assigned a single type slze, or can be embol-
dened by overstriking each character with itself slightly
offset.

There is an escape sequence that causes a break with
pad justification on the partial line it terminates (unlike
a normal break).

It is possible to request that hyphenation never

separate 2 letters from the rest of the word, and that words

never be hyphenated onto the next page {(or around a trap),

34

Special Horizontal Effects

With -—ms, the user can automatically produce section
headings with structured numbering (esgesy 3.1.4 for section
3, subsection 1, item 4),.

Nroff allows three—-part title lines anywhere. The com-
mand requesting them is followed on the same line by a se-
quence like “fxfyfzf®, where *x", “y”, and “z” are the three
parts, and *f* is any character not found in any of the
parts,. The user may also specify a short hyphenation excep-
tion list,

With -ms, a paragraph may be specified with a hanging
indent of the left margin, or with indents of both margins.
There is also a -ms macro which will take a group of lines,
center the longest one, and align all the others with it by
the left margine.

In addition to the tab character, the ASCII TAB, Nroff
has a “leader character”, the ASCII SCH,. Elther one |is
interpreted on input, before formatting, and causes the fol-
lowing text to be advanced to the next tab stop {(tab stops
are set by command); the intervening space is filled with
repetitions of the tab replacement character (normally the
extraordinary blank), or the “leader replacement charac ter”
{ normally .7, respectively. The two replacement
characters are resettable, independently, but the tab and
leader characters are note. {There are esScape sSequences
giving literal tab and leader characters.)

A flexible Jjustificatlion mechanism usable with tables
is controlled by resettable “field delimiter” and “padding
indicator” characters. Ceccurrences of the former are used
to partition an input line into flelds corresponding to tab
stopsy much as tab characters doj but instead of left

justifying the line fragment within each field, the places

as

marked by padding indicator characters are blank-padded
equally to fill the available space in the field.

As mentioned above, a number of other programs are used
in conjunction with Nroff on UNIX [Kernighan 1978-D]. One
is Tbl [Lesk 1979], a general program for table formatting.
It is a preprocessor: its output is normally passed (via a
UNIX “pipe”) toc Nroff. The pseudo-command “<nl>.TS” in-
dicates a table; ™<nl>.,TE” ends it. Fverything not in a
table is passed though unaltereds.

Since Tbl is not part of Nroff propery it will not be
described fully here, but a simple example will be given.
The ®TIS” 1line might be followed by a table format such as
*"c s ¢y 1L n ne”; this means that the first line of the table
contains a field centered over two columns (“s”, for ‘span',
means this columh is combined with the previous one, for
this 1line), then another centered field, while esach subse-
quent line contains a left justified field and two numeric
fields to be alligned by thelr urits digit. Following the
format line would be the datay, with a +tab character
delimiting each entry and a newline each new rows,

In Tbl, table entries can be general text, not ust
line fragments; column widths and spacings can be ei ther
specified or deduced; various boxes and lines can be drawn;
the completed table can be centered as a whole.

With -ms, multiple—-cclumn output is available.

For each nonblank cutput line, Nroff can print in the
right margin a “margin character®, and in the left margin a
1ine number (which may be blanked out when not a multiple of
some specified value).

Nroff supports lgocal motionsy ie.e.y explicit changes in
the positioning of text {(in any direction); abbreviated

escape Sequences provide common motions such as forward and

36

reverse half linefeeds for superscriptinge. The user can
also space up +the page to a position explicitly marked by
command e A character can be repeated to fill a specified
dimension vertically or horizontally, or to match the size
of some text (and -ms can use this tc draw a box around it).
*tTall characters” requiring extra blank space above or below
them are supported, as well as various variations of over-
struck and vertically piled characters.

Another preprocessor is called Eqn or Negqn (for Troff
or Nroff respectively) [Kernighan 1876-A; Kernighan 1978-T].
It is intended for mathewmatical “formulae”, but is suf-
ficiently general to also be used for chemical equations
[Edelson 1977]. The formulae can be delimited by pseudo-
commands like Tbhbl's, or the user can define left and right
math delimliter characters {(perhaps the same character) and
put the formula between them. A formula does not cause a
breaky so it can be run in line.

One example will give the flavor of Eqn: “x = {-p +-
sqrt {b sup 2 —-4ac}} over 2a” is the formula for the roots of
*ax sup 2 “+bxtc¥, Here Tsgrt” gives a square root sign

(with vinculum), “over? a displayed fraction, and “sup” a

superscript. (If the letters “sup” were actually wanted, as
in a supremam, enclosing quotes would be necessary?
RHgupn”,) The blanks in the example are necessary
delimiters? as in programming languages, there are binding
rules +to resolve the operands of “over®, “sup”, and so on.
The *{” and ™} ” characters produce no output but override
+the binding rules3 characters such as parentheses are not
special to Egn and have no ettect on binding (after all,
*(0yx]" is a legitimate formula)s Anything interpreted as
an ordinary math variable is set in italics unless otherwise

requesteds R +=-® nhecomes *t¥, and other special characters

a7

are similarly available by reserved character Sequencese.
Accents and multi-line arrangements are also supported.

In Nroff +there are several formatting gpnvironments
identified by numbers., Each has its own values for many
formatting parameters such as margin settings, Jjustification
mode, £1i1l mode, tab stops, hyphenationy body size, tab
replacement character, and ccntrol characters. All commands
affecting such parameters do so only within the current en-
vironments The user can switch to another environment with
the “ev” command, which pushes and pops a {(limited) stack of
current environment numbers (not of environments, S0 the

same one can be on the stack more than once).

Yertical Effects

Any macro can be associated, as a trap, with the end of
the input, or else with a position in either the output
page, the current output diversion, or the input; when that
position is reached, the trap is tripped and the macro in-
vokeds. Traps associated with the output page are reusable;
the other kXinds are inherently one—time. A trap contalning
plain text ought to switch environments to make the trap
text independent of external matterse. In —msy traps are
used to implement headings, footings, footnotes and
multiple—-column output; none of these facilities iIs provided
by direct Nroff commandse.

Nroff has a need command. There is also a command “sv”
{ *reserve space”) that glves vertical space if there is room
before the end of the page, or the next trap; but if there
is not, the command is simply set aside. An Yos” command
{ *Youtput saved space”) retries the last “sv” if it could not

be executed before: “os” is intended to be used in traps,

giving ®sv” practically the effect of floating glued space.

38

Lnput/Output Effects

In addition to the usual file insertion, there is a
command to skip the rest of the current input file and in-
sert another one insteade.

There is a command to accept general text from the
s tandard input (which may be the terminal) until an empty
1line is read, Also, messages can be sent to the terminale.
Anothar command (not in Troff) will pipe the formatter out-
put to another program for postprocessings. There is also a
command to terminate execution.

The “if” command takes a condition argument, then the
rest of the input line is taken as general text (i.e.y one
command or plain text) to be processed or skipped; several
lines can be attached to one “if” command by enclosing them
in "\ {" and ™}”). The condition may be an arithmetic ex-—
pression {(true if positive), a string equality comparison
(syntax similar to three—part tities), or a predefined con-
dition (the parity of the current page numbery, or whether
the formatter is Troff). Any condition may be preceded by
%1% +o reverse the tests The command “ie” (if-else) is just
the same as “1f” except that the comparison result is also
saved on a stack; later, an “el” command pops that stack and
acts like an "if” with the opposite test to the cor-
responding “ie”'s, There is also a command {syntax like
“de”) to ignore input (except that “\n+” and “\n-"” sequences
still alter variables) up to a specified delimiter, and
there 1s an escape sequence for in~-line ccmments.

Nroff supports automatic character transliteration on
output; if the formatted text is stored (with *di”), trans-
lation takes place then.

On input, macro definitions and any line beginning with

“\1” are processed In “ccpy mode”, where most commands (and

39

tab and leader characters) are taken literally but string

and variable invocations are executed.

S(e) Page-1

Page-1 [Pierson 19713 Pierson 1972] was developed at
RCA, with book publishing in mind. It produces output for a

Videocomp typesetter.

Commands and Names

Page—1 considers its input as a continuous stream, not
broken into lines. A command list is enclosed between “[7”
and *]”; commands in the list are separated by “;"’s. Each
c ommand name is 2 characters; it may be followed by argu-
ments, delimited by “,"'s.

Certain commands that reguire a guantity of text, such
as those defining strings and traps, have the text enclosed
in an inner set of “M” and)" characters. That text is
general text: it may include commands, nesting another
M” and *17.

String names must also be 2 characters, specifically a

level of

1ettér followed by a digit; furthermore, the initial letters
*a” through *s” are reserved for predefined ones, only ™t”
through “z” being free. A string is invoked by 1i1s name en-—
closed in ™ * and *]”, Jjust like a commandes There is also a
mode wherein all text is both processed normally and saved
in a special string (one of two, identified by numbers and
invoked by a command)s

Variables are numbered, not named., In addition to
“general” integer variables, there are “indirect” variables

containing integers that are the numbers of general

variables. The “gv” and “iv” commands define the two types.

40

There are a few special variables that do have names, which
also serve as the commands to assign them (if not read-
only): *pn”, for instance, is intended for the page number,
puut need not actually be used for that purpose.

The “dc” command inserts in the text the value of 1its
argument, which is an expression: a variable, an integer,
or one of a group of arithmetic commandsy such as Rad”
{ add), whose arguments are in turn expressions:?
“Mdcy[ads1,ivO5]]” would insert 1 plus the value of the
general variable whose number {is the wvalue of indirect

variable 95,

Ordinary Horizontal Effects

The “hs” command affects the output by dividing all re-
quested type sizes by 2.

Since input has no lines, there can be no nofill mode.

Right justification is available.

Page-—1 has an option where every output line can be
padded, even if terminated by a break. There 1s also a com-—
mand which causes a break {(and pads the partial line thus
formed) only if the current horizontal output position |is
close (the threshold sgecified in relative units) to the
right margin; this horizontal analog of the need command is
used before constructs which Page—-1 might treat as two words
bput which must actually stay on the same line, such as words
with superscript numerals (footnote refgrences) attached.

The amount by which blanks can be altered in width for
justification 18 limited and may be set by the user.,

Page—1 has a hyphenation exception list built inj its

use is optional.,

41

Snecial Horizontal Effecte

For tables, three commands, “xc”, *xr”, and “xt” (tab
center, tab right, tab) cause the text following them to be
respectively centered or right or left justified between two
{ possibly specified) tab stops as margins. There are also
commands for horizontal local motions, the distances being
glven in relative units,. The command “f1% is replaced by as
many repetitions of its 1 or 2 argument characters as fit on

the line, for leaderings.

Vertical Effects

In Page-1, not only is output divided into pages, but
pages are divided into “text blocks”.v Page—1 supports traps
at +t+he end of text blocks: the “ab” and ™wb” (after block,
when block) commands respectively set a one~time trap
tripped when the current block endsy and a reusable trap for
the end of every block. These <can be used to implement
headingsy Ffootings, and (with *ib”, described below) foot-
notes: none of these facilities is grovided directly, nor iIs
automatic page numbering. Another form of trap, tripped
8imply by the completion of a filled output line, is set by
“ar” and “wr” (after return, when return), again respec-
tively one-time and reusable.

¥hen there is nothing more tc go In a text block, ver-—
tical Justification can be applied in several wWaAYS,
analogous to the horizontal justificaticn modess The text
can be vertically centered, or justified agalinst the top or
pottom margins of the text block; or it can be padded to be
Justified against both margins, either by expanding the body
size of each line or by padding at specified places. (There
are two commands to leave vertical space: *tj? does, and

*dn® does not, also specify a vertical radding place.)

42

Output need not go continuously to one text block until
it is filled. Many text blocks, identified by numbers, can
be active at a time; however, one is designated the
*primary” and a secondy perhaps, the “interrupting” text
block. The “cb” (cantlnua block) command directs output +to
the primary text block. The “ib” directs it to the inter-
rupting block; if there is none, an “sb” (switch block) must
follow immediately +to create one. Finally, “sb” directs

output to a specified text block, which becomes either the

" »

primary or the interruptling text bleock, according as cb or
*ib” was executed last.
Iaoput/Output Effects

Page—-1 does not support file insertione.

The command “su” begins a “trial set”. That is, the

text read is processed, but the formatted output is merely
saved; the trial set is ended by a “us” command, according
to whose expression argument the saved output is either used
at once or totally ignored.

Conditional processing of general text is available
based on comparisons between two numeric expressionse.

Page-1 has a series of ccmmands which serve as a

preprocessing editor.

5(£) Prott

Proff [Beach 1976] was designed at the University of
Waterloo with the aim of easily converting existing Roff-
oriented input to be run on its Phcton 737 Econosetter. It
is actually a preprocessor Tfor the primitive formatting
program contained on the snall computer in that typesetter

[Buccino 1980]. The isplementation language is B.

43

Commands and Names

In Proff, *<nl>," initiates a command, and another new-
line terminates its The command name is the 2 characters
following the ™.Y, and wmay be followed by arguments
delimited by blanks. Arguments may be enclosed in the guote
character *"*, sp that they may contain blanks themselves.

“"® can be reset.

The “.” and

Expressions and relative values are supported for
numeric arguments; when representing physical distances,
they may also have scale designators.

Macros in Proff can bke invoked in two ways: by the
same syntax as commands {except that macrc names need not be
exactly two characters long), and by the use of a resettable
insertion gcharacter followed immediately by a l-character
macro name or by (¥, the macro name and arguments, and “)7.
The insertion character allows a macro to be inserted in the
middle of a word or unfilled line. The places to insert the
arguments are marked when the macro is defined by a
resettable parameter character, a single character used ex-
actly 1like Nroff's *\$”. (By default there is no insertion
or parameter characters)

Variables may be assigned individual output formats;
they also are inserted using the insertion character syntaxe

It is possible to undefine a macro or variable.

The *at” (assign text, meaning define macro) command
takes as t he macro text everything up to an “en” with the
same macro name as argument; this syntax facilitates macros
containing “at” commands. Other commands that operate on a
considerable gquantity of text take it from (a specified

number of) following input 1lines: ®<pld.ce 3" means the

same as in Nroff.

44

Ordinary Horizontal Effects
The Photon Econosetter has “ff¥, *f17, and *f1” liga-
ture characters; Proff, optionally, interprets these se—

guences in plain text input as requesting the ligatures.

Special Horizontal Effects

Proff has a tab facility like Hypo's: each tab stop
hasg an associated Justification mode, left, center, or
right. In fill mode, any input line containing a tab
character causes a break, while lines not containing one are
interpreted as continuations of the last fleld, which can be
typeset as several llnes of filled text bounded by the tab
stop and right margin positions. The tab character is ini-
tially the ASCII TAB but can be reset.

Proff supports multiple~column output.

Proff’é *program mode” simultaneously sets nofill mode
and left Jjustification, and turns off hyphenation and 1lliga-

ture recognitiony, as for computer program listings.

Inpput/Output Effects

The “*1g” command causes all input to be ignored until
an “en” whose argument matches tre “ig”'s argument occurs;
the *if” acts the same as ®*ig” if its second argument, an
expression, evaluates to zero, but has no effect otherwise.

Proff has commands to pass characters through to the
typesetter's formatter unchanged except for character set
translation (transliteration)s This is the only way to ob~
tain sSome of the special characters on the device, as well
as certain other effects.

Proff does not support page numberingy, nor any ef fect
that would require the formatter toe Xknow the position of

output on the page.

45

5(g) Quids

Quids was developed at Queen Mary College of the
University of London (London, England)e. It operates on
monospaced text, not as a conventional formatter but as a
combined editor-formatter, It is mostly written in ™a high-
level systen implementation language”.

The source [Coulouris 1976)] for this section is not a
complete manual; certain points are noct explained., That
paper describes itself as having been produced “with the as-

sistance of Quids”, but it is typesete.

Commands and Names

There is no general text with Quids; {(almost) all com-
mands are entered interactively, and some cause plain text
to be read from the terminal., That text isy, as in Page—1,
taken as a continuous stream of input, not broken into
lines; from time to time a typed klank produces a displayed
newline, to prevent the terminal'’s lines from overflowing,
put internally it is still a blanke An ASCII ESC terminates
the inputy; to allow more commands, as explained below; the
text is then stored in a galley-file-type structure in
memorys. (When 1t is written to a file, apparently a
sequential-access form of the structure is used.)

Commands are named by single letters, each the initial
of a mnemonic word or phrase; when the letter is typed the
full mnemonic is displayed on the terminal, along with, in
Some Ccases, a generated serial number (as for a new
paragraph), or an interactive request for arguments or a
confirmation. Some commands may also be preceded by argu-
ments as mentioned below.

Two special sequences are recognized In plain text,

46

thus being in effect commands: “[ref.” and ™“[fig.", fol-
lowed by @& number and *]”. Also taken as special in plain
text is the character ®*_7; text bounded by two of +them |is
underlined on output.

Quids supports strings identifled by pumbers, but only
for bibliographic references (like “[Coulouris 1976]"). Ap-
parently the string contents must actually begin and end

with M * and *]”., The string is inserted by “[ret.”.

Ordinary Horizontal Effects

No automatic hyphenation is8 mentioned.

There 18 a command %*o specify in advance, along with an
identifying number, a temporary indent of either margin for

several lines; it takes effect following a “[fig.” with that

number.,

Special Horlzontal Effects
Tab stops may be sSet for the nofill, left justified

mode; a tab character {apparently the ASCII TAB) causes the
text to be advanced to the next tab stop.
Quids allows text to be inserted as a marginal note to

the left of the output.

Yertical Effects

Headings are supported, at least in the form of one
centered line, and page numbers may be printed
automatically. Page numbers may not be reset, nor may the
top and bottom margin sizes.

The user may divide the document, by commands, into
sections, and those into subsections. Each has a title,
which will (or may) be printed centered, cptionally preceded

by the section or subsection number,

47

There is a command to produce a table of the section
and subsectlion headings, or of the biblicggraphic references,
or of the “index entries”. The format of the table 1is not

explainedy, nor are index entries.

lnput/Outnut Effects

There are several “modes? of interaction, each with its
own set of commands ({whose names, but not mnemonics, may
conflict with other modes)s The initial “context edit” mode
is for operations on gparagraphs: they can be inser ted,
deleted, edited, displayed on the terminal, written to a
file. Its commands are modeled sSomewhat after the text
editor QED: optional preceding arguments may specify a
range of operand paragraphs, the default generally being the
one last referenceds There are also commands to search for
a paragraph containing a particular character string and to
pass to the next or previous paragraphe Paragraphs are ad-
dressed by three numbers, section, subsection, and
paragraph, separated by “."'s. Truncating this, when it
makes sense, denotes an entire sectien or subsection. As in
QED, any insertion or deletion immediately changes =all fol~
lowing addresses; the numbers are alwayes consecutive, The
first paragraph is number 0.0.1 if no section or subsection
heading precedes it.

As well as paragraphs, headings, etce.y the text on the
galley file may include certain opcodes; all types of item
are numbered in the same address space, so that “paragraph”
number 101 would actually be the first section headinge.
There are commands to edit opcodes, but no details are ex-
plained,

“context edit” mode has a commend to replace all occur-

rences of a particular c¢character string, in a range of

48

paragraphsy by another. All other editing is done by
aswitching to “local edit” mode for a particular paragraphe.
The commands for this mode are named by various ASCII con-
trol characters, and have no mnemonics; as soon as a command
is given, the displayed text changes to show the result.
The operations are character— and word-oriented; therz2 is no
way Iin any mode to make one paragraph into several, or
several into one, and there are no operations to relocate
texts

The “context edit” mode commands that cause Inszrtions
of paragraphs switch the interaction to “input text” mode.
In this modey, the commands most resemble In function those
of a conventional formatter; some initiate the entry of
plain text, which is actually done in “local edit” mode so
that errors may be corrected at onces An ASCI1I ESC ter—
minates the paragraph and switches back to “input text” mode
for more commandSe.

There is a command in “context edit” mode to insert
text from a file, but what is allowed in that input is not
explained. (Some changes of mode, or equivalent, must be
permitted, if more than one paragraph can bhbe read at a

times)

S(h) Roff (and Vroff)

Roff, a derivative of Runoff intended for general
publication formatting using monospaced text, was written at
Bell Telephone Laboratories (Murray Hill, New Jersey), where
it has been replaced by Nroff. The University of Waterloo
version | Roff 1978)], described here, has several enhance-
ments; 1lts iwplementation language is B. It was used (with

very minor alterations) for this thesis.

49

Vroff is a variant of Roff written at the University of
Waterloo and designed to be portatle between various PDP-11
operating systems; its inplementation language 1Is assembler.
The version [Vroff 1976] described here runs on the Univer-
sity of Waterloo Mathematics Faculty UNIX system. Except
where Vroff 1s explicitly mentioned below, the discussion

applieas to both Roff and Vroffe.

Commands and Names

The command syntax is the same as Proff's (but there is
no default gquote character); the forms of commands operating
on considerable quantltieg of text are also the sames
Interrupted text processing can be obtained by preceding a
newline with the insertion character.

Numeric arguments may be speclified as relative values,
with multiplication and division of the old value by the ar-
gument allowed as well as addition and subtraction. Argu-
ments may be specified as expressions, which may (not in
vroff) include comparison (giving a truth value, 0 or 1),
maximum, and ginupmum ogperators; alsec (not in Vroff), a
character string bounded by the guote character may stand in
place of a number, and its length in characters is used.

Various implicit effects are supported exactly as in
Nroff: input lines beginning with blanks (or null lines)
cause a break and vertical space or a temporary indent,
while certain punctuation marks ending an input line can get
extra space on output. This effect in Roff applies to the
B:” as well as .7, 2%, anda “1”7.

Roff supports variables and macros. The definition and
invocation syntaxes are ldentical with Proff's, including
the use of insertion, parameter, and quote characters, ex-

cept that a macro must have a name exactly 2 characters long

50

to be invoked by the same syntax as a command (names may
have up to 4 significant characters, 10 in Vroff), and in
Vroff macros invoked by the insertion character may not take
argumentsSe. Variables may never have negative wvalues, Each
variable may be associated with an ocoutput format.

Predefined wvariables, besides the page number, include
{not in Vroff) the various components of the time and date

{ and a macro is available to calculate the month name).

Ordinary Horizontal Effects

Roff supports a simulated boldface, obtained by
printing each character 3 times overstruck.

Roff's automatic hyphenation may be turned partially
0oNn,y detecting only discretionary hyphenation points and ex-
isting hyphens, or these things and certain suffixes, as

well as off or fully on. (Auntomatic hyphenation was not im—

plemented in Vreoff.)

Special Horlzontal Effects
Roff's tab facllity 1is syntactically the same as

Proffts, but takes effect on input, before formatting, as in
Nroff. Left, center, and right justified filelds are
avallable, but there is no special treatment of +the last
field as in Proff. Vroff supports a resettable tab replace-
ment character.

Roff (not Vroff) allows text to ke inserted as a mar—
ginal note to the right of the output.

Roff supports merge patternse.

Dutput lines can be automatically numbered in the left

margin, elther continuously or starting anew with each page.

51

Yertical Effects

In Roff the top and bottom page margins are each
divided into two parts, each independently resettable; one
is always clear space and the other may contain headings or
footingss Headings and footlngs are three—-part title lines;
several such 1lines, identifled by digits, are permitted in
either margin (if it has been set large enough), each line
being separately resettable, independently on even and odd
pages., The character "%’ 1In a heading or footing is
replaced by the page number at output time; *%” ia the name
of the page nusmber variable, but in this case it 1is used
without an insertion character preceding, and a literal “%”
cannot be obtained there. (Despite all this flexibility,
Roff cannot antomatically provide the page numbering style
regquired in a University of Waterloo thesis where a major
section begins; for this one, it was fudged, but Nroff or
Tex could do it with general text in a traps)

Roff supports footnotes, and will automatically divide
them between pages 1f necessary; also, a three-part title
line can be specified to be the fogtpnote separator, which is
printed just above the first footnote on each page having
anye

Roff supports a need command, and also {not in Vroff)
floating glued text; the latter carries its own formatting
environment, as do footnotes in Roff, since it is not ex-

pected to be part of the main text of the document.

Input/Output Effects

Roff (not Vroff) has a command to delay processing
while one line (which is ignored) is typed on the terminal.
In Vroff messages can be sent to the terminal, while in Roff

{ not Vroft) commands <can be sent to the systeme. General

52

text {with macro invocations first performed) can be written
to one or another of a set (in Vroff, one) of work files.

For conditional input or comments, the “if” and “ig”
commands are like Proff's, except that “if’ is only in
Veoff, and allows a “1* bpefore the expression argument, to
reverse the test.

Roff can reverse the case of input (Vroff can map it
into all upper or all lower case instead)y and supports a
case escape character, Output transliteration is supported
and is the only way to get an extraordinary blanke. There is
a command to take the following input lines as plain text,
even if they begin with “.”; Roff actually does so anyway,
“
.

unless the characters following the form an actual macro

or command namee.

Roff has a command to sSuppress output for a speclfled

number of pages.

5(i) Runoff

Runoff [Saltzer 1965] was written st the Massachusetts
ITnstitute of Technology {(Cambridge, Massachusetts). A
simple formatter producing monospaced output directly on the
terminal, it has given rise to numercus descendants and
imitators, including Nroff, Proff, Roff, and Script; bheing a
rather simple formatter, it is included heres for this

historical reason onlye.

Commands and Names
In Runoff as in Proff, “<nl1>.” initiates a command; the

command name may Dbe given as a long or short form, as in
Dip. Some commands take an argument, sSeparated by a blank;

the rest of the line is ignored. The “center” command takes

53

+the following input line as its operand, while the “header”

command irregularly uses the rest ocf its own input line.

Ordinary Horizontal Effects
Runoff has no automatic hyphenatione.

Only negative (relative) temporary indents are sup-

ported,.

Special Horizontal Effects

There are no commands for underlining br tables, but
Runoff passes Iinput tab and backspace characters through un-

touched; the terminal may handle them.

Yertical Effects

Only single and double output line spacing are
available.

The top and bottom margin sizes cannot be resets Page
numbers can optionally be printed on each page, but there is
no choice of where. The “header” command prlnfs a heading

line on each page.

loput/Output Effects
The manual is ambiguous as to whether file insertion is

supported or there is a command to skip the rest of the cur-—

rent input file and insert another cnes.

S5{3) Script

Scripty a derivative of Runoff intended for general
documant formatting, was developed at IBM. The version
{ ¥aterloo 1978] described here runs at the University of

Waterloo Department of Computing Services. Its monospaced

54

output can be adapted for terminals with special facilities

such as printing backwards.

Commands and Names

The simplest form of a Script command or command 1list
has *<nl>.” followed immediately by the 2-character command
name; the rest of the line is taken up by the command's ar-
guments, usually delimited by blanks. However, whenever a
line begins with “.”, any occurrence of “;” in 1t is taken
as a Lloglcal end~of-line, so that what follows can be
L U J
.

another command if the next character is » or plain text

otherwisee If a line begins with . 7, everything up to the
next nonblank is ignored, but “3;” is still a logical end-of-

lines The ".” and “;” characters may be reset by command,
even within an input line; another character (there is none
by default) ray be defined to have the same function as
" .ﬂ.

Nroff'ls

For numeric arguments, expressions can be used as well
as constants, Relative values are supportede.

An input line starting with a blank or EBCDIC TAB
causes a break.

Script has the philosophy that one command should be
used for various related functions, distinguished by keyword
arguments (which often can be abbreviated)e. Thus,y while
*<nlDece 37 means the same as In Nroff, alternatively
*<nl>.ce on” could precede the text to be centered and
“snlD>.ce off” follow it, while “.ce” at +the beginning of
each line of text would be another possibility. (™Begin”,
*End”, “Nosave”, “QUit”, “SAve”, “STop”, and “*Yes” are each
synonymous with either “CN” or “OFf", and for each of these
keywords the characters here shown in lower case are op-

t ional.)

55

Likewise, the “dm” (define macrc) ccmmand may be fol-
lowed on the same line by a character not used in the macro,
+then by the conplete text of the macro using repetitions of
that character to stand for newlinesy or else the macro text
may be placed after the command line, terminated by another
“dm® (which is supposed to have arguments of the macro name
and ®*end”, analogous to “en” in Proff, but the verification
is not implemented), A macro having somewhat different
properties (see also below under environments and traps) may
be defined with the “rm” (remote) command; the text is again
placed after the command line, and terminated by “<nld>.rm”.
Script macros may have names of up to 8 characters.

A macro may be invoked explicitly by the ™si” (signal)
command, Or by using the macro name itself as a command; the
latter syntax may be switched off, for macros defined by
*dm® with the ™ms” {(macro substitutior) command, and for

those defined by “rm” by using ™. instead of +the

“ w
*®
pefore the command, With either invocation syntax, argu-
ments are delimited by blanks and referred to in the macro
text as strings named “17, 2%, etce; the number of argu—-
ments is string *0” and all the arguments as one string is

‘*,.
Strings in Script serve also as variables, with +the

natural representation for integer values. The “sr” (set

reference) command defines them. Following this on the same
line are the string name {up to 10 characters plus an op-

-
=7, and

tional subscript in parentheses), an optional
either a numeric expression (whose constants may be in
binary, decimal, or hexadecimal, or as EBCDIC character
equivalents) or a character string (enclosed in “"?, “'7, or
any of 5 other characters, optionally if no uﬁbigulty would

result} the delimiting character may even occur in the

56

string unless a blank follows it.) The name?'s subscript, if
any, may range from -32767 to 32767; if noney, 0 is assumed.
A null subscript (™)), however, means that the same name
with a subscript of 0 contains a number and is to be used as
the subscript after 1 is added to it. (Thus it string
“latin(0" contains “s7, *<nld.ar latin()=sex” sets
*1atin(0)” to “6”7 and “Latin(6)” to “sex”.)

Strings cannot be referenced except by commands The
*ur” (use reference) command affects the rest of lts input
line, which is then reprocessed as if a complete input line.
A sString is invoked in that line by an “€” followed by |its
name and f{(optionally if no amblguity would result) a A
({So, after the previous exampley, “<nld.ur «.ce vi=Flatin(6)”
finally gilves “vi=sex” centereds) If “L'" or “T'" precedes
the “£”, inzstead of the string its length (in characters) or
type (*C” for character, "N” for numeric) is inserted. “E8”
gives a literal ™Y, There are speclal subscripts +to list
all the elements defined under one name with negative and/or

with positive subscripts, all separated by "y 7o

The “su” (substitute) command works like “ur’ except
that Iinstead of only invoking the strings directly mentioned
in the line or 1lines, the process is lterated until no
string invocations remain. Thus if string *indir” had value
*gElist(Ssub)”, “sub” had value 10", and “1list(10)" had
value “macname”, then “<nld.su .si Eindir” would finally be

interpreted as “<nl>.si macname”, with “.su” acting the same

here as “eur sur sur”, There is also a command “se” (also
for set reference), which essentially means “su os5r”.

The user can change the names of commandse.

Ordinary Horizontal Effects

There is a command that alters the list of characters
affected by underlining, and can alsc specify a character
that switches the underlining off and on when placed within
a line to be underlined. Overstriking of each character
with a character other than +the “_? is also suppor ted.
Simulated boldface by overstriking cf each character with
itself is avallable, both for small prortions of text as with
_underlining and for the whole outputs Alsos the usual ver-—
tical spacing commands, given with a 0 argument, will cause
two successive complete output lines to be overstruck, if
possible without horizontal backspacing on the ou tput
device.

in addition to left, center, and pad Jjustification
modes, there are in, out, right, and “halt”. The last
leaves the left margin straight but pads spaces half as much
as pad mode would, 80 that the right margin is not as ragged
as in left mode.

Script supports a hyphenation exception list, and a
large predefined one 1s available by file insertion. The
user can speclfy the maximum number of congecutive output
lines 1o hyphenate, the minimun number of letters to split
off 2ither end of a word beling hyphenated, and how much an
output line can be harmlessly padded before hyphenation need
even be attempted. Hyphenation can be turned off tem—
porarilys to be reactivated automatically at the next break.

Iin addition to the usual margin changes, Script sup—
ports an automatic hanging indent, whereby every following
output line until otherwise specifled is indented by the

specified amount except the line after each break.

58

Special Horizontal Effects

Script!s tab facility is sinilar to Roff's, but with
two additional features. A tab replacement character or
character string can be associated with each tab stop, for
applications such as leadering; and not only can left,
center, or right justification be associated with each tab
stop, but there is also ‘chardcter alignment”y where the en-
tries in the column are aligned by occurrences of a
specified character, such as a decinal goint,

Script has a gcommand for drawing boxes around text,
using either the “corner” characters “¢¥, %7, *7, s,
®4+”, and or the more widely available ™+, together with “-7
and |7, The user indicates what positions to draw the ver-
tical sides at, and each “bx” command causes a break and
draws a horizontal side.

Script supports multiple-column output. The optional
column balancing facility causes the columns of a page not
full of text to be made as equal in height as possible.

Script supports merge patterns operating on input as
well as on output text. Either kind can be set to
automatically cancel itself after a specified number of
lines, and further patterns can be gueued to replace it.
Also, any part of a document may be labelled by command with
a numeric “revision code”, and each revision code can be as-
sociated with a string (up to 8 characters) to be printed in
the left margin of each corresponding output line. A sec-
tion with one revision code may be nested within one with a
different code, as for successive versions of a documente.

Output lines can be numbered automatically, in any
column position, but only for the entire document with num-~

bering starting anew on each page. Blank lines may be

counted optionally.

59

Script allows formatting environments to be saved, but
only on a stackes The environment may optionally be stacked
automatically while a macro defined by “rm” 18 being in-

serted.

Yertical Effects

There is a command to space vertically downward to a
particular line number, on the same page if possible, or
else on the next one.

Page numbers with twe parts, separated by a *.” on out-
puty, are supported. {¥here the parity of the page number
matters, the parts are summeds.) This mode 1s entered by ex-
rlicitly specifying such a number, or by a command option
that automatically causes this effect beginning with the
next odd-numbered pagee.

In Script the top and bottom page margins are each
divided into three parts, two of which, and the total of all
three, are independently resettable; the middle part may
contain headings or footings and the others are always clear
space., Headings and footings work the =ame way as in Roff,
except that there is a default right-justified heading of
“PAGE” and the page number on each page after the first, and
+he Insertion of page numbers in headings is slightly dif-
ferent: the character bl 24 indicating a page number is
resettable in Script, and strings of up tc 8 characters, to
be inserted before and after the page number when it
replaces that character, can be assigneds, (In “sr” com-
mands, the current page number can be obtained as el ther
just “*8”, just %", or just the character replacing “%" in
headings if anys.) Script?s footnotes and footnote separa tors
work just the same as Roff's, except that Script allows mul-

tiple footnote separator lines and by default has three, the

60

second line with several ®-"1's centered and the others
blank.

Script also supports a “headnote”. This 1Is a block of
formatted text placed at the top of each ocutput page until
cancelled by command, and anywhere else explicitly requested
by command,. Odd and even pages may have separate headno tes.
Headnotes, like footnotes, go in the text area of the page,
not the margins; the environment 1s stacked while they are
formatted.

Macros defined by the “rm® command may be identified
with numbers instead of names. In that case, they may be
used as traps. The number indicates the output page posi-
tion to trip the trap. These macroe may still be invoked
directly with “si7; if the number exceeds the page helght,
this is the only ways Multiple traps set at the same loca-
tion are gueued. Traps may be one—-time or reusabley, and an
intermediate type (that works for a specified number of
times, then vanishes) is also available.

Script supports indicesy as in books. The user may
specify entrles at up to 3 levels (“Newton, Sir Isasacy, cal-
culus”) in each of up to 9 separate indices. The page
number is filled in automatically unless another string is
speclfied to replace it. The indices are automatically kept
alphabetized,. Any index can be vprinted or cleared by a
single command, but “su” or “ur” must be in effect when 1t
is printed, because the system Iinserts “ESYSIXREF.” just
before the page number or replacement string (the string
*sysixref? is initialized to ®, "). Similarly, the user is
expected to have defined certain macros (with names of like
flavor), which the system invokes hefore each entry in the
index and when the first letter changes.

There is, likewise, a table—~of-contents facility.

61

Script supports 10 different *head levels”, each indepen-—
dently having various formatting and other options (the
defaults varying from one level to another). Entries under
each head level may be directed to the main output and/or to
any one of up to 10 different tables of contents. Other
lines, including commands, may also be inserted In a table
of contents, The page numbers are filled in automatically
and any table of contents can be printed or cleared by com-
mande Indices, head levels, and tables of contents are all
identified by digits.

The user can divert sections of formatted output, as
for bibli ographic references, to a queue for later printing,
as after a chapter. Each such item is bounded by “fp”
({ floating block) commands with “begin” and “end” arguments;
the same command with a “dump” argument prints the contents
of part or all of the gqueue.

Script has two need commands, one which may force a new
page and the other only a new column (if in multiple~-column
mode). However, column balancing takes priority over needs.

Script also has glued text and optional automatic widow

eliminatione.

ILpput/OQutput Effects
In addition to the usual file insertion, there is a

command to skip the rest of the current input file and in-
sert another one instead. Another command simulates the end
of the current input fileo.

geript has & command to delay gprocessing while a
specifled number of lines (which are ignored) are typed on
the terminal, as well as commands to read data from the ter-
minal, either a specified number of lines +to be taken as

normal general text input or one line to be assigned to a

62

speci fled string. A line of text can also be sent to the
terminaly or to the system as & command.

Script supports work files.

The “1f” command takes as arguments numeric expressions
or (recognized the same way as with “sr”) +two character
strings,y separated by a relational orerator. The rest of
the input line (or if none, the next line) 1is taken as
general text (i.209 one command or plain text; several such
lines can be attached to ocne command by surrounding them
with “do” commands with “begin” and “end” arguments)e. The
text is processed if the relation 15 true, skipped if false.
The following 1lnput line may be an “el” command, which acts
like an ™if” with the opposite test. (It works properly
even if a file or macro is inserted because of the “if”".)

Portions of a document may be designated as
‘conditional sections”, each of which may bear a number,
much as they may be assigned revision codes {but without
nesting). The user indicates independently which numbers
indicate that the section is to processed, and which that it
be skipped.

Unnumbered conditional sections are taken as comments,
as is any text followinzg a “cm” command on the same logical
input line, or following a “*® command on the same physical
line.

Iterated input is supported: the “pe” (perform) com-
mand is followed by the number of times the rest of its
physical input line is to be repeantedly processed. A *pe”
with an argument of “delete” aborts the iteration. The “pe”
and “if” family of commands support some nested command
structures.

Dutput lines may be translated to upper case, as for

headings; one command gives upper case and underlining.

63

The “11” command can cause the following (specified
number of) input lines to be taken literally as plain text.
It can also cause all input to be taken as plain text until
the sequence “<nl>.,11i off® occurs. (It is another option of
the same command that changes the *«” character.)

Special characters <can be entered as two hexadecimal
digits separated by a useé—specified *hex Join character”:
thus if it was “t*, ™“B12” would give an EBCDIC ™27, 1If
elither character 1s not a valid hexadecimal digit, the hex
Join character is interpreted as a backsgpace.

Script supports output transliteration, with the
characters optionally being specified in hexadecimal; input
translation is also available, but the user must specify an
escape character, which is deleted whenever it occurs, only
the character following it then being transformed.

A line of input may be labeled with the ™*1b” or "..”
command; the “go” command acts like a transfer of control
causing the input to be advanced or backed up by a speclilfied
number of lines, or to a specified label or absolute 1line
number. If the “Llb” command is given with a number instead
of a label, it causes an error if it does not occur on the
line with that absolute number,

Script can automatically process the entires input two
or more times in succession, producing output only on the
last pass, s0 that forward references can be automated:? for
example, tables of contents can be produced at the
beginning.

There are two commands that cause Script to terminate

processing {one without flushing fcotnotes and so forth).

64

5(k) Tau Epsilon Chi

Tex [Knuth 1979] was written at Stanford University
(Palo Altoy California) with the aim of making mathematical
publications 1look more beautiful, as they did be fore
photocompositione. Its output 1s therefore typeset.

In fact, Tex is specifically intended for use for the
modern typesetting equipment that produces each character
with a fine raster scan [Parry 19773 Walter 1969]. An as-
sociated program, Metnfont, is used to design new fonts for
such a device; each character 1ls described in terms of a
program of actions to be followed by pens {and erasers) of
specilfied shapes, travelling in straight 1lines and cubic
gsplines through specified points. “"Re Wa Gosper has ob-
served that this is the orposite of Sesape Street: instead
of 'This program was brought to you by the letter S, ! we
have 'This letter S was brought to you by &a program.'”

[Knuth 1978]

Commands and Names

A command is indicated by “\” and named by the fol-
lowing characters, any number of letters (delimited by the
next nonletter) or any one nonletter. The syntax for argu-
m2nts or operands varies somewhat from command to commands

Tex requires scale designators for physical dimensions.
The user may speclfy the size of one new unit.

The “group” delimiter characters “{" and “}” are used
in the input somewhat like mathematical parentheses: a
group can act as an operand instead of a character, and some
commands reguire groups. Groups alsoy simultaneously,
define environments: the font, Justification parameters,

control characters, and even sSome macros, specified within a

65

group have no effect outside 1it. Groupe are thus similar to
the “scopes” in Dipy but more flexible as they can occur
anywhereo.

Tex sSupports macros, variables, and formatted strings.
Macro names, and macro invocation, have the same syntax as
commands variables aﬁd formatted strings, however, are
identified only by digitsy and there are explicit commands
to insert them. Formatted strings are bhoxes (see below).
Arithmetic on variables is limited to addition or subtrac-
tion of a constant or another variable, and addition of 1 to
the magnitude. The last is provided because, while a posi-
tive variable is inserted in the usual Arabic format, a
negative one has its magnitude inserted as lower case Roman
numerals. (No other formats are available.)

The syntax for each pacro's arguments must be specified
with its definition. For instance, ™\def \msb
()71 #2]]1#3: (Most significant #3 of the #2 bits of #1}” would
define a macrc “msb” that would have to be invoked followed
by M) (or it would be a syntax error); the next argument
would be one character or group, the next would be
everything up to (and excluding) the seguence “[}]”, and the
w,”

third would be everything up to a . The arguments must

be labeled by diglts in sequence, as in the example. ht 70
gives a literal “¢7,

With the “def” command, the macro Is local to any group
within which it occurs, and the macro text is taken
literally when it is defined. 7The similar commands “gdef”
and “xdef¥ give global definitions; with “xdef”, macro

references in the macro text are expanded at once, so that a

macro can be redefined in terms of itself.

Besides ™\", *{*, ™7, and g, other control

- ssv “Vve w~y
4

characters, as used in this description, are N ,

66

and *8” (circled *x”), respectively for math, subscripts,
superscripts, and tabbing. Tex has no default control
characters, but the very first character of input is taken
as "\": the user is expected to begin by inserting a file
defining the other control characters to be used, as well as
the fonts and perhaps common macroSe Cne predefined file
for this purpose is called the ®Basic format®; i1t is written
using ™\”, and sets the other control characters as in-
dicated above, except for the last two which are respec-
tively defined as the up and down arrows (these and “*€”7, it
seems, are commonly available on terminals at Stanford).
Actually, any character can be defined to have any
{one) type. Therefore there can be synonymous control
characters and additional . logical end—-of-line or space
charncters; even the contents of the alphabet can be revised
{so0 that a macro could be named, say, "psdeqe”)e The
“chcode ” command, which does all this, regquires the

character and its new type to be specified numerically.

Ordinary Horizontal Effects

In some ways Tex tries to mimic hot-metal typesettinge.
Where other formatters generally expect the typesetter to
produce various type sizes by geometiric expansion or reduc-
tion, Tex assumes each font has only one size (except for
some speclal math characters), which encourages the deslign
of fonts especially for large or small type sizes. With the
same philosophy, Tex supports automatic kerning: combina-—-
tions such as “AV” get clesed up to reduce the space between
the diagonal strokes. Likewise, the sequences “£f*, *rfi”,
*£f1”, ™fi”", and “fl” become ligatures. Such specially
treated sequences are specified in each font's description

passed to Tex; the 1ligatures listed above are those ap-

67

plicable in the fonts selected by the Basic format. The
sequences —--7 and “---" are handled like ligatures in these
fonts, respectively giving the en and em dash characters.
{Ligature recognition can be suppressed only by grouping,
e.g. *{£} 7 or *f{}f”.)

Tex supports underlininzy but only in math mode.
However, ordinary text can be inserted into math (see
below).

Tex does recognize input lines, but end-of-line is
treated almost the same as a blanke. There are only two ex-
ceptions?: any end-of-line character except a newline (set
by “chcode”) causes the rest of the line to be taken as a
comment, and a line containing no text causes a breake.
{ Pouble~spacing the input, therefore, produces an effect
similar to nofill modey, which Tex does not support
directlys)

Tex considers that formatted text is made up of two
types of entlity: “boxes” of fixed size possibly containing
text, and “glue” of adjustable size. A becx can contain Just
one character, or black (*rule”) or white space} or it can
be assembled from a list, running horizontally or wver-
tically, of boxes and globs of glue. The exact physical
length (in the direction of assembly) that a box being con-
structed should occupy is usually specified or known in ad-
vance, and this requirement is satisfied by adjusting the
glue sizes; the glue is then said to have been “set”, and
the constructed box is treated as a unit thereafter., Its
other dimension (vertical if from a horizontal list, or wvice
versa) is usually fixed by the largest dimension of a compo-
nent boxXs

Boxes actually have four dimensions: width, he ight

above baseline, depth below baseline, and “italic correc—

68

tion” which is the amount by which the contents protrude
beyond the box at the right.,. Glue has three dimensions, all
applying in the direction of the list (being assembled into
a box) containing it: normal size, shrinkability, and
stretchability. (For instancey the glue after the end of a
sentence is sSomewhat more stretchable and less shrinkable
than hetween most words.) Occasionally a box may happen, or
be commanded, to be set at its “patural size” (sum of box
sizes and normal glue sizes)y, but usually the glue must be
adjusted, and then each glob is altered in proportion to its
own shrinkability or stretchability, as approrriate. Box
and glue dimensions can always be specified explicitly, and
there is considerable scope for variation in the defaults
governing the glue inserted (between words, lines,y and
paragraphs) in ordinary text.

In particular, glue c¢f very large stretchability can be
used for a broad range of effects such as right Jjustifica-
tion and three—-part titles; multiple globs of glue of dif-
ferent, but all very large, stretchability can give still
more general effects. Also, the “ragged? command resets a
parameter, r, where the amount by which glue in paragraphs
is stretched or shrunk gets multiplied by 100/(100+r): the
default r=0) gives pad Justification, very Llarge r left
Justification, intermediate values intermediate results
{r=100 gives Script's “*half” mode). For apecial effects
{like local motions), boxes can be offset from their usual
alignment, and can have dimensions not matching their con-
tents, even negative dimensions.

Paragraph formatting is another field where Tex
emulates less automatic methods: 1t waits for a complete
paragraph before considering where to start each output

line. {Meanwhile, the text has the form of a long horizon-

69

tal ligt of boxes, usually single-character boxes, and glue,
usually between words. Fach output line finally becomes a
boxs) A nontrivial algorithm 1is used to minimize the
*badness” of the paragraph, meaning hyphenations, glue
greatly altered from its natural size, line breaks at points
the user suggested (by command) would be poory and other
such things. This approach reduces the number of hyphena-—
tions considerably, which 1in turn enables Tex to use a
hyphenation algorithm that only bresks words at places whers
it is almost surely correct, rather than trying to find al-
most every syllable. Therefore Tex's hyphenation errors are
mostly of omission; it one is bothersome, the user 1is ex-
pected to insert a discretionary hyphen. (If the badness is
too largey Tex halts with an errcr message; the user then
inserts discretionary hyphens or rajises the badness
threshold.)

Tex indents the first line of each paragraph by
default; unless the indentation 1s set to zero, this effect
must be explicitly cancelled for each paragraph where 1t is
not wanted, Tex can also produce a temporary indent of the
beginning (sSpecified number of ocutput lines), or all but the
beginning, of a2 paragraphe. These temporary effects apply
only to the left margine. On the other hand (literallyt),
permanent indents apply only to the right margin; on the

left, boxes of white space would be used.

Special Horizontal Effects

The box concept provides a flexible table facility.
The “*halign”? command constructs a list of boxes each con-
taining one row of the table (afterwards handled like lines
of a paragraph),. The table is actually made from a matrix

of constructed boxes; the glue within each row iIs set so0 as

70

to align each column properly, producing an effect much like
Tbl with Nroff. (A very similar command, “valign”, ex-
changes the horizontal and vertical directions.)

Syntactically, the main argument of the “halign” com-
mand is a groupy containing one or more portions each ter-
minated by a “cr” command {and each balanced with respect to
“{* and *}”7). The first portion is the table format, and
each subsequent portion produces one row of the table.
Within each portion, “*2”'s separate elements corresponding
to the table columns, Each element of the format must con-—
tain exactly one “#”; the boxes which go into the table are
produced by inserting each data element in place of the for-—-
mat element's “#% and formatting the result.

Tex treats mathematical “formulae” quite specially.
There are 4 “styles”: *display®, “text”, “script”, and
*geriptscript”?. Display style is used for a math formula
that goes on a line by itself, text style for one run in
with the rest of the paragraphe The other two styles are
for subscripts, and their subscripts, and other such small
things. Display and text styles use the same size for
simple expressionsy but text style requests smaller styles
in a greater number of constructions (such as fractions and
summations with limits). A formula to be run in with the
text is indicated by “$” before and after, while a displayed
formula uses “$3” instead. The style automatically chosen
for each component 0f a formula can be overrlildden by com-
mand, The user must specify 10 fonts to use for math mode?
romany italic, and symbol fonts for text (used also for
display) and for each of the other styles, plus one “ex
font? containing oversized or variable-sized characters.
Not all need be different, though In Basic format they are.

As in Egn with Troff, ordinary variables automatically go in

71

italics,y, sSubscripts are reduced in size, etce. Tex!'s wusual
fonts have many math characters, each available by its own
command such as “Rscr” (script R; case is signiflicant in the
first letter of a command name), “zeta”, “union”, and so on.

A simple math formula that goes on one line is parsed
into 7 types of element, each a boxy and Tex inserts glue
between them according to their types (but never because of
input blanks, thoughj in math mode they are totally ignored,
except as delimiters). Hoewevery, the type of a box can al—~
ways be explicitly specified: *\mathrel{+}” gives a “+”7
parsed like an “="”. The Basic format defines a number of
macros such as “sin” and ™log” that get parsed as single
elements of the same type as, say, the “f¥*. Any constructed
box (thus, absolutely any formatted text) can be inserted
into a formula, and parsed as a single element of any type.

Several commands put one gart of a formula over
another, Their syntax 1s unusual: only one of them may be
used at a particular level of grouping, and its two operands
are everything before and after 1t in the group, mimicking
the way one thinks of the mathematical expression. For in-
stance, x+1 over yz would be “{x + 1 \6ver vy =2}"y and n
choose %k is ™{n \comb() k}”. The two characters after a
®comb” command surround the pair of lines. (They must be
chosen from a limited set such as parentheses, brackets, the
vertical line, and ™.” which glives a blank heres, but as with
Egqn they need not be conventionally paired,)

Superscripts and subscripts are obtained in Tex by con-
trol characters, not commands., They operate on the single
character or group following: ®a ~ b c” (or “a"bc”) |is
a-sub-b, times <c, while ®a ~ {bc}” is a-sub-bc. Similarly
"\int "0 "n” gives a definite integral from 0 to n. This

use of these operations for limits suggests that “\sum

72

{x=0} “n” similarly be used &s the sum from k=0 to nj but in
display math at least, normal gractice is to typeset the
limits above and below the summation sysbol, not in the sub-
script/superscript positions. Tex evades this problem by
defining an alternative position for subscripts and super—
scripts, namely above and below what they modify. The
alternative position is used specifically in display math
style, when the thing modified is either a single ex font
character (see above) or a constructed box, and either is
followed by a “limitswitch” command or has a zero italic
correction but not boths (Thus "sum” and *int” are treated
differently by default; the “log” macro in Basic format is a
constructed box with zero italic correction but includes
"\limitswitch?,)

Other math commands include a series to put various ac-—
cents, underl ines, and so on, on characters (or on groups,
or thus on boxes), and a pair “left” and “right” that
produce large delimiters around what they enclosey, much like
®*comb”. For instance, the absolute value of x~hat over
x-bar, cubed, would be *{A\left| {\A x \over \overline x]}
\right|} = 3”7, The “left” and “right” commands must be
paired, but the actual characters used have only the same
restrictions as with “comb”. In fact, since “atop” is 1like
*over” but produces no fractlion bar, *p \comb\{. g” could be
written ™\left\{ {p \atop gq} \right.”: either gives p above
g bracketed by a literal left brace (“\}7),

Tex has commands for both horizontal and vertical
leadering, which each rroduce a glob of glue that does not
print as white space but as a rule or as repetitions of a
speclflied character string (repeated uses of the same one

are automatically aligned).

73

Yertical Effects

Tex supports, in effect, a trap tripped each time a
page is completed. The argument of the “output” command is
a group formatted at that time, becoming the box that is ac—
tually typeset. The actual contents of the page must be in-
serted within that box using the “page” command, or they
will not be printed. Headings and focotings may be obtained
only with “output”. It can also be used with formatted
strings to produce maltiple~-column output: one saves
“"\page®?’s on consecutive executions of the trap, then
finally retrieves and prints them side by side.

The “botinsert” command creates a box that is placed as
a footnote; there is also an analogous “topinsert”.

Tex handles completed lines vertically much as it
handles characters horizontally. Each line is taken as a
box, and glue is inserted automatically between paragraphs
{also around displayed equations, above footnotes, etce);
then, after there is too much text to fit on the page, Tex
chooses where to actually end 1ty much the way it chooses
where to start new lines; this allows some flexibility in
avoiding widows (as In aveclding hyrhenations)e. Since the
user can specify glue that stretches vertically (though
never within filled text), vertical justification has much
the same flexibility as heorizontal.

¥hen one wants to have a heading that changes (as at
chapter boundaries, or for dictionary gulde words), simply
modifying “output” or having it reference a macro will not
work, for the trap invocation is not synchfonized with the
input. Tex therefore provides a “mark” command, which as-—
sociates A formatted string with a position in the text.
The most recent “mark” strings before the page's top and

bottom can be retrlieved for “output” by commands.

74

1nput/Qutput Effects

There 1s no command requesting terminal 1/0 when a file
is being processed, but the normal input stream itself comes
from the terminal; all error situations are handled interac-
tively, with a message sent to0 the terminal and on-the-spot
corrections accepted (provided the error was detected soon
enough that no backtracking is necessary). The end of all
input is indicated by command.

Tex supports conditional input based on the equality of
two characters (possibly obtalned as macro references) and
the parity or sign of a variable {(identified by digit)e.
Conditions always take the form of a command followed by two
groups with an “else” command between them. Comments are
also supported, as mentioned abovee.

Case translation on input is suppor ted, but with no
provision for case escape characters, and with command names
taken unchanged., There is no 1literal plain text input
facility, but of course the control characters can be turned
off individually with “chcode”.

The Tex program can interface with a user—-supplied

subroutine, which is called by the “x” commande.

5(1) Type

Type [Type 1978] was written in B at the University of
Waterloo (Waterloo, Ontario) and can produce output ei ther
monospaced or typeset on either the Photon 737 Econosetter

or the APS~V,

15

Commands and Names

A command in Type is indicated by the character “{”

N
Then come the comma nd name and arguments, delimited by
blanks, and a *}” ends the command. Commands can occur any-
wherey ©@even within another command: the “{" and ™“}”
characters are nested,. This is useful because some commands
*return a value” like macros or variables: that value |is
actually inserted into the input (plain text or command,
wherever the command occurred).

Some other commandsg, like Nroff's Yescape sequences”,
are initiated by *\” and pramed by the following character.

*N 7 an

For instance, ™<Xnl>” 1is a concealed newline and
extraordinary blank, Jjust as in Nroff.

Expressions can be used as well as constants for
numeric arguments; as well as the usual and the relational
opera tors, logical ones are alsc supported (returning a
truth value 0 or 1, like the relaticnal operators). Scale
designators are supported, and sometimes practically re-
quiredy for physical distances.

As well as a simple seguence c¢cf nonklanks, three other
forms are supported for a non—-numeric argument. It may be
enclosed 1In ®v" characters, enabling i1t to include blanks.
If %" characters are used Instead, the string is taken
literally {(not scanned for commands and other special se-
*[” ana *}7,

whereupon it 1s also taken literally except that newlines

quences) Finally, it may be enclosed in

{and ASCII TABs) are deleted; this construct also allows
nesting, so the ™ * and ™]” must be properly paired. Thus
the syntax enables commands not only to be Inserted anywhere
but also to take arbitrarily long arguments,

Macros in Type are defined by the “ds” (define string,

meaning macro) command, and invoked by the same syntax as

76

commandses The re are actual commands returning the argu-~
ments, and the number cf arguments, with which the macro
currently being inserted was invoked; these arey of coursey
used In the macro definition where the arguments are to be
placedes The * 7-"]"” argument syntax allows commands and
other macro definitions to be tidily given within the macro
text.

Type also supports formatted strings: its “di” command
works much like Nroff?’s, except that “di” diversions can be
neasted in Tyre. Formatted stirings are inserted, or con-
catenated, by the ™pr” (print) commande.

*ac” (as-

Angther kind of string is defined by the
sociate character) command. This works Just like Cypher~
toextls ‘map', except that in Type the insertion takes place
after command scanning and macro insertion rather than
before.

Type also supports variables. As in Cyphertext, some
formatting functions are controlled by asslgning values to
reserved names (of variables, in Type); rather than by com-
mands »

There are commands to link (supply a second name for'
the same referent) and toc undefine ramesy applicable to both
macros and commands, and there are commands to find out

whether a particular name is in use (for anything)y, which

return a truth value of 0 or 1.

Ordinary Horizontal Effects

There is no underlining, even when text is monospaced.

Right justification is available.

The amount by which blanks may be padded for justifica-
tion is limited and may be sSet by the user.

77

Special Horizontal Effects

Type supports local motions, which provide the only way
to get a temporary indente.

Explicit environment switching is supplied, much as in

Nroff (but environments are named, not numbered).

Yertical Effects

Vertical spacing of output can optionally be altered
automatically, much as in Tex, s0 that characters never
overlap even though the requested spacing of baselines would
cause them to.

Reusable traps are supportede. A trapr may be associated
with the end of each output line, and another with a ver—
tical position in the ocutput or the current diversion; but
no more may be in effect at a time. As in Nroff, headings,
footings, and footnotes are not supported directly, nor are

adjustable top and bottom margin sizes.

Lloput/Output Effects

There is a command to read one line of plain text from
the terminal.,

Both index and work files are supported. Files must be
opened by command, and are thereafter referred to by 1local
names.

Commands can be passed to the systeme

The “if” command gives conditional input, It takes a
numeric argument and one or two string arguments, and
pProcesses the first string if the number is nonzeroy other-—
wise the second (if any)e.

There is a command which, If it is executed while a
macro is being inserted, causes the rest of the macro text

to be skipped, and can optionally have the same effect on

78

any macros from which the present cne was invoked.

Case translation is supported, but not case escape
characters.

The “ch” command returns a substring of its character-
string argument, as specified by 1ts numeric argument(s).

The sequence T"\c” followed by a number is used to ob-
tain épeclal characters.

There are alternate commands for inserting a file, in-
serting an argument in a macroy, and invoking a macrosy which,
used instead of the usual ones (or the macro name), cause
the text to be taken literally as plain text, not scanned
for commands. Any single character preceded by ™\1” is also

taken literallye.

S(m) Points of Interest in Other Formatters .

Mathematics and Graphics

The established conventions for printing mathematical
formulae are demanding and somewhat complicated [Chaundy
1957]. Eagn (see under Nroff above) and Tex probably have,
the two most general, and mnemonic, facilities for for-
matting math by computere. However, several typesetting
systems have simple math facilities. The system at the Jet
Propulsion Laboratory (Pasadena, California) {Korbuly 1975]
permits gquite general formulae to be typeset, but while the
user need not account for the actual widths of the
characters, they do have to be counted manually to obtain
the proper alignmente The system at Mack Printing (Eas ton,
Pennsylvania) [Varley 1977] has a macro facility and one can
enter the sum from k=1 toc n as “SIGM ny,k=1". Proff supports

a mathematlcs character sety, and [Beach 1977] indicates how

79

to use macros for similar formulae.

The American Chemical Soclety (%Washington, DC) has a
more general system [Kuney 19663 Kuney 1968], with a com-
plicated but quite wversatile coding for formulaea. It can
also handle (2-dimensional) chemical siructure diagrams.
These are typed on the Army Chemical Typewriter, a device
with special characters including extensive support for sub-
script and superscript characters; the paper tape it punches
is scanned by the formatter to deduce the coordinate posi-
tions of the atomic symbols.

The formatter RED, at the Lawrence Livermore Labs
(Lawrencey CA) [Beatty 1979] was written in TRIX, an in-
teractive language based on the macro processor TRAC [Cole
1974, Mooers 1965] and on SNOBCL. This formatter handles
formulae with some generality, but the relevant commands are
syntactically awkward in that their operands must be simple
subformulae:? complicated expressions are bdbuilt up by
passing macro references as arguments. A postprocessor,
REDPP, enables the output from RED to be trandily combined
with that from the graphics language PICTURE, 80 that
computer—generated diagrams of all sorts may be included in
a document and placed autcmatically.

The formatter at Computype (New York City) [Boehm 1976]
has points in common with Tex. It considers that maferial
is either text, tabular, or math, but that these can also be
nested: math in text or vice versa, text or math in tablese.
The math faclility has considerable generality, automatically
handling such things as enlarged parentheses; 1ts “nested
math frames” may be delimited either by speclal symbols (as
*$1” below, used like “{” and “}” in Fgn and Tex), or by
mathematical constructse. In math, variables go in italicy

and font requests apply to single characters only; a

80

*special math hyphenation subroutine” prevents ™sin x", say,
from being divided between two lines of output. A1l com-

%% or *$” followed

mands in this formatter are unmnemconic:

by a short seguence of alphanumerics., This formatter may be

compared with Tex and Egn for the formula “theta-sub-12,

squared, equals e to the power (a-sub-1 times x, plus

b=sub-1 times y, plus c~sub~1 times z)y divided by {a-subh-2

times x, plus b—sub-2 times y, plug c-sub-2 times z)y, all

squared?; only mandatory hlanks are shown in each case.,
Computype :

S{Fgqgt112"2=($fe"Slatilxtb'lytc?12818sa2xtb'2y+c? 2281) 25)

Here ™ g” gives Greek, and “$f”7, “$s”, and “$t" a fractione.
Ean:

$theta sub 12 sup 2 = left { e sup {a sub 1 x + b sub 1 ¥

+ ¢ sub 1 2z} over f{a sub 2 x + b sub 2 y + ¢ sub 2 z} right

) sup 2%

The begin-math and end—-math characters are set to “3%7

Tex:
$\theta {12} 2={\left(e” {a”1x+b 1ly+c 1z} \over
a 2x+b 2y+tc” 2z\right)} 2%

Control characters are set as in the Tex description aboves

HExyphenation

Hyphenation of words divided between lines arose
hundreds of years ago; it is still used today bhecause pad
Justification can otherwise cause unpleasantly wide word
spaces when a formatted line has few words [Justus 19721
Algorithms to select places to hyphenate a word have been
developed [Knuth 1979, appendix H; Moitra 1979; Ocker 18971;
Rich 19651, but sSince they look only at single words they
share the defect that the *correct” hyphenation points,

bhetween syllables, cannct always be predicted: ™I will

81

re/cord bhis results and pre/sent him the rec/ord as a
pres/ent.” Even for words with only one syllabification,
English is8 so complicated and irregular that any algorithm
1s likely +to have exceptions, to say nothing of text con-
taining different languages. This kind of problem 1is why
formatters supporting automatic hyphenation invariably have
some sort of facility to override it, often 1including
hyphenation exception lists.

Autoscript, at ¥estern Electric (VWirston-Salem, North
Carolina) [Stuckey 196935 Stuckey 19723)], and the system at
the Central Intelligence Agpency (Washington, pC) [Kunzel
1966] need no automatic hyphenatione. If justification would
pad blanks beyond a certain threshold, they justify lines by
altering the set width as well; thus each letter in the line
may be followed by additional space proportionate to the
width of the letter itself. This groduces a reasonably
pleasant appearancé, distinctly better than simply inserting
equal space between letters; whether it is better than
hyphenation (or, indeed, whether that is better than greatly
padded word spaces) is a matter of taste. (And would it be
better, in set width expansiony to insert the proportional
space before as well as after the letter?) In Autoscript,
there is a limit on set width expansion also} exceeding it
is treated as an error, forcing manual hyphenation {much as
with Tex).

On the other hand, the Linotron Page Formatting Com-
puter [Makris 1966], from Mergenthal Linotype (New York
City), actually has a hyphenation algorithm built into its

central processing unite.

82

Preprocesslipg, and Human Intervention

There are systems where a fermatter is routinely used

with a preprocessor to alter the form of its input. At the
American Institute of Physics (New York City) [Alt 1973],
Page-1 is the formatter since its rules for strings are
restrictive, a preprocessor is used to allow alternate
forms. Particularly useful are mnemonics for “compound

characters”: *z(i-breve)=7 gives an “1”7.,

The preprocessor
is designed to accept input in a format that facilitates in-
dexing, which Page-~1 dces not supporte. { More recently,
however, some AIP publications have used Troff extensively
[APS 1977 7.)

In the system used at the Honeywell Computer Journal
[Bemer 19731, text is entered using the Honeywell 6000 Text
Editor, which contains its own formatter [Honeywell 1972,
pages 31-34] (something between Roff and Runoff); the com~
mands are given in the format of that formatter, then passed
through a preprocessor to Page-2 (a later version of
Page~1), As well as translating the commands to Page-2's
less mnemonic forms, the preprocessor handles several things

L ¥ L4

~
speclally: *™? pecomes a filxed en—space;] becomes a HW™n

or "”n, whichever is correct, or 7" if it is overstruck (by
backspacing) with a letter; “o” becomes “®” {if it is +the
first word Iin a paragraph beginning with a certain temporary
indentatione.

That Jjournal's editors have found that “reader attrac-
tion and satisfaction is increased significantly by tight
control of page layout,” so0o they lay cut each article in
rough, decide where they want each column of each page to
end, and edit the text to fit, They “have to get into the

guts of the author's meaning and say it shorter and clearer,

without altering the flavor or meaning in any way! Being

83

forced to do this +s¢ Yields a big dilvidend in increased
readability.” Thus the computer has no say in where to end
pages. { Such attention is reminiscent of the best newspaper
practice { Hutt 1967], or the weekly version of Life magazine
[Hamblin 1977, chapter 7]s)

Setlst [Messina 1970)] is an automatlic~recognition
program to translate tabular computer output into the ap-
propriate codes to drive a formatter, complete with case
shifts and font changes. Setlst was developed by the U, S.
government so that the books of tabular data it has to print
might be typeset (thus be smaller and more legible) directly

from the computer {(thus have fewer errors).

Two-Pass Formatting

Autoscript (see above) formats text in two phases.
After the first pass, a galley proof can be produced, with
paragraphs and lines numbered; corrections can then be keyved
in, addressed with these numlers, and the affected
paragraphs are reformatted. The second pass divides output
into pages, inserts headings and foctings, and so on.

The CIA system (see above) provides a similar galley
proof, with each word numbered, likewise allowing correc-
tions at that level.

IBM's Text/360 [Ziegler 18689])], a system designed for
large documents, also allows some corrections after for—-
mattinge An unusual feature is “logical-sheet mode, [which]
serves to freeze a change to certain pages s0 that the
change is not allowed to propagate through following pages.”
Thus an insertion in page 8 may cause it tc grow onto page
Rs.1, with page 9 being unchanged until ctherwise requested.

In none of these systems are the operations upon the

galleys interactive as in EZ27.

84

Speclalized Editor Only

The system at Bell-Northern Research (QOttawa, Ontario)

]

[Reed 1977] is unusual not for its formatter (a modification
of Script) but for its editor Ted. Text is considered as a
sequence of lines (“there has to be some organization im~
posed on the file”), but Ted does not sece them, treating a
newline as a blank: “/The Lodger .-« Family Flot/” would
match the text beginning with the next occurrence of “The
Lodger” up to the occurrence after that of “Family Plot?,
even though that text, or even either delimiting phrase, is

divided between lines.

Special Uses of Optical Character Recognition

This thesis generally does not mention the medium of
text entry, for the formatter usually need not know it. One
medium often used (so that text can be typed cheaply offline
[Mack 19753 Schneider 1974]) is OCR. The Computype system
{see above) Initially has its input typed double-spaced; the
OCR can then read corrections typed between the lines!
Another special use is on the system at Perry Publications
(¥West Palm Beach, Florida) [Perry 1966], which supports not
only input but also page make-up by OCR; for the latter, a
form with a grid of ™37'g is pencil-marked to Iindicate where
on the page to bhegin each item. {The dewanding requirements
for page make—-ups of newsgapers and such things have also
led to systems using special terminals for this purpose

[Boissavy 1973; Newspapers 1977].)

85

Portability
Scribe, des igned at Carnegie—-Mellon University (Pitts~

burgh, Pennsylvania) [Reid 1980], achieves high portability
by carefully excluding device- or installation-dependent
constructs: for instance, actual filenames may not bhe
referenced in commands, indirect names reing used instead,
Scribe attempts to relieve the user of specifying
typographic information by providing a wide range of
predefined formats; the user selects from these by namey as

in *aStyle [References CACM, Footnotes "¥", Doublesided}”.

Author's Experience
The auvthor has designed one earlier formatter, Set

[Brader 1979]. This was deslgned to closely resemble Proff
and Roff, producing output on the University of Waterloo's
Photon 532 Fontmaster typesetters. Its only innovations are
that temporary indents can be nested, and that files of for-
matted text, already coded for the typesetter; can be in-
serted by command. Still, the experience with Set may have
influenced EZ27 through the “second-system effect”:

“An architect!s first work is apt to be spare and
cleanes He Xnows he doesn't know what he's doing, so he does
it carefully and with great restraint. s Sooner or later
the first system is finished, and the architect, with firm
confidence and a demonstrated mastery of that class of
systems, is ready to build a second system ese the most
dangerous system a man ever designs s using all the ideas
and frills that were cautiously sidetracked on the first
ones, The result, as Ovid says, is a ‘'big pile.'” [Brooks

1975, page 53]

6. THE SYNTAX OF INPUT TEXT

Ez27's inputy as mentioned above, is @general text,
} - P commands and plain text Intermixed, like the input to
a conventional formatter. Its syntax was designed to avoid

certain problems perceived in existing formatterse.

6(a) Plain Text

Plain text <can be considered either as a simple se-
gquence of characters, or as a seqguence of words delimited by
gpace characters such as blanks and newlines (others might
include tabs and formfeeds). With the first interpretation,
7 and " ¥ are different: each blank produces a certailn
amount of sSpace on output. Similarly, while a single new-—
line has to be more or less egquivalent to a blank, multiple
ones may have additional effects. This is the natural
method for a formatter incorporating some approach to
idempotency or automatic recognition: *fdeally a document
containing no formatting commands should be printed
sensibly. PP Blank lines cause fresh paragraphSs ses If
a line begins with n blanks followed by text, it causes a
break and a temporary indent of *+p.” [XKernighan 1976-S,
pages 220 and 223]

The second Interpretation, text as a segquence of words,
treats any non-null sequence of space characters as equiva-—
lent, This has the advantage o¢of simplicity, especially
since the atom of natural language Is in fact the word; it
also follows modern programming language practice (as in C
and PASCAL).

Most formatters actually take some intermediate posi-

tion. Roff and Nroff, for instance, generally follow the

86

87

first interpretation, but ignore blanks that precede a new—
line; Tex generally follows the second, but *<nl><nl1>" and
such seguences cause breaks., For EZ27, it was felt that one
interpretation or the other should be used strictly, and the
second one was chosen (with the ASCII TAB as a third space
character) for the reasons menticned above and because of
some practical considerations:

Interpreting » » cn input as a double-width output
blank encourages users to think in terms of fixed-width
characters, to think that text aligned on input must be
aligned on output; but with typeset output, that is false.

A formatter of monospaced text, such as the one in the
paper quoted above, may occasionally be called upon to
process text which was originally typed with no intention of
being machine—-formatted and which therefore contains no com-
mands . In the case of a formatter for typeset output, this
seems rather less likely, simply because the user community
will be more sophisticated. In particular, users wanting
wide blanks will probably use the crthodox formatter com~-
mands 3 extra blanks on input will mostly be typographical
errors (such is the author?!s experience, anyway), in which
case the formatter should absorb them.

Finally, allowing meaningless extra spaces following
newlines is convenient with the particular syntax of EZ27

for reasons that will be described shortly.

6(b) Command Initiation

The obvious, albeit not the onlyy, way to distinguish a
command from the plain text surrounding it is to precede the
command by a specific short character string, a command in-

dicatore. i-character command indicators used by existing

88

formatters include ™ 7 {(Page-1), *{” (1TIyge)d), */” (Cypher-
text), and ™\” (Nroff, Tex, and Type); 2-character ones used
or proposed include Format?!s ®)7, and newline followed by
%% (pDip)y V" (Nroff), “*?” {vWetherell 1978, chapter 4], and
of course “«” (Nroff, Proff, Roff, Runoff, Script, and
[XKernighan 1976-S, chapter 7]). Many of these formatters
allow the control characters that are not space characters
to be reset, Several support additional control characters
{ taby, Iinsertion, parameter, discretionary hyphenation, etc.)
that are not command Iindicators since they basically act
alone; these also are often resettable. This s=seems unduly
complicated.

Input might come from a device with a limited character
set, s0 the characters of the command indicator are best
chosen from among blank, newliney, and the more widely
available graphic characters. However, the command in-
dicator should not be a character string likely to occur
often in plain text. (If it can ever occury; there must be a
way to change it, and/or an escape allowing it to be en—
tered; this will be inconvenient 1f it has to be used
often.) By these considerations, a l-character command in-
dicator is clearly impractical: any particular character
from the limited avallable set is simply too likely to occur
too frequently (especially in technical text, which tends to
draw on a wide range of sSymbols).

There are, however, 2-character strings that are most
uncommon in plain text, such as those cited above. Their
mandatory use of a space character is awkward, though, for
changes of typestyle (font, type size, and body size) and
the 1like may be wanted in mid-word; interrupted text

processing is rather inelegant, as 1is Nroff's use of more

than one command indicatore. Alsocy when & newline is re-

89

quiredy commands occurring close together tecome obtrusive
{ though a command list facility can alleviate this).

EZ27's cowmand indicator was chosen to be 2 characters,
each resettable but graphic by default. (Users could reset
the first character to a newline 1f they preferred that,
thus reintroducing the problem of whether a command list

'l\/ s 4 was

ends a worde.) As the default command indicator,
trieds. This has high visibility in ordinary text, and has
the connotation of an interruption since it deslignates a
comment in, for instance, PL/T and Be (The null command was
then de fined as a comment, so that /% 7 actually does in-
troduce one; the next /7 ends it, so “/* comment */” is
perfectly corrects)

In what follows, the characters “/” and **7 will be
used for the sake of readability, rather than “the first and

second command indicator characters”,

6(c) Command Lists

Command lists seem usefuly, though Script, for instance,
has an unnecessarily complicated syntax for +them. One
character should suffice to Introduce a second command in a

liste. EZ27 uses ™*” also for this purpose, and */” also to

close the list: thus i1f “a”, ®1”, and “c” were commands,
“/*¥a%ptc/” would be a valid command Ulist. This is
straightforward and requlires no additional control

characters; also, if */” is set to newline, a command list
occupies exactly one input line.

‘ Formatters such as Runoff that initiete a command with
*<n1>.” and terminate it with another newline allow the
latter to be part of the ™<nld>.” that begins the next com-

mand . Otherwise, an unnatural blank line would be necessary

where no plain text came between commands; this strange re-
quirement would lead to mistakess Likewise, in EZ27 the */7
closing a command list can be part of the “/** |jnitiating

another oney, so “/*a/¥b/® 1is the same as “/*a%bp/”.

6{(d) Command Arguments

Most other formatters delimit short command arguments
with blanks, if at all, EZ27 extends this naturally to al-
low any seguence of space characters, in keeping with the

word delimiters of plain text. These short arguments are of

‘+' n_”

two kinds: numbers, ocptionally preceded by a or

speci fying relative values (relative values by multiplice~-
tion and division were intended originally, too, but **” and
/" got pre—-empted as control characters, so the other use
was dropped, in intent temporarily); and keywords specifying
options particular to the commands. Keywords can be ab—
breviated, norrally to the first letter. Space characters
are also allowed, and recommended for clarity, between com—
mands {and before +the gquoted arguments described below):
“/*a =p/” and */*a<nlD>%b/”" are the same as “/*a*b/”",

Some commands, such as those for footnotes and macros,
operate on considerable guantities of text. There are also
the transformational commands, which change some mode or
parameter of formatting, or of the interpretation of input;
these can affect all the text following them, so it really
is thelr operand. In EZ27, it can be given as a text argu-
ment to the command, and such arguments can be general text,
allowing further commands nested within. { ¥here a transfor-—
mational command is given with no text argument, its effect
is permanent: it acts on all text until countermanded.)

This notion was inspired by a similar but more restricted

91

construct in Page-13 it wags developed independently from
Dip's scopes, which work almost the same way, and Tex's
groupsy, which can produce a similar effect although they
differ syntactically., (The nested structures of Type
rosemble scopes and text arguments only superficlally, since
their semantics are quite different.)

At first, any character not in a text argument was al-
lowed to delimit it, as with substitutions in QED: “/#*a
ftoxtd/”® and “/¥a $text$3/” would mean the same thing. This
avoided creating any more control characterse. Naturally, a
nested command taking an argument would require a different

delimiter:
/*a #a—-text /*b la-b—text!/ more—a-text# *c #c—text#/

In typing a complicated group of nested commands, the
fact that blanks after a newline are meaningless may be use-
ful: commands at different levels of nesting may be typed
on different lines indented by proportionally varied
amounts, as in programming lanpguage practice.

One often wants 10 have several formatting commands
operate on the same argument text: an introductory gqguota~
tion, saYys could be indented left and right, right
Justified, and in a different font, type size, and body size
from the main text. This might well lead to something like

{not actual EZ27 commands):

JEin 40 $/%ir 5 %/%rj '/¥ft i D/ *sz B #/*bd B
=Et tuny Prutex=/#/3/%/%/%/

This is not only grotesque, but difficult tc use, for the
chplice of the various delimiters is restricted to characters
not in the text of the real argument, and they must be

paired correctly besides.

92

Because of this problem, the syntax was revised so that
it several transformational commands occur consecutively in
the same command list, with no other commands and no text
argument intervening, then a following text argument applies
to all the commands in the group. That grotesque example

then simplifies to:

f=1in 40 *ir 5 %prj %ft i *sz 8 ¥bd 9 'Et tu, Brute!/

{ Under the original syntax, this would have meant that the
first five coopmands applied permanentlyy and the text argu-
ment related to the last command only; nos, to get that ef-
fact, 2 /7 would have to be inserted before “%hd”, to start
a new command list.)

However, attempts to actually use the syntax showed
that the delimiter problem still occurred when +trying to
format text of some complexity. The syntax was therefore
revised again to delimit text arguments by a particular
character, defaulting to “ne, Then the first nested example

becomes:
/*a Ma~text /¥b "a—-b-text"/ more—a—text¥" *c We-texth/

However, the advantage gained from the 2-character com-
mand indicator is now lost! While initiating a command list
may reqguire 2 characters, resuming it after a general text
argument requires only one: the “n”7, In the last example,
the third, fourth, and sixth """ characters resume command
lists, and two are directly followed by a closing */". Now,
a ™7 could be taken literally unless followed by a command
list's */” or ™" (and intervening space?), just as a “/7 is
taken Llliterally unless a ™7 follows it} or a 2-character
string could also be used to delimit text arguments; both

seem rather unappealing, and no change wvwas actually made.

93

Some commands reguire one other form of argument, an
arbitrary character string not interpreted as text to be
formatted: it may be a filename, a macro name, even the
contents of a macro. These are called siripng arguments, and
are delimited by ™7 just like text arguments, but they are
taken guite literally, not examined for command lists
within, WVhether a particular gquoted argument is interpreted

88 string or text depends on the individual commande.

6(e) Macro and Variable Invocation

In Proff and Roff, a macro can be invoked by a syntax
similar to that for executing an ordinary command, but this
forces it 1to start on a new input liney so the alternative
insertion character syntax Is available for inserting a
macro anywhere in the input, In EZ27y on the other hand, a
command need not start on a new line; therefore the macro
invocation syntax, as initially defined, was exactly that
which executes a command.

However, the insertion character can be used to insert
a macro in mid-command as well as in plain text. For in-
stance, Proff identifies type sizes by number only, but if,
sayy macro “brevier? was defined as ™8", and the insertion
character set to ™7, one could say “<nl>.pt # brevier)”.
Thig is impossible in EZ27 as defined so far. An actual
command could be created for this effect, Something like
W/knt *insert ‘Ybrevier®"/”, but this is verbose and
inelegant, as well as 1inconsistent with the simple
*/*macro/” to insert a macro in a texte.

To aveid creating more control characters (such as an
insertion character), a new combination **27 of existing

ones is used to denote macro insertion within a command list

94

{the macro must not contain a closing /" and plain text).
The =xample becomes “/*pt ¥*previer/”. Cr macro “brevier”
could be defined as “%#pt 8", +then invoked Just by
“W/xipprevier/”: in Proff, “<nld>.¥(brevier)”. (0Of course, if
the macro was defined as “/*pt 8&/7, it could bpe invoked
simply by “/*brevler/', but then it could not take a text
argument.) “/%%* 7 and “/*¥%%” yere defined toc give comments,
the same as “/* 7,

So far this is reasonably elegant and terse, but +there
is a problem: et % 24 cannot be used onr a macro with argu-
ments, for “®%*macro arg” in a command list must be inter-
preted as the contents of the macro followed by “arg”.
However, one does not often want such an insertion; macros
inserted in commands tend to be sinmple, as in the previous
paragraphe. Therefore a scomewhat awkward syntax would not
hurt here, and, rather than alter the existing syntax or
define any additional control character, “¥%%"" yag defined
w gy

to take everything up to a closing as the name of a

macro to insert in the command list followed by the argu-
ments to 1invoke 1t with: ®*/%command **%"macro m-—arg"
c-arg/”.

Variables are inserted the same way a8 macrosS,

6(2) Literal Text

B

Before the.necessity of distinguishing text and string
arguments had become clear, “literal text arguments”, opened
by ®=%% and closed by another ™" (originally with any
delimiting character for “""), were defined; these would be
\ oL

similar to text arguments, but occurrences of would not

indicate commands. Now, string arguments are already taken

literally: ™#"" gimply gives a string argument. However, if

95

=n” does not follow any command (as in “/%7"7), the text up
to the following ™% s taken as plain texty, again,
literally with /%7 not being recognized.

These literal modes (though they survive as relics)

\ Y L4

were not really satisfactcry once was introduced, since

“ L4
" wa S

it could not be entered literallys A FCRIRAN~like
considered, but it would be gulite inconsistent with the way
a literal /%" was obtained (and relatively awkward to
‘\ﬁ

implement). Instead, a fourth control character, ’ was

defined. It removes special meaning from the control
character or space character following it (so ™“\\¥ and ™\ ”
mean the sSame as Iin Nroff), and is simply ignored preceding

anything else. The ™\” was also intended to be resettable.

6(g) Remarks About the Syntax

At this point further study of the command syntax was
laid aside until a good working formatter existed, which is
to say, permanently. Still, an innovative syntax had been
developed, and some exrerience was galned with it in the
course of program development,. Some chocices were less than
ideal: probably *"”7 to cpen and close text arguments could
be improverd, for instance. Still, there nay be room for a
really good syntax to be developed from that of EZ27.

On the other hand, Tex (whilch was being developed at

the same time) may be a much better basis to work from.

7. ORIGINAL SPECIFICATION

This section details the set of commands originally
specified Ffor EZ27. Some were extended shortly after the
speclfication was first written, and these extensions are
included here., The descriptions have been shortened from
thelr criginal forms since they would repeat material
elsewhere in this thesis.

Where commands take multiple argumentsy they generally
can come in any order: “IN AT 10 BY .1" could be given as
“IN BY 1 AT 10%". In displaying the syntax of various com-
mands, the notation is consistent throughout this section.
*#” represents a number, which, where it makes sensey, may be
preceded by *+7 or ®~" indicating a relative value, and may

have decimal places. Anything bracketed by *[” and “]7 |is

optional, Things separated by |7 are alternatives, one of

which is regquired unless the whole is bracketed. (e ™|”
begins a line, the whole 1line is an alternatives.) “see”
means that additional things of the same type are permitted.
Other nonalphabetic characters are meant as written] so are
words in upper case. Words in upper and lower case may be
abtbreviated by omitting any or all of the lower-case
letters, Words in lower case (™filename”) indicate syntac-

tic categories.

7(a) Controller Commands

The control component of EZ27 operates on paragraphs on
a galley file. It is driven by interactive commands from
the terminal. The USE command must be issued first, to
specify the galley file, before anything else can be done.

Each command may be entered on a separate line, or

96

97

several may be entered on one line delimited by ™;"'s.

The commands are:

DEL # [TO #]
Delete the specified paragraph, or range of paragraphs.
1f more than 7 paragraphs are included in the range, the

user is asked to verify the command.

DONE | QUIT

Leave EZ27, renumbering the paragraphs in the galley
f’.]—ﬂs

EDIT #
Edit the specified praragraph at the word level.,

IN [[<]filename] [AT #] [BY #]

Input is taken from the named file, if any, or else
from the terminal (terminated by the Break key)le. If “AT” is
used, the input is placed beginning with the paragraph whose
number is given; otherwise, it goes at the end of the file.
If *BY” is used, the paragraphs entered are numbered with
+t+he specified interval; if not, the interval is 1 if at the
end of the galley file, and -0l otherwise.

REP # [10 #] [[<]filename] [BY #]
Exactly equivalent to “DEL # [T0 #]" followed by “IN AT

[[<]filename] { BY #]”".

SET macroname paramnamesse

Define a2 macro. The macro text Is read from the ter—-
minal (terminated by the Break XkXey)es The macro becomes
available for use in future insertions anywhere in the file.

It must not already be defined.

98

USE filename
Select the galley file to use. If the file already

exists, EZ27 assumes that it is a galley file which is going
to be edited (perhaps added to); if not, it is created and
initialized, Only one galley file can be in use at a time,
and another USE command after a file 1s selected closes the

first file, renumbering 1ts paragrarhs exactly as with DONE.

VIE¥ [#|EROM #] [>filepame]

The entire galley file is displayed (in readable for-
mat), or just one paragraph, or all the paragraphs beginning
with a certain ones The output may be directed to a file,

and the Break key will cut it off.

taystemcommand
The command line (all text up to the next newline,

regardless of “;"'s) is passed to the system.

7(b) Edit Subcommands

The EDIT command mentioned above invokes an interactive
editor that operates on the words (as originally delimited
by space characters) cf a paragraphe. Space characters

between edit subcommands are ignoreds The subcommands are3l

Dlo
iLeave the editor: the paragrarh is fixed.

]

Print the paragraph, with repeated occurrences of a
word numbered, and operations like typestyle changes in a

readable form.

Print the last part of the paragraph, # telling where
to start printing (not decided: whether in words, lines, or
percentage of paragraph length). The Break key will cut off

the printout.

S*fwordftexty

Substitute the text for the word throughout the
paragraph. With the 8 subcommands, “text” is a sequence of
zero or more words delimited by bdblanks, and almost any
character not found in the word or the text can be used as

the delimiter “f”,

S#fwordftextf
Substitute the text for the “#”'th occurrence of the

word in the paragraphe.

SfftextS

Substitute the text for the next occurrence of the same

word in the paragraph.

S*fftextS
S#fftextf

These forms have the natural analogous meanings.

lsystemcommand

The command line is passed to the systems

7(c) Formatting Commands

The input read by the IN and RFP commands consists of
general text, with commands whose syntax i=s described above.
In the descriptions below, [™text”] with no explanation

refers to the optional text argument of a transformational

100

commands
Command names have been chosen to be 2 to 5 characters}
there is no such restriction on macro and variable namess

The command=s are:

/*macroname "argumentTes./

Invoke macro, with the argument strings specifled.

/*yarname ["format"]/

insert variable, The format string indicates how to
print the number 1, as “i1”, “17, “00031", ™ 17, etce3 the
leading blanks in the last form are an estimation of how
many digits the number will use, for justification occurs

before the variable is evaluated.

/*AT [Near] [AlllSingleparator] [EvenlQdd]
Top[+# JIHeadl +#]| Foot{ -#]| Bage[-#]|#|-#
"traptext" ["text"]}/

The trap text will be inserted at the given position on
B PAge. If “A”®" is used, the trap is reusable, otherwise
one—time., It *S* is used, at most one copy of the text will
print on the same page “N7ear the same place, if identical
*at commands occurs {This would be useful for footnote
separators.) If “E” or *0” is used, the text will be printed

only 1f the page number is even or odd, respectively. i it

r
“H”, “*F”, and *B” refer to the margins defined under "“marg.
EZ27 “Traps® contain formatted text, not general text.
When another trap is set for the same place as an ex—-
isting one, the latter is dropped, unless N’ is used on one
nf themy, in which case it will take a new position adjacent
to the other. {If both have ™N7, +the earlier one has

prioritys.)

101

/*BAL [#] "text"/

Formats the text into lines of length as nearly egual
as possible before justification. If a number 1s included,
at least that many lines will be produced. (A break is im-

plied before and after the text,)

/*BCoL [#1/

Jump to top of next column, or specified column.

/“BREAK/

Breaks

/=BsSp [#]/
Backspace horizontally by specified (or default)

amount.

/*CASE [Lower|Upper|ReverselNormal] [Escape "char"]
["text"]/

Controls case translation on inpute.

/*CENT ["text"]/
Center Jjustify each output line. (A break is implied,
before and after the text i{f anys)

/*CHAR #/
Expands to the non—-ASCII printing character represented

by the number, in a device-dependent code.

/“CLOSE "filename"/

Close the named work file.

/*COLS # [Widik #] [At #e.a]/

Output in (specified number of) multiple columns. bl hed

4
if used, specifies the width of each; otherwise, the largest
width that will fit in the *width setting, with minimal
‘A'

guttersy 18 chosens y 1if used, 1s followed by a seqguence

102

of numbers giving the left-hand margin position of each

columne

/*DROP [Near] [All|Singlerarator] [EvenlCdd]
Topl +# 1l Headl +#]| Foot[-#]| Bage[-#]I #|-# ["traptext"]/
Remove the trap set by the *at command with matching

arguments. The actual trap text need be included only if
there 1s ambiguityt! If “N” was not used, a fresh “at with

null (®*"7) o5n omitted text will also drop the trap.

/*END/
Ignore the rest of this file.

/*EILL {"text"]/
Cancels *nfill, (A break is implied, before and after

the text Iif anys)

/*ELOAT [#] ["1ext"] [MorelOut]/

This command diverts output to a formatted string.
Several can exist simultaneously, distinguished by numbers
{(1f omitted, -1 is assumed). ¥hen a *float command is ex-
ecuted, the text argument is formatted and appended to the
specified string (the command does not cause a break). 1t
bt * At was not used, the string is then placed in the output,
immediately if ™07 was used, or as floating glued text if
nots (If two sSuch come up for output simultaneously, low

numbers take prioritys.)

/*FONT # [“text"]/
Specify typeface.

193

/*GLUE ["text"]/
If there is an argument, it becomes glued text; if not,

automatic widow elimination 1s switched on.

/*HEIGH #/
Set overall page height, (This takes effect as soon as

possible after the next breaks)

/*HSP [#1/
Space forward horizontally by specified (or default)

amounts,.

/*HYPH [At "char"] ["text"]/

If *AY is used, the character argunment following it
becomes a control character, the discretionary hyphenation
character: words containing It will ke hyphenated only
where it occurs (even it they contain hyphens already)e.

Otherwise, the command cancels *nhygphe

/=IN "filename"/
Insert the contents of the named file into input as

general text.

/*IND [RightlBoth] # [For #|"text"]/

Indent (by the specified amount). If “*R¥ is used, the
right margin is indented; if ‘B”, left and right (equally);
otherwise, the left only. If “F” is not wused, this takes
effect at the beginning of the next output line; if it is, a
break is implied, and the indentation expires after +the
specified number of output lines, or at the next break, or
‘F’

at a *ind without affecting the same margine.

104

/*INDEX ["text"]/

If there is an argument, the specified text is diverted
intp a work file. Macro and variable references are ex-
panded, so that page numbers and the like are filled in, but
other commands are not executed, so that the result is still
general text, WVhen there Is no argument, that work file is

closed, and inserted as If with a *in command.

/+JOIN/
Even though another command would imply a break at this

point In the texty, this command prevents ite.

/*LEFT ["text"]/
Text is to be left Jjustified. {A break is implied,

before and after the text if any.)

/*MARG [Top #] [Head #] [Foot #] [Base #]/

Reset top or bottom page margin sizes. “H” s g

and
refer to the total margins outside running text on a trap-
less page, while “T% and “B” pefer to outer zones left blank
beyond usual headings and footings. “H” refers to total
margin above running text on a normal page, including “T”

amounty, and "F” 1o same at bottoms. {(The command takes ef-

fact as soon as possible after the next breaks.)

/*NEILL ["text"]/
Nofill mode is used: each input newline gives a breake.

{ S0 does the command, before and after the text if anys)

J/*NGLUE/

Turns off widow elimination, which is off by default.

105

/“NHYPH/

Turns off auntomatic hyphenation.

/*NLINE/
Like *break, but in pad justification the output line

it terminates is padded.

/*PAD [At "char" [With "st "3) eoe ["text™])/

I1f ™A” is not used, this turns on pad Justification,
the default. (A break is implied, before and after the text
if any.)

If ™AY is used, any output lines containing (any of)
+he specified characteri(s) that need to be padded for
Justification will be padded only at each such occurrence;
it ™w” is used, there will be leadering with repetitions of

the specified character string, instead of blank space.

/*PAGE [Evenliodd|#]/
Begin new page; New page number may be sSpecified or
noty or i1f *0” or “E” is used 1t will advance 1 extra number

if necessary to make it odd or even respectively.,

/*RIGHT ["text"]/
Right Justify each output line. (A break is implied,

before and after the text if any.)

/*8ETI "mpacroname paramname.s.." "macrotext™/

| "varname" # [Format "format"]/

The first form shown defines the macro named, assigning
it the “macrotext”. If it is to have parameters, they are
given local names, separated by blanks from the macro name
as shown, mimicking the invocation. They are referred to in
the macro text as if they were {argumentless) macros them-

selvess.

106

The second form shown defines the variable named, as—
signing it the value given and, optionally,'a default output
Tormat (as described above). It should be noted that macros
are expanded as early in processiﬁg as possible, are treated
basically as source diversions in fact, while variables are
left unevaluated as late as possible.

Fach *set command is associated with the position wherse
it occurs with respect to the text. The macro (or variable)
named can be used with the value given for future insertions
between that position and the next *set command affec ting
the same macro, and for insertions to earlier points if it

is the first command for the macros

/*SIZE # [Qn] # ["text"]/
Specify output type slize and effective body size. Ifr
the “0” 1is omitted, the arguments are assumed to be in the

order shown, but it is recommended to be used for clarity.

/*SPACE [#]To #1/

Space downwards by srecified amount, or to specified
position on (the same or next) page. “/“SPACE To 0/”7 is
equivalent to “/%*PAGE/".

/%sUB [By #] "text"/

Set the text argument as a subscripty displacing its
baseline down by the given amount, or a default of 174 +the
type size (subject to later tuning)e. No change of type size

is implied.

/*SUPER [By #] "text"/
Analogous to ¥sub, but giving 8 superscript.

107

/*8XSTI "sysiemcommand"/
The argument is d}lrec ted to the system (during the

final pass).

/*IAB {Xab "char"] [Newline "gchar"] [Format "format"]
["text"e..] [Eormat "format"™ "text"ese] ses/

General tabular output command, adapted from Tbl {see
ander Nroff above). A table format generally consists of a
sequence of items separated by blanks and “;"'s, each item
corresponding to an element of one of the text arguments.
The elements are delimited in the text by ASCI1 TAB
characters (or the substitute defined by ™“T7), and a new row
of table entries is started by a newline (or the substitute
defined by “N7).

¥hen an additional text argument occurs with no new
format preceding, the same format is understood to repeat
from its beginning. When a new format occurs after one or
more text arguments, it is understood to describe additional
text which is still part of the same table. If there is no
format before the first text argument, the command is under-
stood to use the last format previously defined in a *tab
command, whether there was any text in that command or nots
When a command with no text includes “T" or “N”, the values
s0 Set are permanents

The basic formats are (upper or lower case): Cy L, N,
Py, Ry, and S. These describe a table entry that is to be,
respect ively, centered, left Jjustified, numeric—-aligned
{ uni ts? column matching), pad Jjustified, right justified,
and continued into an additional column.

In the first line of the first format of the table,
qualifiers may be appended to each format: <#, >#, =#, and

DH, indicating respectively (as the number) the maximum

108

column width, pinimum column width, fixed column width
{ short for <#>#), and fixed starting position; and a simple
between two format items indicates the amount of space to
leave between the columns i1f the default is not desired.

Any single character placed between two formats (or
between a format and a #) represents a vertical rule between
two columns; it may be preceded by V to rrevent ambiguity.
I1f the contents of one or more columns are to be replaced by
a horizontal rule, H followed by a character may be used,
with S used to extend it across the necessary columns; the
other columns will then usually be blank, represented by B.
A rule need not be a slimple line (as “|”)y but may be any
printing character, including one groduced by the expansion
of a macro or ¥char command, repeated as necessaryes

As the blank corresponds {(partially) in the format to
the tab in the texty, so the “;” corresponds to the newlline.
A single character between two “3;7's is understood to
represent a horizontal rule extending across the entire
table. ¥here there are more lines in the text (delimited by
newlines) than in the format (delimited by “3;"*s), the last
format line (excepting any consisting solely of horizontal
rules and the like) is repeated as necessaryy, unless any
portion of the format is enclosed in " and ™)7, in which
case that portion ls repeated, with an imglied “;” preceding

it if necessarys

/*TLILE “ltext" [“ctext"] "riext"/

Produces a three-part title. The middle part is op-
tional. Equal-width columns are used; each part may be set
as multiple lines 1f sufficiently longy in which case the
parts will be top-aligned with each other. (A break is im-
plied before and after the title.,)

109

/*IRANS 'char™ "gsiping" ["text"]/
| "chars" "chars" [ntaxth]/

Translate characters on inputs, The first form allows
any single character {including an otherwise unused ASCII
control character) to be replaced by an arbitrary string.
The second form allows single characters to be trans-—
literated respectively to octher characters. The first argu-—
ment must consist of a single character or exactly as many

characters as are In the second argumente.

/*ULINE [eXcept "chars"] ["text"]/

I1r there is a text argument, that text will be under-
lined on output. If “X? is used, the characters in the list
given with 1t will not be underlined; if there is no text
argument, the “X” list applies wuntil a different one is
given, but if there is a text argument, the list applies
only to the underlining of that text, It is not permissible

to omit both argumentse

/*WIDTH # ["text"]/
Set the output page width. (A break is implied, before

and after the text if any.)

/*MR1IE "filename" "string"/

Append the character string to the work file. An AFT-
name or complete pathname may be used for the files A
~glose command for the same file will enable it to be in-
cluded in input by %in, and will cause the next *write to

overwrite it rather than appending.

8. IMPLEMENTATION OF THE GALLEY FILE

Since the size of the galley file is important, as well
a8 the ease of its use, this section will describe its for-
mat in detail.

EZ27 was implemented in the language B, for TS5 on the
Honeywell 66/60. The words of this machine are 36 bits long
and when used forvASCII characters may contain up to 4 eache.
{ BCD characters are also supported at 6 per word, but with
no lower case they are of little use for textual applica-
tionse.) The basic unit of disk i/o is the gector of 64
words, and B supports random—access reading and writing of
sectors {addressed withir a file by consecutive integers

from).

8(a) The B-Tree

Since randomly located changes to the galley file are
important, no sequential or indexed-sequential storage or-
ganization would do; since sequential access is also neces-
saryy hash or trie methods would be awkwarde. Some form of
tree secems to be best. One having gocod properties for
external files is the B-tree [Knuth 1973-S, section 6+2.4];
each node of a B-~tree of order n has frem n/2 to n entries
{the root may have fewer), and at the next lower 1level (if
any) one more sSuccessor node than it has entriss, all
ordered by values of a keys New entries are inserted at the
leaf {(lowest) level, and whenever a node overflows it is
split in two, one entry being transferred to the next higher
level (perhaps a new o¢ne) and inserted there. If the
branching order is highy, not many nodes need be examined for

a particular entry, so each node can simply occupy 1 sector

110

111

without excessive 1/0; since all leaves stay at the same
level, there afe no degenerate forms (as ofy sayy a binary
tree whose elements were inserted in order); and since nodes
can vary from full to half-~-full, there is a good compromise
between use of filespace and frequency of node additions (or
deletions).

The EZ27 galley file was therefore implemented as a
random-access file organized as a B-tree with each tree node
occupying one sector. The B-tree keys are, of course, t he
parsgraph numbers. The J6-bit word allows a maximum integer
value of 34,359,738,367; the paragraph numbers, to fit in 1
word, were implemented as integers scaled »by 100,000,
ranging from 0.00001 to (for simplicity) 89999,99999,

To keep the B-tree's order high, its entries must be
smalls. A parapgraph descriptor includes a pointer to the
paragraph?s contents, and certaln information about its for-
mat (for Pass 2 and the Editor, stored as several small in-
tepers packed together). An opcode fits in the same spacey
being distinguished by a negative value where the text—
pointer would be. A trap actsg like an opcode, but is stored
like an ordinary paragraph (a few bits in the descriptor
distinguish it).

Originally the paragraph descriptor was planned to be 3
words, 1 for the text-pointer and 2 for the format informa-
tion; the latter proved inadeqguate and 1 more word was
added. Since each B-tree node must also include the key of
each paragraph and pointers to successor nodes, this change
reduced the B~tree order from 12 to 10: in a 64~word sec~
tory 11 words for successcor—-pointers, 10 for keys, and 40
for 10 paragraph descriptors. (B-tree entries need not ac-
tually be of fixed size [McCreight 1977], but here it seems

begts)

112

Several independent improvements [Knuth 1973-S, section
6e2+4] were held in reserve in case filespace or i/o0 time
proved to be limitings The B-tree could be replaced by a
Bi¥—-tree, wherein a node can overflow into the adjacent one
at the same level, rather than being split (some insertions
are slower, but filespace is conserved). Buffering in the
program, to make much of the i/o virtual, would substan-
tially improve performance, and the program was designed to
facilitate its introduction. Also, there is no strong
reason (though it does simplify the program) that each level
of the tree have nodes of the same format:? most of the
nodes are leaves, and it would cause no great disturbance to
place all the actual entries at that level, whereas the
leaves use no successor—-pointerse. A related matter is that
those pointers need not be full words, as sector numbers are
consecutively assigned and will bpe small. iIf 3 pointers
were packed per wordy pointer fields omitted from leaves,
and all opcodes and paragraph descrigptors stored in leaves,
the order could be 12 for the leaves and 47 for the other
nodes. {Blnck 1980] details a scheme for adding redundancy
to B-trees,y, for error detection and correctione.

The paragraph descriptor was avolved in detail as the
program was developed. 1t finally came to contain: 1the
text-pointer (two half-word integers, the sector number and
the word within the sector, but both could fit in one half-
word {if necessary); the paragraph's usual typestyle; the
pody of the first and last lines, and a bit indicating
whether the body ever changes during the paragraph; whether
the paragraph is a trap and, ir 50, of what Xinds and
w hether it is ypart of a BHlock of paragraphs (such as a
multi—-paragraph trap). Additional formatting information

{see below) is stored elsewhere because its size varies.

113

8(b) The Text

For most operations on the text of a paragraph to have
reasonable speed, it must be 1In internal memory in some kind
of linked structure. However, copying a linked structure to
an external file, and later recopying it to memory, will
cause the address spaces to conflict, unless the addresses
are glven in some relative forms But this would force
memory for the paragraph to be allocated in largish pieces,
rather than sparingly, for relative addresses must operate
within a known range. Rather than accept this nuisance (ad-
ditionally inconvenient in B because the B library's dynamlic
memory allocator is very well suited to taking only what |is
needed), the structure was transformed during the transfer
to and from the galley files

Anyway, unless editing is allowed directly on the gal-
ley file, text on the file needs no linked structure, and a
segquential one will use less storage. The most compact form
retaining ASCII characters would wuse 4 characters per
machine word, separating words of text with some sSpecial
character. This is not convenient using B because the
paragraph must be divided back intc words of text when it is
read, and B handles character strings best when they hegln‘
on machine word boundaries. Alsoy certain formatting infor-
mation is assoclated with each word of text: its output
width (WWIDTH), the width of blank space to leave before it
{ WSPACE), and, 1f it starts a new line, the body size to use
{ WDEPTH). As discussed below, these items are closely as-—
socliated with the word when the paragraph is in memory; it
is both simple and convenient to place them, as integers,
immediately before it, but only i1if the data for each word of

text start on a machine word houndarye.

114

The implementation therefore represents the paragraph
text as a sequentially stored list., Firsty normally, come
two half-word integers, WWIDTH and WSPACE; {if the word of
text begins a new output line after the first one Iin the
paragraph, those integers are preceded by WDEPTH as a full-
word integer. Next <comes the word of text as a normal
character string, terminated (as always in B) by an ASCII
NUL (all O-bits), then garbage characters if necessary to
fill out the machine word (they might be NULsy, so a 0 word
could occcur here), The data for the next word of text fol-
low immediately after; a 0 machine word there indicates the
end of the paragraphs (The normal casey a new line, and
end-of—-paragraph can be discriminated by the number of O
half-words from the word boundary following the previous
word of text, for WWIDTH and WDEPTH will always be positive
and the latter will never be large enough to use {ts upper
half-word,) This scheme is gquite economical of storage, and
can be transformed into the internal—memory structure gquite
easily in B.

Some commands must be retained for Pass 2 or for
editing, but cannot be opcodes because they can occur in
mid-~paragraph? typestyle changes and indents, for instance.
These are coded as mparkersy, which are one or two characters,
the first chosen from the range octal 740 to 777, s0 as to
be readily distinguished from real characterse. WVhere there
is a second character it is taken as an integer argument.
Any word of text containing a marker also begins with one
for ease of identification. It was intended to use markers
pointing to opcodes when such things as fcocotnotes ware im—
plementeds.

Besides the format information detailed above, a

paragraph in Ez27 has stacks of left and right temporary

115

indentatlions; these need variable amounts of storage, which
forces the information out of the paragraph descriptor where
it logically belongs. It is in fact stored with +the
paragraph's texte. Each stack is of paired integers, the
amount of each indentation (SDATA) and when to end it
{ SCTRL, which is never 0); the bottom entry has SDATA the
permanent m#rgin position and SCTRL *infinity”
{34,359,738,367). On the galley file, each stack becomes a
sequent ial list of half-word integers; the last SCTRL is
changed to 0, indicating the end of the list. These two
lists and the paragraph's text are simply <concatenated +to

form one sequential structure.

8(c) Filespace Allocation

Transforming a paragraph into a sequential structure
still does not allow it to be written directly to the galley
file, for sSpace must first be allocated on that random~—
access file, The data are simply split off into 63-word
portions, each written to one sector of the file. The
remaining word of each sectory in the text-pointer format,
1links to the next portion. It is both sispler and more ef-
ficient to do portloning without regard to words of text;
when read into memory, the portions are logically con-
catenateds. (There 1is a minor problem on deallocating
storage using this layout: the only way to tell the length
of the last portion is to read the whole paragraph and
search for the ends of the two margin stacksy then for the
end of the text, which may not be the first 0 machine word.
Replacing the 0 1link of the last entry by the negative of
its length would avoid this, but of course would complicate

the structure.)

116

It is clear that the file s=storage must be allocated
dynamically.,. Paragraphs in general will not require an
exact multiple of 63 wordes of storage: dividing them into
such portions therefore creates for almost every paragraph a
shorter “remainder” portione Naturally, several such
remainders are best stored on a file sector. Thus the sec—~
tors of the galley file fall intoc three varieties: con-
taining one 6$3~word portion, or several remainder portions,
or one B-tree node. Now, since two of the three are al-
located as entire sectors, there 1s reason to treat this
case specially3; as implemented, there is one free—-list for
sectors and another for partial sectors. Each list is main-
tained in the free space itgelf.

The list of free sectors is worked as a simple stack of
sector numbers, The free—-list of partial sectors,; however,
is kept sorted, and its entries consist of 2 words (alloca-
tion is by double words, chiefly so that this simple format
is possible): a pointer (in the text-pointer format) to the
next free area, and the length in words of the current ones
Since the free areas can vary in length, serious fragmenta-
tion could occur when the text is repeatedly edited. This
problem 1is alleviated [Xknuth 18973-F, gsection 2.5] by using
first-fit allocation rather than best-fit (under which very
amall leftover areas proliferate), and by coalescing adja-
cent fregs areas (the list is kxeprt sorted to facilitate
this). When they coalesce to an entire sectory, it is trans-
ferred to the other list; conversely, a sector 1is trans-
ferred from the other 1list when an allocation cannot be
satisfied from this one.

Storing free-lists in +the free areas is natural, but
when the storage is on disk, each entry examined in the list

necesslitates a disk read., For the list of partial sectors,

117

there is really no other logical grlace to store it, and
first-fit allocation does reljeve the situation somewhats.
(If 1t proved serious in practice, areas could be allocated
in multiples of, say, 8 words to further reduce fragmenta-
tion at the expense of some fllespaces)

For the free—~sector 1list, operating it as a stack
minimizes the disk reads, but increases the likelihood +that
a file will come to contain a number of free sectors in the
middles Ultimately some kind of file compaction would
probably be implemented, and this would be easier with a
free-sector list in a different form: one or more machine
words in a fixed location (or sequence of locations, 1f the
file grew large) could be used as a bit vectory each bit
corresponding to a particular sector of the file and being

1y say, if it was available.

8{(d) Macros

As discussed below, the interpretation of macros in
E727 requires that their values be saved on the galley file.
Nowy in EZ27 macros taking arguments are defined with named
parameters, as in “/%*set pw base exp "/fexp/th power of
/*base/"/”; while the parameter references “/Yexp/?’ and
“/rhase/” could be replaced in stcorage by markers, this s
not actually done, and so the local names must be stored
along with +the macro name and contentse. Fach of these
character strings is stored in the same fashion as the words
of a paragraph, beginning on a machine word boundary ahd
ended by a NUL.

Galley file storage for macros is allocated by entire
sectors. As with portions of a parasgraph, 63 words are used

for data and the other one for a link; the logical con-

118

catenation of all the 6$3-word portions and the final shorter
one gives the logical concatenation of all the macros
stored.,. Fach macro is stored simply as 1ts namey followed
by each parameter name, followed by a null string, followed
by the macro contentss, This scheme is dquite workable and
efficient because macros can only be assigned oncey perma-

nently:?: in effect the galley file acts as a 1log of *set

commands.

Figure 1 " ‘USE'PAR)
EZ27 PROGRAM STRUCTURE

r------------J

ENDPAG OUTPAR 1

: (Pass 2)) ~ :

i EXSET PLACE 1

i i

N ~PSPLIT — 1

r — VWPAR PTPAR 1

I =" p—

| Y A s sy _=
i =

1 GETCMD (Controller) / RDPAR (Galley File) -

IMATN OPENGA RDREGS |

EXIN —CLOSEG — ¢ RELTRE, y

EXREP -

FXDEL ALOCAT :

\ DEALOC §

EXEDIT WRTPAR DELETE 3

EEditor) ESUBST EINTRN | INSERT I

((Master)) EPRINT EEXTRN | REVISE |

ECANON 1

|
BDNEED
<DIVIDE
PAD

Pey

JUSTI

CANON

* DISPOS +
BCA/NON
BPART
- am ---------

TEXT +

---------r--.---
—~—

\ XPAD (Format)
\ XRIGHT (Command)

. BN IS am e EBm KN ¥ N N _ ¥ & X N N N N
" —— R .

| XCASE | EEY

I
")
(Pumper)) : | XEND 2 Ordinery call
| [BXFONT I —=——— Recursing call :
*% 1 ‘;\ XIN%GH : :to :: > Coroutine link
MAKEWD pEEAD 1§ to
1 *XSIZE 0 Coroutine ((name))
I XSPACE : ————— Module (name

r------r

-----------1—----------_-------

9. PROGRAN STRUCTURE

The EZ27 programy as finally insplemented, is here
described in terms of 10 “modules”, the term being used
loosely to refer to any set of related fupctions (B jargon
for subprograms). This section should be read with
reference to Figure 1, on the preceding pages

Only the more important functions are included here.
Several utility functions are called by many others for
simple tasks; some functions are trivial,. The complete,
commented Source has been archived on TSS (archive tape 585,
file number 0364); 1t uses 167 1links (blocks) of fllespace,
contains 4526 lines, and 1s 41% comments.

As ment loned above, EZ27 includes Pass 1, which
produces formatted paragraphs; Pass 2, which produces pages;
a paragraph Editor; and an overall Controllers. These form a
simple hierarchy; other modules, performing utility func-

tions, may contain components called from several places.

9(a) Controller MNodule

Thils module and the next four described comprise

Coroutine Master.

The malnlipne {(unique entry point) of the Control
Module, of Coroutine Master, and of EZ27 itself, is MAIN.
First 1t inlitializes Coroutine Pumper and some other things.
Afterwards, it governs the opening and closing of galley
files on command and, when a galley file is open, the execu-
tion of other commands read from the terminal hy GETCMD.
Function=s EXDEL, EXEDIT, EXIN, EXREP, EXSET, and EXVIEW
respectively execute the corresponding ccmmands; some are

mainlines of their own modules,

120

121

Pass 1 can be invoked from EXIN or EXREP by way of
ACCEPT, which interfaces with Corocutine Former. The latter
returns (pointers to) formatted paragraphs, and ACCEPT as-
signs them numbers and writes them on the galley file. The
coroutines must pass status data cooperatively +to prevent
numbering collisions, since Former may generate more than

one paragraph at a time.

9({b) Editor MNodule

EXEDIT is the Editor's mainlire. After the selected
paragraph is read, ESTRUC converts its format in memory to
the special one (described below) intended to facilitate
editing. Editing subcommands are then read from the ter-
minal and executeds Finally, ECANCN converts the paragraph
back to the normal memory format and calls JUSTIF (of the
Format Module) on it before it is rewritten.

ESURST parses and executes the S subcommand; the actual
substitution is done by one of a series of functions ac-
cording to the number ¢f words involved. EPRINT executes
the P subcommande. Since markers are editable the same as
other characters, EEXTRN translates thenm into visible form
for EPRINT, while EINTRN makes the inverse translation for
ESUBRST.,

D(c) Pass 2 Module

This module assembles pages by scanning the galley file
sequentially; it handles traps and blocks of paragraphs, and
splits paragraphs between pages. For appearancey, when the
body size decreases at the end af a paragraph (including

after a trap)y, the larger size is maintalined for one extra

122

line; that is handled by EXSET.

EXSET is the mainline of +the module. After some
initializations, it gets a paragraph from NXTPAR, places it
for output with USEPAR, and repeats indefinitely. When a
paragraph has to be split (arcund a trap or between pages),
PSPLIT does this, and USEPAR is called for each part.

¥hat NXTPAR actually does is to read entries in se-
quence from the galley file B- tree until it finds an
ordinary paragraph descrirptor, and then to return that., (A
block opcode is treated as an ordinary paragraph, after
PARBLK is called to read the paragraphs it contains and at-
tach them as a list.s All the functions in this module can
handle such a blocky some by recursion.) Everything else
NXTPAR may ready iseey a trap or any other opcode, it acts
upon; in particular, when it encounters a trap, it im-—-
mediately calls SETTRP, which puts it in the appropriate
liste. ‘

TRYTRP is called whenever the position on the page is
advanced; 1t tests whether any traps should be tripped, and
if so, does everything required. At the end of the page, it
calls ENDPAG, which passes each paragraph {or part-—
paragraph) of the comple ted page to OUTPAR (a stub, intended
to interface with the output device), then throws away any
used one-time trapse. PLACE maintains all the wvariables and

lists associated with trapse.

9(d) Display Module

EXVIEW is the mainline of the module. VWALL traverses
the galley file B-tree, using recursion, for each paragraph
calling VWPAR, which calls PTPAR, which displays the text in

a form resembling the final output.

123

O({e) Galley File Module

OPENGA opens a galley file, calling RDREGS to bring in-
tTo memory any macros stored on it, or initializing it if
necessary; CLOSEG closes the file, calling RELTRE (which
recurses for tree traversal) to forget the macros. SEARCH
{which is omitted from Figure 1 because it is called from
many places) reads a paragraph descriptor given the
paragraph number; RDPAR, given the descriptor, reads the
text of the paragraph, putting it in memory in the proper
structure.

WRTPAR is given a paragraph number and perhaps the text
of a paragraph; it deletes from the galley file the existing
paragraph with that number, if any, then writes out the new
oney if any. The two portions respectively use DEALOC and
ALOCAT for the dynamically allocated storage of the text;
one of DELETE, REVISE, and INSERT then updates the B-treeg.

9(f) Syntax Module

This module and the next three described comprise
Coroutine Former, which together with Corcutine Pumper forms

Pass 1.

The mainline of Pass 1 and of Coroutine Former is func-
tion TEXT, which serves nainly to lsolate Former's i/o from
Master?s.

The Syntax Module’s work is done through GETTXT, which
is called by TEXT and also, in indirect recursion, by
several other Pass 1 functions. Each call of GETTXT cor-
responds to a level of 1nput, either as a file or macro
insertion, or as a text argument tc some commands GETTXT

reads general text, passing each ordinary character on to

124

Coroutine Pumper (replacing space characters with ASCII
NULs)y and calling CMDLST when it encounters “/%”, GETLIT
is an otherwise similer function that does not recognize
“/:‘:{”‘

CMDLST parses a formatting command, or command 1list,
and governs its execution. Each command {(or group of
transformational commands) and its arguments is translated
into an internal structure and passed to EXQ. {For text ar-
guments, which may of coﬁrse be indefinitely longy a flag is
passed indicating that one occurred.)

EXQ looks up each command namee. It a macroy it is
opened and GETTXT is called; if a command, the corresponding
function from the Command or Block Module is called, then,
1if there was a text argument, GETTXT reads the argument, and
DEEXQ cancels the command's effects (as explained below).

The dlvision of EZ27 into three coroutines allows this
indirect, data-driven recursion of GETTXT {greatly
facilitating the control c¢f the program) in Coroutine Former
to be quite uncoupled both from the linear text structurse
that 1is produced after the commands are executed (as in
Pumper), and from the linear 1list of paragraphs finally

written to the pgalley file (in Master)s.

9(g) Command Nodule

These functions mostly correspond to the various for-
matting commands. Some {such as XIND) gproduce markers,
passed to Coroutine Punmper; some (such as XSPACE) produce
opcodes; some (such as XCASE) only set external variabless
XIN opens a file and calls GETTXT; XEND causes a B reset
{is2ey it truncates the calling stack, as though an ar-

bitrary number of func tions suddenly returned, until +the

125

desired, previously marked, functicn becomes the current
one) to the most recent active call of XIN, or TEXT if none,
thus simulating end-of-file. XSET assigns a wvalue to a
macro and also calls PUTREG to write it to the galley file.
XXJUST handles four commands with similar effects.

1f a command causes a break, this is8 indicated in an
external variable, so the Format Module can be called la ter.
W¥hen a general text argument occurred, the Command Module
function returns the data necessary for DEEXQ to later undo

the commands,.

9(h) Block Module

The *foot and *head commands can create blocks of
paragraphs, and ¥title always doess. They all also create
diversions, where the formatting environment and the
paragraph currently being formed in Corcoutine Pumper have to
be stacked until the active command’'s text argument(s)
is/are read.

XFOOT and XHEAD have such simllar effects that they
both merely call XXAT. After calling DIVERT, which stacks
the environment and flags that a block is being formed, XXAT
starts the block off with an opcode. The text argument is
then processed, each paragraph being appended to the block.
Afterwards, DEEXQ restores the environment and PBREAK even-~
tually handles the blocks.

The *title command is more complicated since, uniquely,
it can. take up to three text argumentss XTITLE only
verifies the command and sets external variables for later
uses EXD sees these after the entire command group has been
read (#title might occur in the middle of a transformational
Zroup), and calls PTITLE, which is somewhat like XXAT.

126

After the first text argument, EXQ <c¢alls CTITLE, which
restores the environment as it was on entry to PTITLE be fore
reading 2ach of the other text arguments, and finally up-~

dates the title block opcode with cumulative datas.

9(1i) Format Module

WYhen a command has caused a breaky or when input is
finishedy or when a diversion is started, PBREAK is called.
This snips off the list of words that Coroutine Pumper has
been making and, unless a block is being built (as for a
diversion), passes the paragraph (and any others ac—
cumulated, as from a block ,just endedy or opcodes) to CANON,
then on to DISPOS.

CANODN ad,justs the structure of each paragraph in a
block from the way MAKEWD creates it to the normal format,
then callg JUSTIF on the paragraphe. JUSTIF, which the
Editor Module also wuses, calls DIVIDE +to partition the
paragraph into output lines, BDNEED to position them ver~
tically without overlapping characters, and PAD for pad
Justification if appropriate (handling other modes itself).

DISPOS interfaces with function ACCEPT of the Con-
troller Module of Coroutine Master, as described above. It
also calls BCANON to fill in cumulative information in block
opcndes (blocks within blocks being handled by indirect
recursion)y, in a format like paragraph descriptors, enabling
Pass 2 to handle them easily. If Coroutine Master informs
DISPOS that a collision is inevitable, so the paragraph can-
not be written, DISPOS recovers gracefully and does a reset

to TEXT.

127

9(3J) Coroutine Pumper

The mainline of this coroutine is MAKEWD, which |is
passed all the plain text characters found by GETTXT and
GETLIT, with NULs for space characters. MAKEWD simply ap-
pends continuously to a linked list of words of text, whoss
ends are stored in external variables so Coroutine Former
can sSnip it off when 1t wants tos. MAKEWD calls PHEAD to
make a paragraph header when Former signals it to (by
another external).

Markers are also passed to MAKEWD, and handled almost
as ordinary characters, though anocther external warns MAKEWD
of their status. Many of the links to MAKEWD diagrammed in
Figurse 1 are actually indirect through trivial functions,
for purposes such as forcing a word to end before starting a

diversion.

10. DATA STRUCTURES IN EZz27

The EZ27 program use s 1linked data structures,
dynamically allocated ir internal memory, with abandon,
basically wherever the amount of data changes dynamically.
Most of themy as is common with P, are made up of “vector”
entries: sets of {(machine) words occupylng consecutive
memory Llocations. Fach word, usually, forms a “field” of
the vector and is referenced by ite offset from the start of
the vector; a symbolic name (in block capitals) is generally
assigned to the offsety, and used in this description as +the
field's name.

The lists may be operated as gqueues or stacks or by
whatever other discipline is approgriate in each case [Knuth
1973-F, chapter 2], but almost always the “0th word” (offset
0) is reserved for the link field, the pointer to the next
item of the same kind; binary—-tree or doubly-linked struc~
tures have their second link field in the following worde.
Both in memory and on the galley file, the value 0 is always

used for a null link (no next item).

10{(a) Paragraphs

A paragraph is stored as a “header” and a list of words
of texts The header contains: a pointer HPARA to the list
of words part of the formatting environment, namely
typestyle HFONT, HSIZE, and HBODY, £ill and Justification
modes HFILL and HJUST, margin information HLMAR and HRMAR,
and trap and block control information HTRAP, HWHERE, and
HBLOCK3; other informaticon for Pass 2, namely the first and
last body used in the paragraph HFBODY and HLBCDY, whether
the body ever changes HMBODY, and the vertical size HVSPAN;

128

129

and fields used as work areas by tte Editcor, HEBASE, and by
Pass 2, HNUM, HPLACE, and HBACKUP (which actually share
locations with fields not used by Pass 2). Most of these
contain integers, but each bit of HIRAP has 1ts meaning,
while HLMAR and HRMAR are pointers 1o the stacks of tem~
porary margin settings mentioned above. The headers cor-
respond more or less to paragraph descrigtors on the galley
£ile.

In the normal format the list entry for a vword of text
contains: WWORD, containing the word itself (in B jargon,
that means a pointer to the beginning of the character
string); WWIDTH, its output width; WSEP, the width of space
to leave before it; and WDEPTH, the body toc use if this word
starts a new output line, ctherwise 0. (Originally the
structure was more awkward: there was no WDEPTH, and WSEP
and WWIDTH were packed 1In one word, which was made negative
at the start of a new line, and the WWCRD field was of
variable lengtﬁ and contained the actual charsascters of the
word of text.)

Thus a paragraph is repnresented as:

Header: (HFONT, HSIZE, HBODY, HFILL, HJUST, HTERAP, HWHERE,
HFB0DY, HLBODY, HMBODY, HVSPAN, HEBASE, HNUM, HFLACE,
HBACKUP3; HLMAR: Stack of: (SDATA, SCTRL); HRMAR: Stack
ofs: {SDATA, SCTRL); HPARA: Linear List of: { WWORD,
WWIDTH, WSEP, WDEPTH)).

o a]

For reasons which no longer seem validy, there are two
other variants of this structure. When the linear 1list |is
formed in Coroutine Pumper, there are four more flelds:
WLENGW, the amount of memory allocated for the string
{MAKEWD allocates by chunks, not being clairvoyant); and

130

WFONT, WSIZE, and WBODY, the typestyle of the first
character in the word (CANON uses these in converting to the
normal format, to compute the parsgraph's “usual” typestyle
for its header; the meaning of typestyle change markers is
also changed In CANON, so that they expire at the end of
aach word, which avoids pitfalls in editing.)

The other variant is used by the Editor. To reduce the
number of (slow) string comparisons when doing a substitu-
tiony, a specjial structure was conceived with a binary tree
having one entry for each different word in the paragraph,
and occurrences of the same word in the main list of words
being linked together directly; the maln list would also be
doubly~linked to simplify deletions.

This wviolated the maxim “Keep it simple to make it
faster” [Kernighan 1974, chapter 6). The structure, once
built, would indeed speed certain substitutions, but more
perverse cases, like "S¥/the/the best of the rest of the/”,
would involve complex updating: the difficulty of
programming for these cases would cffset any savings

Instead, the double linking and the binary tree were
retainedy, and the same-wcrd—-occurrence pointers dropped. In
the editing for of the structure, the list of words lacks
fields WWORD and WWIDTH, having instead a back vpointer
(WWORD=1, s0 it is in the 1st word) and WENCDE, which points
to the corresponding entry in the binary tree. String com—
parisons are avoided by comparing WENCDE fields instead.,
The binary tree nodes have fields WWOED and WWIDTH, and
EUSES, the number of occurrences of the word; their 1links
fields are ELNEXT and ERNEXT (not the Oth and 18t words
baecause WWORD=1), HEBASE in the header points to the tree
roots The tree iIs initialized with the 6 commonest words so

that it will be fairly well balanced.

131

Thus thils variant is:
Header: {(same as above, except se+3 HEBASE: Binary Tre=s
of: {(WWORD, WWIDTH, EUSES); HPARA: Doubly-Linked Linear
List onf: {WSEPy WDEPTH; WENODE: entry in HEBASE's Binary

Tree)).

n o a

It now appears that three forms of the same data struc-—
ture are two t00 manye. If the development of EZ27 was con-
tinuing, this diversity would be eliminated and only the
normal form kept; it can be made to do what the others do,
with no more fuss than the conversions now involve. (For
instance, if string comparisons really cause a significant
delay in editing, a check of the first character or two
would rapidly eliminate most non-matchess.) The differing
structure of the texf on the galley file, on the other hand,

appears legitirmately justifled by the reasons given above.

10(b) Opcodes and Blocks

On the galley file, an opcode fits in the place of a
paragraph descriptor, being 4 words longe. The first word,
always negative, indicates an opcode, and which opcode it
is, and thus the format of the cther words (which varies
from opcode to opcode), All blocks of paragraphs, such as
three—-part titles, are preceded by opcodes containing
cumuilative data, resembling an ordinary paragraph descriptor
in format; in Pass 2 these opcodes are in fact represented
in memory like ordinary paragraph headers.

In Pass 1, all opcodes are represented in memory as on
the filey, but with one word inserted at the beginning of the

vector, for linking the opcodes and paragraphs.

132

10(c) Galley File Buffers

Galley file i/o0 is by 64-word sectors. However,
65-word buffers are used, the extra word BWHENCE being set
on reading to the sector address read from. This would
facilitate the introducticon of virtual i/o0.

This is simply:

Buffer: (data: 64 wordsej; BWHENCE).

0 a i

For applications involving the B-tree, a doubly-linked
list of buffers is maintained (linked through 2 extra words
BNEXT and BPREV), their contents usually corresponding to a
search path from root to leaf.

The fields of a B-tree node are called LINK x, KEY x,
and DESCR x, where x is a number from 1 (0 for LINK) to the
B-tree order. The DESCR fields are 4 words long.

This is:

Doubly-Linked Linear List of: Buffer: (LINK O, LINX 1,
»esy LINK ORDER; KEY 1, KEY 2, ees9y KEY CEDER; DESCR 1,
DESCR 24y »se¢y DESCR ORDER: 4 words each; BWHENCE).

10{d) 1Input Stacking and Macros

The B library provides a convenient ismplementation for
source stacking, but the program has tc keep track of tha
stack?’s state, for error messagesy So it operates another
stack in parallel. Its fields are: INAME, the name of the
file or macro in use; ILINE, the line currently being read;
ITYPE, a code indicating whether the source is file (or ter-
minal), macro, or macro argument; and IARGCNT, which in-

dicates how many arguments 1t takes if it is a macros

133

This is:
Stack of: (INAME, ILINE, ITYPE, IARGCNT).

o i n

A1l macros defined in the currently open galley file
are retained in a binary tree in memory. Its fields are:?
RNAME, the macro name; RCONTENT, the macro text, with
parameters indicated as (argumentless) macros; and RARGLIST,
a pointer to a list of parameter names.,

That is:

Binary Tree of: {RNAME, EBCONTENT, RARGLTIST: Linear List

of: {name)).

10{e) Command Lists

The list of commands that CMDLSYT passes to EXQ consists
of entries with fields COMMAND, the command name, and
CARGLIST; the latter points to a list with fields CARG, the
argument itself, and CATYPE, a code filled in when the argu-—
ment is classified.

This is:

Linear List of: Command: (COMMAND; CARGLIST: Linear List
of2 (CARG, CATYPE)).

10(f) Environment Stacking

When a transformaticnal command is executed with & text
argumenty, it pushes data onto a stacke. The format is the
same as the temporary indent stacks; here, SCTRL contains
the actual address of the (external) variable affected, and
SDATA 1ts old value to save. The functlons doing this, such
as XCASE and XFONT, are passed as an argument the old stack

134

topy and return the new oney, so the stack can be local to
EXQ. (Finally it is given to DEEXQ, which then undoes the
commands?! effects.)

At a diversiony, as with X¥OOT or PTITLEy the whole en-—
vironment is saved, A stack frame is pushed with SCTRL O
and SDATA pointing to a vector of values in a specific
order, A constant vector Elist contains the respective ac-
tual addresses of the varlables saved.

This is:z
Stack of: (SCTRL; SDATA: value or vector of values).

10(g) Pass 2 Structures

As the ocoutput is assembled into pages, it takes the
form of a list of paragraphs, or cf part-paragraphs when
PSPLIT was used, The list entries contain? QNUM, the
paragraph's number (scaled as on the galley file); QP0OS, the
vertical position on the page of its beginning; QBACKUP,
which, 1if nonzero, means that this paragrarh goes on the
same page beside, or higher than, the previous one, as for a
three~part title; and QAFTIER and QUNTIL, which, if nonzeroy
tell where to start and stop printing, as measured from the
start of the paragraph (i.e. eilther one produces a part—-
paragraph, and QAFTER 1s the previcus part?s QUNTIL).

This is:

Linear List of: Part-Paragraph: (CNUM, QPCS, (QBACKUP,
QAFTER, QUNTIL),

a x| 11

Pass 2 also maintains two doubly-linked circular lists
{with heads), containing the traps currently in effect, The

two lists correspond to head and focot trapse The entries in

135

epeach list are basically in the format of paragraph headers,

whether the trap is a single paragraph or a block. Res ides

the back link, they use the field HPFLACE, which PLACE as-

signs to the position on the current page where the trap

will goe A number of external variables are wmaintained in

conjunction with the trap lists.

11. HISTORY OF INPLEMENTATICN

11(a) Vork Completed

Written and debugged first of all were the functions to
manipulate the galley file B-tree. A test mainline called
various functions individually, to insert, delete, renumber,
and read back in sequence {(dummy) paragraph descriptors on
{ interactive) request. The Controller was then partially
inplementedy s0 that the rproper interactive commands could
pe used to drive the various functions of the program as
they were written.

This work was then set asidey and the first version of
Pass 1 was written. This accepted a paragraph from the ter-—
minal, translating it into the proper internal form, then
formatted it with pad justification and printed the result
on the terminal, The command indicator /%7 was recognlized
and the function to parse commands was called; general text
arguments were recognized syntactically, but not acted upons
The first commands implemented were *size (type size only)
and “font; a restricted form of *ind (permanent indents
only) followed. Argumentse were not verified for legitimacys

The *cent, *left, *pady and *right commands were then
implemented; sSince these cause breaks, the program was al-
tered +to0o accept any anmount of text from the terminal and
then print the entire seguence of formatted paragraphs.

The implementation was revised at this point so that
sach command was executed from its own corresponding func—
tiony which first verified arguments for validitye. The
“hreaky *iny Fend, and *case commands were added, then

*gyst, but acting in Pass 1. General text arguments, with

136

137

their implied stacking of part of the envirconment, were then
implemented.

Coroutines Former and Pumper were then created, so that
the Former could follow the data naturally with recursion;
this enabled important control information, which formerly
had been In external variables or faked into the input, to
be properly stored on the local-variable stacke The revi-
sions to the data structure for a paragraph described above
were also made at this time.

Next came the functions needed to write a paragraph to
the galley file (with dynamic storage allocation) and read
it backe. This enabled the Controller to be linked (as
Coroutine Master) to the formatting routines proper (Pass
1), invoking them on command, Afterwardsy the functions to
delete a paragraph from the file {(freeing storage) were
added.

To the existing Interactive commands DEL, 1IN, REP, and
VIEW, EDIT was added next, together with its complete set of
=ubcommands. This entailad the variant data structure
described above.

vVvertical positioning of text was isplemented next.
This required the implementation of the body argument of
“wize, and the specification of the proper handling of body
changes. At the same time, the B livrary's automatic
release of dynamically allocated memory was adopted wherever
possible.

The program was altered to allow blocks of paragraphs
to be handled internally. Functions to save and restore the
entire environment were then added. With these changes,
traps (of formatted text) became possible, and the commands
“foot and *head were implemented (intended as temporary sub-

stitutes for Fat)de The ¥*helgh and *space commands, which

138

produce opcodes, were implemented.

Next came the page make—up routines: Pass 2. The in-
teractive SET command had been provided for when the Con-
troller was written, but as a dummy (macros not being im-
plemented yet); this name was pre-empted instead for the
command to invoke Pass 2 (which had been conceived as a
separate program). The necessary tables and output func-
tions to use the Photon 532 Fontmaster typesetter were then
added, and typeset output was actually produced for the only
+ime (debugging being easilier with monospacing)e.

The ™To” argument of the *space command was implemented
as another opcode. The Pass 2 functions were then rewritten
in better s8tyle, and the *foot and *head commands extended
to allow traps at any position on the pages. The *title com-
mand was 1mplemented, giliving 3-part titles 1in their full
generality, as Dblocks cf paragrarhs preceded by a new op-—-
code. The opcodes were then revised so that one precedes
every block, enabling blocks to be nested.

The last feature implemented was macrose. First the
* get command, to define a macro in memory, was installed;
then the functions to write the macro text to the galley
file {s0o it could be reused later) were addede. However, no
provision was made for reassigning a macro a new value

{which is nontrivial as explained below).

11(h) Lesser Works Not Completed

These defliciencies of the last version of EZ27 from (or
because of) the specification are listed roughly in order of
decreas ing importances

The formatting environment is initialized when EZ27 is

entered, and thereafter changed only thrcugh commands in in-

put texts. When a paragraph is inserted or replaced in an
existing galley file, the envircnment should be set, when
input begins, to that of, sSays the preceding, or the
deleted, paragraph? this might be gquite different from the
last text entered. For versatility, options for IN and REP,
or new commands, should be added giving more control of the
environment. Each galley file should perhaps carry a
default environmente.

EZ27 does not handle the Break key;) using it during
galley file writing can leave an invalid file. Such
critical procedures should be protected against interrup-
tions. During terminal input, the Break key should simply
terminate that input, as provided in the specification.
{(Input can be terminated only by a *end or the B end-of-file
signal “<nl1><2g><nld>”, "<£g>” representing an ASCII FS.)

Similarly, the re is no recovery from overflow of the
galley file; invalidity results. A module to reduce the
file size by garbage collectiony and perhaps to claim
storage from the B-tree by increasing the average fullness
of nodes, seems called fory but (as discussed above) ths
sector free—-list arrangement would slow it.

No conditional input command was provided; this was an
oversight, and would be reasonably simple in Pass 1.

Another oversight was the omission of any way to insert
a macro inside a string argument; this makes it impossible
to define a macro in terms of the present value of another
ones The syntax specification would have to be revised +to
solve this problem.

No hyphenation facility was provided. This would be
made relatively difficult by the organization of text as a
segquence of words: the data structure as it stands makes no

provision for words to be divided between lines. Alsoy the

140

“hyph command as specified can definpe an additional control
character, which is contrary to the spirit of EZ27's syntax;
it would probably be better to support a hyphenation excep-
tion list rather than a discretionary hyphenation character.

Instead of the ¥at and *marg commands as specified, the
implementation has the less convenient {intended as tem—
porary) ¥ foot and ¥head., Several keyword options of *at
were never inrplemented. The option of *at taking a Second
text argumenty, so that the trap would be automatically
dropped, was not implemented, nor was the *drop commands.
These improvements could be straightforward, done mainly
with new opcodes, except for *drop and the “8” option of
“aty, which would require actual comparisons of the text of
different traps. {(Probably it would be better to permit a
*at command, hence a trapy to carry a symbolic label, which
reflects the way a *drop opcode would be implemented any-
ways) Also, the *at options based on margin positions were
not properly specified.

The Controller command EDIT, as implemented, may not be
applied +to any paragraph that is in a block; this would re-—
quire reading the entire block's paragraph descriptors into
memory, so the block opcode!s cumulative information would
be correcteds Another defect in the Editor is its restric~-
tion to replacing single, complete words only, and including
adjacent non-space characters such as punctuation marks with
each word, s0 that a simple substitution might have to be
entered as *S/unconstitutionality!/unconstitutionality./";
this again is related to the organization of text as made up
of words. Also, the Editor cannot combine paragraphs or
make one into several. sStili, since the Editor is a
distinct module, it could be improved (or replaced) indepen-

den‘t’ly.

141

Likewise, no facilities were provided for moving or
copylng complete paragraphs, which would not be unduly dif-
ficult,.

Multiple~column output would mainly be a matter of new
opcodess

Also, the originally specified Contreller command SET
was not implemented (though it is practically redundant with
“get).

The *bal command would simply require extensions to the
Format Module.

The trivial *fill and #*nfill commands were not im—
plementede.

The *float command, intended for conveniently bpuilding
lists, as of references, as well as for printing figures,
was not implemented. It would chiefly involve a new kind of
environment change.

“Pad with the “A” option was not implemented, nor was
*nline. These would cause no great difficulty, needing only
additions to the Format Module and the definition of new
markerse. The *bsp, *hspy *char, and *¥trans commands for
special character effects were not implemented, for output
was not (except in a test) Interfaced to any typesetter; the
First two would hecome markers and the octhers probably op-
codes. Typesetting outgut is a minor change since the
program was designed for it,.

The *write and *close commands for work files were not
implemented, nor ever properly specified for the TSS en-
vironmente. ({Does a wrltten file remain in the AFT?) Also,
the writing is constrained to occur in Pass 1, if +the file
is to be rereadable by *in, while 14+ could be more ussful in
Pass 2 (*float gives a similar effect in Pass 1 anyway)e.

But that would require opcodes to take arbitrarily long

142

{(string) arguments; s0 would *syst, if implemented as
specifieds A command *echoy analcogous to *syst and *write
but directing 1its output to the terminal, would be a handy
addition to either passe.

The ¥ join command would probably be implemented as a
kind of block, since 1t effectively couples two {(or more)
paragraphs.

Superscripts, subscripts, and underlining would be
practically trivial; the *X” option of *ullne would become
an opcode with a special format.

The *width command is redundant if (as implemented) the

default width is the maximum, for *ind with the option

controls the same margine

AT L

Allowing the control characters */%, %7, s and per-

haps "\” to be reset is merely a matter of defining command
syntax and semantics. (Lo these effects disappear when the

Source stack is popped, as at the end of an inserted file?)

12. MAJOR PROBLENS

Work on EZ27 was abandoned because 1ts aims were seen

to be impracticable, at least by tﬁe approach used.

12(a) Which Pass For Variables?

Autoscript and the CIA system successfully separated
paragraph formatting and page formatting, producing a galley
intermediately. Nroff, Script, Texy and many other for-
matters successfully used reassignable macros and variables
to produce a wide variety of automatic effects, such as the
page numbering, section numbe ring, and table of contents of
this thesis. EZ27 was to combine both effects, but they are
really incompatible.

If wvariables are invoked in Pass 1, there is8 no way to
handle page number references, for pages are not assigned
until Pass 2. (As always in this sectiony automatic
handling is tacitly assumed; naturally a user can always
make up pages and £fill in numbers manually, but this is
usually not what one wantses) However, if macros are Iinvoked
in Pass 2, then large sections of general text may have to
be parsed, as hy Pass 1, while Pass 2 is executingy which
ruins the separation of function.

The EZ27 specification attempted to avoid these
problems by providing that macros be invoked in Pass 1 and
variables in Pass 2. Since a variable must have a numeric
value, the number of characters it will need on insertion
cannot vary much, so justification in Pass | can proceed on
a guess (deduced from the given format) and be adjusted as
necessary in Pass 2. But a guess can fail Dbadly. in a

situation such as in index, there may be dozens of variable

143

144

insertions close together; if the fit is poory, the number of
lines in the paragraph may have to be changed, forcing e xtra
work in Pass 2 and possibly even leading to a cascade of
further changes elsewhere. A gprogram to handle this
properly would surely be most complex and accordingly large,
even though most cases would cause no difficulty.

Furthermore, with variables in Pass 2y, constructs such
as “/*weekday *%*daynum/", using a macro that takes a
variable as an argument, are rendered toctally impossible,
for the value of the variable must be available to evaluate
the macro for insertion; the same applies to conditional
text (of 1less than a paragraph), if the condition must
depend on a variable.

In short, handling variables in Pass 1 prevents their
use in applications dependent on vertical positioning or
paginationy, while handlling them in Pass 2 can cause severe
worst—~case problems and complicate the program accordingly,
and will lead to inflexibility since variable references may
also be wanted in Pass 1., (The last problem <could be al-
leviated by having +two classes of variable, one for each
pass, but this seems unpleasant, and anyway it does not af-

fect the Jjustification prcblem.)

12(b) Indexing

For similar reasonsy a work filey as used for the table
of contents in this thesis, cannot be procduced in Pass 2,
which is where it is needed: it would contain general text,
like a macro, so possible inserted only by reinvoking Pass
1. The *index command could still be implemented, but it
would have to generate an Index file, whose entries would be

formatted paragraphs, thus reducing flexibility.

145

12(e¢) Reassigned Nacros

Even 1f macros are implemented in Pass 1, there is a
problem: when one is reassigned, what happens to its old
value? The specification reguires that every value ever ag-—
signed to a macro be retained, associated with the paragraph
number of the text where the ¥*set ccocmmand cccurreds In this
way, whan text is later inserted by IN, the macro can be
reused with the value that it would have had if +the same
text had been in the corresponding place in the initial in~
put: this is analogous to the handling of environments
discussed above, But this could guzzle storage (1f a macro
is reassigned several times), and miaght seem somewhat ar-—
tificial; there are also guestions as to the proper handling
when the paragraph associated with a *set is deleted; yet
any other method seems to obliterate data that may be

wanted.

12(d) Generality

No method was implemented to copy part of a galley
file, or partition it into several smaller ones; likewlse,
there i8 no way to insert text in galley file format, or
text already in typesetter code (produced by another
program) into an existing galley file. Without these
facilities, the manipulation of large documents is unneces-
sarily difficult; but they could be taken care of with a
little trouble.

{An interesting possibility weuld be to produce an out-
put structure of a set of files that reflects the structure
of insertions by *in in the input; thus a document of 3

chapters in different original input files, processed by

146

*/*in chapl *in chap2 *%*in chap3/®, might produce galley
files “chapileg”, “chap2g”, and ™chap3g”, along with a main
galley file containing 3 opcodes corresponding to the Fin's
but inserting galley files.)

More serious is the associated defect that the EZ27
program, in using 1its special galley file, must basically
stand alone, and does not associate well with preprocessors
and postprocessors in the manner of Nroff. This inhibits
the addition of new features after the fashion of FEgqn and
Tbl, whose programming would be relatively complicated if
done within EZ27. It also forces users tc learn an editor

which i3 not useful for anything but EZ27-formatted text.

12(e) Efficliency

"Size has no meaning,” Yoda insisted.
"It matters note e+ Judge me by wny gize, do you?”
[Glut 1980, page 123]

EZ27 did achieve its objective of making Pass 2 run
much faster than Pass 1, so that amending a document became
relatively cheape However, it did so at a large cost in
internal memory, disk space, and disk 1/0.

A test file was created by taking some 33,000 words of
straight text (with a little use of macros) from this
thesis. EZ27 was run on it and the processor time, file i/o
county, and maximum program size measured. The same text was
processed by Roff, which is the principal formatter on 1TSS,
and on the TSS imsplementation of Troff [Troff 19801, which
might provide a better conrparison since Roff uses monospaced
texte. The processor time required respectively by EZ227,
Troff, and Roff was in the ratic 2.7:4.1:1; the file i/o,

147

48.5:14.,2:13 and the maximum program size, 1.75:1.75:1. The
real time required was in the ratloc 6.724.2:1, but this
would vary more with the system load.

It seems clear that EZ27 was competitive in processor
time, especially as other measurements indicate that over
70% of that time was spent on Pass l,;so Pass 2 alone is
about as fast as Roff (the numbers make it a little faster,
but the typegetter interface of Pass 2 was not completed, so
the times were obtained by running a VIEW command and a SET
commandy which does more or less the same work).

But EZ27 had to do much more file i/0 than Roff or
Troff, which consumes real time. Pass 2 did about 1/3 of
this i/0, but that alone is more than Troff or Roff. Still,
this was expected, and the amount could be reduced by at
least 40% by the better buffering mentioned earlier.

Where Roff and Troff took an input file of 30 1llinks
{blocks of 5 sectors, 1eeay 1.25X characters each) and
produced formatted output of 33 1links, EZ27 produced a gal-
ley file of 72 1llinks, or 2.2 times larger. And this, in a
real application, would be kept on-line for the life of ths
document, supplemented when output was desired by a transfer
file (produced by Pass 2), which would presumably be about
33 1links. Thus even though EZ27 has a reasonably space-
efficient layout for its galley file, sufficiently heavy use
of it could significantly burden the file system.

The EZ27 program grew, on the test data, to the same
size as Troff, which is 28K words, or gquite a large program
for TSS. (It started at 23X, but dynamic storage allocation
caused the growth, Of the original 23K, 28% contains B
library functions, and 14% is the Galley File Module. No
other module is as large as 9% of the total.) In fact, 28K

is large enough to cause a noticeable loss of real times

148

while swapped out, But Troff is a complete formatter, and a
highly sophisticated one at that, while EZ27 is not even
finisheds It has all the things listed above as “work not
completed” to be addeds Considering the difficulty of
handling some of these items, it seems quite clear that +the
complete program would be too large to run, except by over-

lays} so it would, in Pass 1 at least, be very slow indeed.

13. CONCLUDING REMARKS

A two-pass text formatter using a galley flle is a
feasible approach (it is garticularly natural, perhaps, with
interactive page make—upy where the user must intervene at
about the galley level anyway), but only if the level of
automation is kept low, as In systens like Autoscript,
avoiding features like wvariables and interactive editing.,
Therefore the galley file is not the right approach to a
sophisticated incremental text formatter.,

A more promising possibility may be the Invisible com-—-
mand method, If the commands are embedded in the formatted
document, it might be possible to design a formatter that
could cheerfully handle formatted text as input, thus being
i dempotent, and yet would recognize what parts of the text
would not change, and would proceed accordingly. This might
not really gain any efficiency because there might be worst-
case problems, similar to those with two passes and
variables; and as with EZ27 there would be problems with
retaining macros for later use s The me thod briefly sug-
gested above, of producing a set of output files rather than
a single one, might simplify editing of formatted text.,

But processing is getting cheaper, and conventional
formatters such as the Roff family are fast enough, even
when documents must be reprocessed entire, that these
programs are widely used. They gain much flexibility by
running in one passy and still more by readily meshing ﬁith
preprocessors and with existing editcors. Perhaps the

conventional way is in fact the best way.

149

APPENDIX 1I: FEATURES OF FORMATTERS

This appendix containsy in the table on +the follewing
pagey a direct comparison of the facilities provided by the
12 formatters covered in the survey section.

An entry of ™07 indicates that the facility is not
provided at all; *-7 means that several commands may have to
be used to produce the effect where another formatter uses
Just one. Positive numbers indicate that the facility |is
available directly; higher numbers indicate either greater
versatility or greater convenience cf use.

In this and the following appendix, topics are listed

in the same order as In the survey sectione
o S B «

Each column in the table is aligned with the last

letter of its headinge.

151

Cyph't Nroff Quids Script

FEATURE Dip Page-~1 Roff Te x

Format Proff Runoff Type
Typeset (2=monosp. also) 2 D 2 1 i 0 ¢ 0 9 1 2
Strings and macros s s i 2 0 2 1 i 0 1 0 1t 1 2
Variables . + +» - + 1 0 9 2 1 2 0 2 0 1 0 2
Formatted strings + « 0O O O 2 0 ¢ 0 ¢ 0 O 1 2
Automatic hyphenation . 1 2 0 2 1 1 0 1 0 2 1 2
Autos indent paraes start 1 0 1 ¢ 0 ¢ 1+ O 0 1 1 D
Three-part title 1lines « 0 0 00 2 0 04 0 1 0 1 2 ¥
Tables - +« o+ » » » t 0 1 1 ¢ 1 1 1 0 2 2 O
Leadering Tt 0 0 1 1 ¢ 0 60 0 0 2 D
Multiple~column output « 0 0 1+ - ¢ 1 0 0 0 2 -
Marginal notes » « +« O 0 0 0 ¢ ¢ 2 2 0 1 - 0
Merge patterns . s« +« O 0O O 0 O €€ 0 1 0 2 0 0
Local motions « . » . O O O 1 O ©¢ 0 © O 1t 1 1
Mathematical formulae . 0 O 0 - 0 0 O © O 0 1 0O
Explicit envire. switching 0 9 0 2 O ¢ 0 © 0 1 1 2
Vertical justification » O 1 O €¢ 1 ¢ 1 € O O 1 0
Headings and fcotings . 3 2 2 - - ¢ 1 3 1 3 - =~
Footnotes . e« o +« +« O 1 0 - - ¢ 0 2 0 2 2 O
General traps « » » +» 0 0 0 2 1 ¢ 0 0 0 2 1 2
Automatic page numbers « 2 0 2 2 0 ¢ 1 2 1 3 ¢ 0
Automatic indexing . .+ O 0 O € O ¢ ¢ 090 0 2 ¢ O
Meed, widow elim;, etc. 6 0 1 - 0 € O 1 0 3 2 O
File insertion s« « » 0 1 060 2 0 2 2 2 2 2 2 2
Terminal interaction « O 0 0 2 0 ¢ 3 1 0 2 3 2
Work and index files +«+ O 0 0 0 0 6 0 1+ 0 1 0 2
Commands to system . » O O 0 €¢ O ¢ 0 1 0 » 0 1
"*pictionary” production 0 0 &+ 0 0 ¢ 0 © 0O O ¢ 9
Conditional processing » 2 2 0 2 2 2 0 1 0 3 2 2
I terated processing » - O 0 O €¢ 0 ¢ 0 0 0 1 ¢ 0
OCutput transliteration . 0 O ¢ 1 0 ¢ 0 1 0 1 c 0

APPENDIX IX: CONPENDIUN CF CONMANDS

This is a list of (almost) all the different command
functions found in the 12 text formatters covered in the
survey sectione. For brevity, they are given as imperatives,
and inverses are not mentioned, though they almost al ways

exliste.

(1) Commands and Names

Command Control
Set control character(s) that indicate commands.
Rename command; undefine command, Recognize commands in

upper case alsc,. Interrurt text processing.

Symbolic Names

Define macro; define macro locally; define macro taking
text literally; terminate macro definitions Define string;
insert referenced strings and define stringe. Define
variable; insert and redefine variable by auto-incrementinge.
Undefine name; change name; test whether name iIs defined.
Append to macrcy, or stringe. Set parame ter character,

Insert macro, or string, or variable. Test number of
arguments to macro; insert argument. Activate macro inser-
tion; set insertion character. Insert strings in following
text; insert 1 level of string references in following text.
Set format for variable insertiony, or for page numbers.,

Specify character to be mapped intc string.

152

153

{11i) Ordinary Horizontal Effects

Ivpestyle and Related Special Effects

Set font, or set font temporarily. Set size. Use
ligatures. Produce subsecript, or superscript. Artifically
embolden by overstriking, or by overstriking with offset.
pDverstrike specified characters {(producing a compound
character).

Underiline; underl ine continuously; speci fy what
characters are affected by underlining. Underline and
capitalize. Use another character instead of ™*_7, Set ver-

tical separation between text and line of underlines.

Filling, Justificatlion, apd Hyphepation

Fill. Breaks Try not to break heres. Don't break
despite nofill mode. Break, and pad justify partial line,
Set Jjustification mode. Set limits on padding. When
padding, don't expand leading blanks.

Hyphenate automatically, or with restrictions,
Specify, or alter, hyphenation exception list. Set
discretionary hyphenaticn character] treat *~" as that.
Specify threshcld of padding at which hyphenation should be

consldered, Don't hyphenate near end, or start, of a word.

Line Margins

Set line lengthe. Shift all ocutput to right, or on odd
or even pages only. Indent left margin, or right, or both
equally. Specify a list of pairs cof margin settings; select
one of them. Set length of three-part title line.

Indent left margin of next line; Indent left margin of

each line after next line (“hanging” indent) until a breake

154

Negatively indent left margin of next line. Select pair of
margin settings (from list) to use as hanging indent, or to
apply to next line. Indent first line of each paragraph;
dont't indent first line of this paragraph; apply hanging in-
dent to each paragraphe.

Terminate paragraphe

{11i) Special Horizontal Effects

Iables, and Qtber Columned Output

Set tab stops; set tab stops and associated justifica-
tion modes or character stringse. Set tab character; set
field delimiter character; set padding indicator charactere.
Set tabt replacement character; set leader replacement
character, Tab to next stopy, or to specified stope. Advance
to next tab stop, or to specified stop, filling with
1 eadering. Tab to next stopy cor to specified stops, with
specified justification mcode.

Produce three—part title linee.

Activate multiple-cceclumn output. Set number of
columns; set gutter size; set number of columns and their
left margin positions; set width of each column.

Set gutter between text and marginal nctes; set ovarall

page width including marginal notes. Marginal note.

Merge Patterns, gtc.

Activate merge patterns, Specify a merge pattern to
apply on inputy or outputs specify a merge pattern and
number of lines before 1t expires. Set character to print
in right margin of each line. Set string to print in left

margin of specified sectionse.

155

Repeat character, or box, to fill space as leadering.
Number output lines on each page, or continuously;

number output lines including blank lines.

Miscellaneous

Local motion; alter size or alignment of box. Specify
glob of glue. Reverse linefeed, or fcrward or reverse half
line feed.

Leave space for tall character.

Typeset math formula.

Don't £ill and don't use ligatures and don't hyphenate
and do left justify.

Change environment; push or pop environment stacke.

{iv) Vertical Effects

Vertical Positioning

Set page height. Set body size; single space; double
sSpace. Specify where on the page a formfeed leaves the out-
put device, Set vertical Justification mode. Set condi-
tions to omit blank lines, or pages.

Skip to new page, or odd page, or even page, or page of
particular number; specify number of next page; skip to new
column. Leave vertical space; leave vertical space unless
at top of page; leave vertical space and indicate place for
padding for vertical justification. Specify glob of (ver-
tical) glue. Space downward to specified position. Try not

to start new page here.

Page Margins, Iraps, apnd Fage Numbering

Set margin above headings; set margin including and
below headings but above text; set total margin above text;
set marginal region for headings; set marginal region below
headings and above text,. Likewise for footingss

Specify a line of a heading, or for odd or even pages
only; specify it as a three—-part title. Likewise for
footinge.

Specify a footnote {goes in text area). Specify a line
of a footnote separator; specify it as a three—-part title.
Specify a headnotey, or for odd or even pages only; print the
headnote now.

Set a macro as a trap at specified locationd trip trap
indicated for another lceccation. Set trap to be tripped at
end of each pages

Set format of page numbers, Reset character indicating
insertion of page number in headings and footings. Set
strings to insert along with page number. Specify that page

number have two parts, or that it begin to with the next odd

page.

Specify table~of-contents format. Make an entry in
main text and/or table of contents,. FPrint table of con-

tents. Make entry in index. Print index.

Need, Automatically eliminate widows, skipping to new
pagey or only to next column, er arcund next trap. Specify
glued text. Specify glued, or floating glued, text con-

sisting of vertical space, Leave a blank line and need and
temporarily indent left margine.

Append to block of floating text; terminate and print
that block; print it immediately and not floatinge. Specifty

157

whether more than one floatling block may exist at oncees

Retain position on output pages

{v) Input/Output Effecta

1/Q and lnsertion

Insert file. End current input files End current in-
put file and insert another.

Write “dictionary” of all words encountered. Suppress
output for specified number of pages. Send message to ter—-
minal. Accept input from terminal; accept input from ter-
minal into a string. Pause while text typed on terminal,
but ignore it.

Pass command 10 system. Direct output to another

programs Send output, or copy from input, to a work file.

Control Flow ip Main Igpput

Define label; go to laﬁel. Repeat a line a number of
times, or while a condition is true; abort repetition.
Process or omit a line, or group of lines, according to con-
dition. Use or omit text just processed, according to con-
dition. Process or omit sections of input according to
switch set by user; set the switiche.

Terminate; terminate without flushing buffers.

Debugging
Abort if input line number not equal to specifled

number, Print in margin the number of each input 1line;
print each command 1in margine. Underline on output first
character of each input line. Trace macro expansions and

command execution.

158

Irapsliteration and Literal Text

Specify general transliteration on ocutput, or on input
using escapes character, Translate to upper, or lower, or
opposlte case; set case escape character., Produce extra-
ordinary blank. Accept character in hexadecimal.

Take following text as literal plain text; pass text

through formatter untouched.

APPENDIX IIT: SPECIMENS CF SYNTAX

This appendix simply presents the fcllowing passage as
it might be entered for several formatters. (Some do not
have boldface, and the commands may not be exactly correct
in every case, but the flavor will be there. In the ex-
amples, commands have been started on new lines only when
required, but of course a user may, and should, use newlines

more freely.)

ACT 1, Scene 1

Elsinore. A platform before the gcastle.
Eranclisco on his post. Enter to hip Bernardoe

Bernardo: V¥Who's there?

Francisco: Nay, answer me: stand, and unfold yourself.
Bernardo: Long live the king!

Erancisco?: Bernardo?

Bernardo: He.
[shakespeare 1604]

o a n

Cyphertext Style

/center; newtype bold/ ACT 1, Scene 1 /space 125 newtype
italic/ Elsinore: A platform before the castle.
/nextparagravh/ Francisco on his pests Enter to hinm
Bernardo. /space 12; set xbef, "RBernardo:”"; set xfra,
BFrancisco:”"; define xrol, "nextparagraph; newtype italic?”;
define xlin, Y"newtype roman"; xrol/ dxber /xlin/ ¥Who's
there? /xrol/ 3xfra /xlin/ Nay, answer me: stand, and

unfold yourself. /xrol/ @xber /x1lin/ Long live the king!?
/xrol/ @axfra /xlin/ Bernardo? /xrcl/ dxber /xlin/ He.

159

160

Dip Style
gquad centre <*¥ fount bold <ACT 1, Scens 1>
* sink 12 points
fount italic <Elsinore.
A platform before the castle.
paragraph
Francisco on his poste.
Enter to him Bernardo.>
gink 12 points
define xber <<¢¥ paragraph
* fount italic <Bernardo:>>>
= define xfra <<¥ paragraph
fount italic <Francisco:>>>
® xber
¥ho's there?
* xfra
Nay, answer me?3
stand, and unfold yourself.
¥ xber
Long live the king?
* xfra
Bernardo?

¥ xber

eXe)

JM ACT 1, Scene 1 YMPPU Elsinore. A platform before the
castle, P Francisco on his post,. Enter to him Bernardo.
)PP Rernardo: JU Who'!s there? JPU Francisco: YU Nayys

answer me: standy, and unfold yourself., JPU Be rnardo: Ju

161

Long live the king! JPU Francisco: }JU Bernardo? JPU

Bernardo: YU Hee.

Page—-1 Style

[ce;t£,3] ACT 1, Scene 1 [nl3ju3tf,2;dn,12] Elsinore. A
platform before the castle. [nl] Francisco on his posts.
Enter to him Bernardoe. [nl3dn,123sy,x1,{[nl,tf,2] Bernardo:
[t€,1])35y,x2,[[nl,tf,2] Francisco: [tf,1]];x1] Who's there?
[x2] Nay, answer me: standy and unfold yourself. [x1] Long

live the king! [x2] Bernardo? [x1] He.

Iex Style

{\:b \hfill ACT 1, Scene 1 \hfill \par} \vskip 12pt {\:1
Elsinores A platform before the castle. \par Francisco on
his posts Enter to him Bernardo. \par} \vskip 12pt \def
\xber f{\par \:1 Bernardo:} \def \xfra {\par \2i Francisco:}
\xber Who'!s there? \xfra Nay, answer me: stand, and unfold
yourselfs \xber Long live the king!? \xfra Bernardo? \xber

Heo.

Iype Style

{ev} {dn _ts 3} {dn _ju 1} ACT 1, Scene 1 {[re}

{ev} {br} {sp} {dn _ts 2} Elsinore, A platform before the
castle. fbr} Francisco on his post. Enter to him Bernardo.
{br} {sp} {re} {ds xber ?'{ev} {dn _ts 2} {br} Bernardo: {re} '}
{ds xfra ' {ev} {dn _ts 2} {br}] Francisco: {re}'} {xber}] Who's
there? [xfra} Nay, answer me: stand, and unfold yourself.

{xber} Long live the kingl {xfra} Bernardo? {xber} He.

162

BRoff Styvle (Nroff, Proff, Runoff,
. ce

« bf

ACT 1, Scene 1

» Sp

»ul 4

Elsinore.

A platform before the castle.
» br

Francisco on his poste.
Enter to him Bernardo.
*» Sp

«ati{ xb)

« br

sul

Bernardo:

s en{ xb)

sat(x1)

*» br

» ul

Francisco:?

cen{xf)

» Xb

¥ho's there?

«xf

Nay, answer me:

stand, and unfold yourself.
» Xb

Long live the king!
+xf

Bernardo?

+ Xb

He.

Script similar)

163

EZ27 Style

/*cent ¥font 3 WACT 1, Scene 1" *space *font 2 "Elsinore.
A platform before the castle. /*break/ Francisco on his
poste Enter to him Bernardo.! *space ¥set xber "/*break

* font 2 "Bernardo:i%W/" %*get xfra "/*break *font 2
ffpancigco:/% *xber/ Who's there? /*xfra/ Nay, answer me:
stand, and unfold yourself. /¥ xber/ Long live the king!

/%xfra/ Bernardo? /*xber/ He.

BIBLIOGRAPHY

Some references are not cited in the text: [de
Tollenaere 1977; Lesk 1977; Vasdi 1878] describe various
experiences with computerized formatting; [Custom 19783
Friedlander 19683 News 1978; US 1877] relate the impact of
computerization on newspaper and magazine publishing;
[Andersson 1970] 1lists various kinds of equipment; [Martin
19745 Slater 1972; Terrant 1975; Terrant 1980] are documents
of general scope covering many aspects of computers in
publishing; and [UNIX 1979] contains several of the other

references.

[APS 1977]
“APS Tests Computer System for Publishing Operations?®,
Physics Today 30y 12 (December 1977), page 75.

American Physical Society (menher of AIP) is

using UNIX with some success.

[Alt 1973]
Franz L Alt, Judith Yuni Kirk: “Computer
Photocomposition of Technical Text?, Communications of
ihe ACM 16, 6 (June 1973), pages 386-391 (7 refs).

[Andersson 1970)]

P L Andersson: “Phototypesetting—-—-A Quiet
Revolution”, Datamation 16, 16 (December 1, 1970),
pages 22-27.

Includes a list of 41 phototypesetters from 12

manufacturers.

164

165

[Asimov 1957]
Isaac Asimov: “Galley Slave”, Galaxy Science Fiction
15, 2 (December 1957); pages 8-41.,.
A short storye. Reprinted in:
The Rest of the Robhotse Doubleday, Garden City, NY,
1964, pages 127-162. Republished: Panther Books,
Londony England, 1968, pages 177-223.
[Barry 1977]
Michael ¥ Barry: “Computing in the Printing
Industry”, Austiralian Computer Jourpal 9, 1
(March 1977), pages 39-41 (2 refs).
[Beach 18761
Richard J Beach: Photon ROFF Yext Formatter (PROEF).
University of Waterloo Computer Science Research
Report CS-76-08, Waterlooy Cntsy April 1975,
[Beach 1977]
Richard J Beach: Computerized Iypesetting of
Technical Documentse University of Waterloo Computer
Science Research Rerort CS-77-38, ¥Waterlooy Ont.,
1977.
Describes some experience with Proff.
[Beatty 1979]
John C Beatty, Janet S Chin, Henry F Moll: ™An
Interactive Documentation System”, Copputer Graphics
13, 2: Proceedingss SIGGRAPH *79 (August 1979),
pages 71-82 (18 refs).
Describes REDPP and related 1tems.
[Bemer 1973
Robert W Bemer, A Richard Shriver: “Integrating
Computer Text Processing with Photocomposition”, I1EEE
Iransactions on Professional Communications PC-16, 3
{ September 1973), pages 92-96 (2 refs).

166

Describes system used to produce Honeywell
Computer Journal. Reprinted in:
Honeywell Computer Journal 7, 4 (December 1973),
pages 261-267,
And (in slightly different formy by Bemer only)
as:
®*The Role of a Computer in the Publication of a
Primary Journal”, AFIPS National Copputer Conference
42 Part 2: Methods and Applications (1973),
pages M16-M20 (1 ref).
[Berenyi 1977)
Ivan Berenyi: “Computing'!s Youngest Grandchild——An
Accident”, Data Processing 18, 4 (April 1977),
pages 40-43.
A brief history of computerized word processing.
[Berns 1969]
Gerald M Berns: T“Description of FORMAT, A
Text~-Processing Program”, Communications of the ACM
12, 3 {(March 1969), pages 141-146 {13 refs).
[Black 1980]
J P Blacky D J Tayler, D E Morgan: A Reliable B-Tree
Izplementatione University of Waterloo Computer

Science Research Report CS5~-80-15, Waterlooy, Ont.,
March 19R0,.

[Boehm 1976
Peter J Boehm: “Software and Hardware Consideratlons
for a Technical Typesetting System”, IEEE Iransactions
on Professional Commupnications PC-19, 1 (March 1878),
pages 15-19.

Describes the system at Computype.

167

[Boissavy 1973]
Michel Bolssavy, Raymond Lointier: ™“Définition d'un
systéme conversationnel de mise en page”, Metrs XII1, 4
{ December 1973), pages 561-577.
Detailed article, in French, about page make—-up
with graphics terminals.,
[Brader 1979]
Mark S Brader: Photon/532/Set: A Text Formatter.
Unlversity of Waterloo Computer Science Research
Report CS-79-33, Waterloo, Ont.y, 1979.
[Brooks 1975]
Frederick P Brooks Jr: TIThe Mythical Map~Month:
Fssays on Software Engineering. Addison—~Wesley,
Readingy, MA, 1975.
About why large software projects rarely run
smoothly.
[Buccino 1980]
Joseph H Buccino (appendix by Charles H Forsyth): A
Reliable Typesetting System for Waterloo University of
VWaterloo Computer Science Research Report CS-80-20,
Vaterloo, Ont.,y, April 1980.
Describes all the software and hardware related
to the Mathematics Faculty Computing Facility's Photon
737 Econosetter.
[Card 1979)]
Charles Card: “Standardizing Languages for Word and
Text Processing”, CIPS Review 3, €& (December 1979),
rages 26-27.

168

[Chaundy 1957]

[Cole

T W Chaundyy P R Barrett, Charles Bates: Ihe Printing
of Mathewmatics: aids for authors and editors and
rules for compositors and readers at the University
Press, Oxford (revised edition). Oxford University
Press, London, 1957,

1976} ,

A J Cole: Macroc Processors. Cambridge University
Pressy Cambridge, England, 18976.

[Coulouris 1976]

G F Coulouris,y, I Durham, J R Hutchinson, M H Patel,
T Reeves,y, D G Winderbank: ™“The Design and
Irplementation of an Interactive Locument Editor”,
Software--Practice and Experience 6, 2

{April-June 1976), pages 271-279 (4 refs).

Describes the Quids editor-formatter systeme.

{ Custom 1978]

*Custom System Suits Papers! Unique Needs”,

Computerworld 12, 13 (March 27, 1978), special report

on data communications terminals, page S/27.
Describes success of system at Philadelphia

Inquirer and Daily News.

[de Tollenaere 1977]

Felicien de Tollenaere: “Exgeriences with
Computerized Photocomposition”, Sprache und
Datenversrbeitung 1, 2 (July 1977), pages 156-159
(6 refs).,

The vicissitudes of a novice’s encounter with

phototypesetting.

169

[Edelson 1977]
D Edelson: “Computer Aided Chemical Documentation--A
Text Processor for Chemical Equations”, Computers and
Chemistry 1, 4 (1977), page 265 (4 refs).
The text processor 1s Edqne.
[Fblodlandor 1968]
Gordon D Friedlander: ™Automation Comes to the
Printing and Publishing Industry”, IEEE Spectrum S, 4
(April 1868), pages 48-62 (2 refs).
[Gardner 1981]
J A Gardner: The FRED Text Editor Reference Manual.
On-line documentation, University of Waterloo
Mathematics Faculty Computing Facility TSS, Waterloo,
Ontey January 13, 1981, editione.
[Glut 1980]
Donald ¥ Glut: The Emplre Strikes Back. Ballantine,
New York, NY, 1980.
A novel based on a film.
{ Hamblin 1977]
Dora Jane Hamblin: That Wgs Thre LIFE. W W Norton,
New York, NY, and George J Mcleod, Toronto, Ont.,
1977,
About Life magazine; chapter 7 describes fitting
type to layout.
[Honeywell 1972]
Honeywell Time-Sharing System Pocket Guide: Series
600/6000 Software. Honeywell Information Systems
publication BS12, Waltham, MA, 1972,
Pages 31-34 describe the TISS editor's formatter.

170

[Hutt 1967]
G Allen Hutt: Newspapeyr desipgn (second edition).
Oxford University Press, Londony, 1967,
{Justus 1972]
Paul E Justus: "There is More to Typesetting than
Setting Type”, 1EEE Irapsactions on Professional
Communications PC-18, 1 (May 1972), pages 13-16.
Fxamples of bugbears of hyphenation and
Justificatione.
[Kernighan 1974]
Brian W Kernighan, P J Plauger: TIhe Elemenig of
Programming Style. MceGraw-Hill, New York, NY, 1974,
A bocok of principles to help one program better,
[XKernighan 1976-A]
Brian W Kernighan, Lorinda L Cherry: ®*A System for
Typesetting Mathematics”, undated, ip [UNIX 1979].
Describes Eqn. Minor revision of:
Communications of the ACM 18, 3 (March 1875),
pages 151-156 (7 retfs).
[XKernighan 1976-5]
Brian W Kernighan, P J Plauger: Software Tools.
Addison—-¥esley, Reading, MA, 1876,
About broadly useful programs; chapter 7
describes a simple Roff-like formatter.
[Kernighan 1978-A]
Brian W Kernighan: *A TROFF Tutorial”, August 4,
1978, in [UNIX 1979].
[RKernighan 1978-D]
B ¥ Kernighan, M E Lesk, J F Cssanna Jr: “Document
Preparation”, Bell System Technical Jourpal 57, 6,
(July-August 1978), pages 2115-2135 (20 refs).
On UNIX.

171

[Kernighan 1978-T]
Brian W Kernighan, Lorinda L Cherry: *Typesetting
Mathematics—-User!s Guide” {(second edition), August
15, 1978, in [UNIX 1879].

Manual for Egne.

[Kimura 1978]
Tzumi Kimuras ®*On Teaching the Art of Compromising in
the Development of External Specifications”, Journal
ef Information Processing 1, 1 (April 1978),
pages 33-41 (12 refs)

Discusses the teaching of programmlng in the
context of an example problem in automatic-recognition
text formattinge. A preliminary version (in Japanese)
appeared in: Proceedipngs, Prograpming Symposium 18
{January 1977), pages 161-168.

[Enuth 1973-F]
Donald E Knuth: TIhe Art of Computer Programming 1:
Fundamental Algorithms (second edition).
Addison-Wesley, Reading, MA, 1973.

Chapter 2 is all about list structures, dynamic

storage allocationy, and sSo one.
[Knuth 1973-8]
Donald E Knuth: The Art of Computer Programming 3:
- Sorting and Searching. Addison-Wesley, Reading, MA,
1973.

Section 6.2.4 concerns H-trees, among other

thingse.
[Enuth 1978)

D E Enuth: Mathematical Typographye. American
Mathematical Society Josiah Willard Gibbs lecture,

January 4, 1978; printed as Stanford University
Compute2r Science Regort STAN-CS-T78-648, Palo Alto, CA,

172

1878,
Describes Tex and Metafent, and background

philosophy and some math, Reprinted in:
Bulletin (New Series) of the Americap Mpathematical
Soclety 1, 2 (March 1979), pages J37-372 (51 refs).
[Enuth 1979]
D E Knuth: Tau Epsilon Chi, & Systepm for Technigcal
Texts American Mathematical Society, Providence, RI1,
1979.
Revision of:
Stanford University Computer Science Report
STAN-CS-78-6754 Palo Alto, CA, September 1978,
[Korbuly 1975]
Dorothy K Korbuly: “A New Approach to Coding
Displayed Mathematics for Photocomposition”, IEEE
Iransactions on Professionel Commupications PC-18, 3
{ September 1975), pages 283-287 (2 refs)e.
System involves manual character counting.
[Kuney 1966]
J H Kuneyy, B G Lazorchak, S ¥ Walcavich, D Sherman:
®Computerized Typesetting of Complex Scientific
Material”, AFIPS Fall Joint Computer Conference 29
(1966), pages 149-156 (6 refs).
Description of ACS systeme.
[Kuney 1969)
J H Kuney: “Processing Manuscripts for Input to a
Computerized Typesetting System for Scientific
Journals”, 1EEE Irensactions op Epgipeering ¥riting
and Speech EWS-12, 2 (August 1969), pages 49-52
(3 refs).
Description of ACS system.

173

[Kunzel 1966

George Z Kunzel: “A Computer—-Assisted Page Composing
System, Featuring Hyphenless Justification”, AFIPS
Eall Joint Computer Conference 29 (18966),
pages 157-167 (2 refs).

Describes system at the CIA.

[Landau 1971]

[Lesk

[Lesk

[Lesk

Robert M Landau (editor): Proceedings of the ASIS
Yorkshop on Computer Compositione American Society

for Information Science, Washingzton, 1971.

Contains several articles llisted separately in
this biblioagraphyy, and various discussions, as well as
a list of problem areas on pages 135-140.

1977])

M E Lesky B W Kernighan: “Computer Typesetting of
Technical Journals on UNIX”, AFIPS Natiopal Computer
Conference 46 (1977), pages 879-888 (11 refs).

Describes some experience using Troff, Tbhl, and
Eqgnoe
1978]

M E Lesk: “Typing Documents on the UNIX System:
Using the -ms Macroes with Treff and Nroff”, November
13, 1978, jip [UNIX 1978].

1979]

M E Lesk: ®“Tbl-—A Program to Format Tables”, January
16, 1979, in [UNIX 1979].

[MacDonald 1978]

Alan MacDonald: "Word Processors to Dominate as
Business Communicators”, Data Mapagement 16, 2
{ February 1978), pages 18-22,

174

{ Mack 1875
Paul F Mack: "Lower Composition Costs through Optical
Scanning and Photocomposltion', IEEE Irangactlons on
Professional Communlications PC-18, 3 (September 197S5),
pages 279-282.

Description of Mack system.

[Makris 1966]
Constantine J Makris: “A Special Purpose Computer for
High-Speed Page Comgosition?, AFIPS Fall Joint
Computer Copference 29 (1966), pages 137-148.

[Martin 1974]
J Sperling Martin: “Editorial Processing Centers: A
Study to Determine Economic and Technical Feasibillty:
Annex Part I1: A Review of Eelevant Technology to the
Publication of Scientific and Technical Journals”,
Informations Part 2, Reports, Bibliographies 3, 6
(1974), pages 1-14 (37 refs).

[Mashey 1976]
J R Masheyy, D W Smith: “Documentatlion Tools and
Techniques”, 1EEE Ipternatiopal Copference on Software
Engineering 2 (1976), pages 177-181 (46 refs).

Describes text processing experience on PWR UNIX.

[McCreight 1977]
Edward W McCreight: “Pagination of B*-Trees with
Variable-Length Records”, Communications of the ACM
20, 9 (September 1977), pages 670-674 (6 refs).

[Messina 1970]
Carla G Messina, Joseph Hilsenrath: Edjit-Insertion
Programs for Automatic Iypesetting of Commuter
Printout. US Department of Commerce National Burean
of Standards Technical Note 500, US Government
Printing Office, Washington, DC, April 1970.

175

[Mitchell 1977)]
Robert T Mitchell: “Word Processing in the Office of

Today and Tomorrow”, IEEE National JTelecommunications
Conference III (1977), pages 40:4~-1 to 40:4-6
{3 refs)e.

A history of word processing, from early
typewriters one.
[Moitra 1979]
Abha Moitra, S P Mudur, A W Narwekar: “Design and
Analysis of a Hyphenation Procedure”,
Software-—-Practice and Experience 89, 4 (April 1979),
pages J325-337 (6 refs).
Describes the hyphenator in Dip.
[Mooers 1965]
C N Mooersy, L P Deutsch: “TRAC, A Text Handling
Language”, ACM Naticnal Conference 20 (1965),
pages 229-246 (8 refs).
Describes the TRAC macrc—processors
[Moore 1970]
C G Moorey R P Mann: “CypherText: An Extensible
Composing and Typesetting Language”, AFIPS Fall Joint
Computer Conference 37 (1970), pages 555-561 (6 refs).
[Mudur 1979]
S P Mudur, A W Narwekar, Abha Moitre: “Design of
Software for Text Composition”, Sofiware-—-Practice and
Experience 9, 4 (April 1879), pages 313-323 (25 refs).
Description of Dip.
[Muir 1972]
G Muir, K Preston: “Typesetting Prcocgrams?, in [Slater
18972] pages 29-42,

Article includes a follow-up discussione.

176

[News 1978]
*"News Magazinel!s System Expedites Production?,
Computerworid 12, 11 (March 13, 1978), page 6.
Similar to [US 1977, but a bit less detailed.
[Newspapers 1977]
*Newspapers Take a Big Step in Automation”, Buginess
VYeek 2490 (July 4y 1977), pages 58-€60.
Describes interactive page make-up at the New
York Daily News.
[Nudds 1977]
D Nudds: “The Design of the MAX Macroprocessor”, The
Computer Jourpnal 20, 1 (February 18977), pages 30-36
(8 refs).
[Ocker 1971)
Wolfgang A Ocker: A Program to Hyghenate English
Words”, IEEE Iransactions op Epgipeering ¥ritinz and
Speech E¥S~-14, 2 (June 1971), pages 53-59 (7 refs).
Details hyphenator at RCA, omitting only some
tables. Reprinted in:
1EEE Transactions op Erofessional Commpunjcations
PC-18, 2 (June 1975), pages 78-84 (7 refs).

[Ossanna 1977
Joseph F Ossanna: “NROFF/TRCFF User's Manual”, May
15, 1977, jin [UNIX 1979].

[Parry 1966]
John H Perry Jr: “Integrated Automation in Newspaper
and Book Production”, AFIPS Fall Joint Computer
Conference 29 (1966), pages 125-136.

Describes system at Perry Publications.

177

[Pilerson 1971

John L Pierson: “A Computer Program for Electronlc

Typesetting”, I1EEE Irapsactions op Epgineering ¥Writing
and Speech EWS-14, 2 (June 1871), pages 46-52

{3 refs).

Describes Page-1l.

{ Plerson 1972]

John Pierson: Computer Compogiticn Using PAGE-1.
Wiley, Interscience, New York, 1972.

Manual for Page-—1.

[QED 1980]

[Reed

[Reid

[Rich

QED Text Editor Reference Mapuale Cn-line

documentation, University of Waterlooc Mathematics

Faculty Computing Facility TSS, Waterloo, Onte,

September 18, 1980, editione.

1977]

Lynda Reed: “Automated Text Processing Galns Ground”,

Telesis S, 3 (June 1977), pages 8B80-85 (1 ref)d.
Rationale behind the Ted text editor at Bell

Northern Research.

1980]

Brian K Reid: A High-Level Approach to Computer

Document Formatting”, ACM Symposius on Principles of

Programming Languages 7 (1980), pages 24-31 (13 refs).

Describes Scribe,
1965]
R P Richy, A G Stone: “Method for Hyphenating at the
End of a Printed Line”, Communications of the ACM 8, 7
{July 1965), pages 444-445,

A sinple algorithme.

178

[Right 1978]
“Right to the Sourcesss on WP”, Data Nanagement 16, 2
{ February 1978), pages 28-29.
A list of 74 word processing equipment makerse.

[Rotr 1978]
Roff Tutorial Guide and Reference Manual.
University of Waterloo Mathematics

On-line

documentation,
Faculty Computing Facility 1TSS, Waterloo, Ont.,
January 1978 editione.

[Roistacher 1974]
- Richard C Roistacher: ™On-Line Computer Text

Processing: A Tutorial”, Bebavior Research Methods
and Instrumentation 6, 2 (March 1974), pages 159-1656
(8 refs)e.

Describes how to choosSe a text processing system,
for novices.

[Saltzer 1965]
J Saltzer: A Right-Justifying Type Cut Program®, jin

Ihe Compatible Time-Sharing System: A Programmer's
Guide (P A Crisman, editor.) The Massachusetts
Institute of Technology Press, Cambridge, MA, 1965,
section AH.8.01, pages 9-13.

The manual for Runoff.

[Schneider 1974)]
Ben Ross Schneider Jr: Travels in Copputerland;: or,

Incompatibilities and Interfaces: A Full and True
Account of the Implementation of the London Stage
Information Banke. Addison~Wesley, Reading, MA, 1974,

In which a Professor of Fnglish encounters the

World of Computers.

179

[Seybold 1971
John ¥ Seybold: “"Software Interfaces and System
Aspects”, in [Landau 1971] pages 87-98.

[Shakespeare 1604]
William Shakespeare (or Shakspere): Hamlet (from
second guarto and first folio #ditions)e Longmans
Canaday Torentoy Onte.y 1961.

A tragedy.

{ Shatzkin 1971]
L. eonard Shatzkin: "Book Publishing Needs for Computer
Photocomposition”, jin [Landau 1971] pages 67-71.

[Slater 1972]
J F Slater (editor): Computer-Aided Iypesetting:
Proceedings of an International Conference held in
Londons. Transcripta Books, London, 1872,

Includes an article listed separately in this
bibliography, and others covering such things as
egquipment and keyboards.,. One appendix lists 36 models
of typesetters from 12 manufacturerse.

[Stuckey 1969]
R Dwight Stuckey: “AutoSCRIPT--An Automated
Publications System”, 1EEE Iransactions on Engineering
Writing and Speech EWS-12, 2 {(August 1969),
pages 29-33.

[Stuckey 1973]
R Dwight Stuckey: TAutoSCRIPT--A System for
Computerized Document Preparation”, ¥Yestern Electric
Engineer XVII, 1 (January 1973), pages 38-41.

180

[Terrant 1975]
Seldon W Terrant: *The Computer and Publishing”, ASIS
Annual Revijew of Information Science and Technology
{Carlos A Caudra, editor) 10 (1897£), pages 273-301
(86 refs).
General summary of all aspects of the field, with
emphasis on references.
[Terrant 1980]
Seldon W Terrant: “Computers in Publishing”, ASIS
Apnual Review of Informatiopn Sciepce and Technology
(Martha E Williams, editor) 15 (1980), pages 191-219
(155 refs).
An updating of [Terrant 1975].
[Trott 1980]
Iroff/Nroff Documentation. On~line documentation,
University of Waterloo Mathematics Faculty Computing
Facility TSS, December 2, 1980, editiocon.
Describes the TSS variant of Nroff.
[Tonniclitfe 1971
William W Tunnicliffe: “System X--A User Need”, in
[Landau 1971] pages 17-65.
Transcript of a talk about what a composition
system should be like,
[Type 1979]
IType Manuale On—line documentation, University of
Waterloo Mathematics Faculty Computing Facllity TSS,
Waterlooy Ontey March 7, 1979, edition.
[ONIX 1979]
UNIX Programmer's Manual 2: Supplepeptary Dogcuments
(7th edition)s Bell Laboratories, Murray Hill, NJ,
1979,

181

[os 1977]
“U. S. News Data Terminals Compress Deadline
Schedule”, Communication News (October 1977), page 45.

Describes results of using system at that

magazine. Reprinted in:
I1EEE Transactions on Professional Commupications

PC-21, 1 (March 1978), pages 23-24.
[Varley 1977]
H Leslie Varley: “Composition from
Publisher-Prepared, Machine-Readable Input”, IEEE
Iransactions on Professional Communications PC-20, 2
{ September 1977), pages 65-67 (1 ref).
About the Mack system.

[vasdi 1978]
Peter Vasdi: "How an Author Learned to Program and

Found a New Freedom”, Canadiaen Datasystems 10, 11
{November 1978), pages 28-32.

User's experience learning and using Script for
2000-page documente.

{ Verges 1972]
Jeanne~Claire Verges: “L'Edi tion de Textes Basee sur

la Reconnaissance Automatigue de Leurs Structures”,
Canadian Information Erocessipg Socletly Canadian
Computer Conference (1972), pages 324401-324412
(14 refs).

An article in French, favoring the automatic

recognition approach.

[Vrofr 1976
Y¥roff Reference Mapual and Tutorial Guide. On-line

documentation, University of Waterloo Mathematics

Faculty Computing Facility UNIX, Waterloo, Ont., 1976,

182

{ walter 1969]
Gerard O Walter: “Typesetting”, Sclentiflic American
220, 5 (May 1969), pages 60-69 (2 refs).
History of typesetting with emphasis on
eqgquipment, from origins to CRTs.
[vaterloo 1978
¥aterloo SCRIPT Reference Manual. Con-line
documentation, University of Waterloo Department of
Computing Services, Waterlooy Ont., January 13, 1978,
edition.
{ wetherell 1978]
Charles Wetherell: Etudes for Prograspmerss
Prentice-Hally, Englewood Cliffs, NJ, 1978.
A beocok of exercises; chapter 4 is about writing a
text formattere.
[wonl 1977]
Amy D Wohl: “What's Happening in Word Processing”,
Datamatiocn 23y 4 (April 1977), pages 65-72.
Survey of office WP equipment} lists RO
manufacturers.
[Ziegler 1969]
J C Ziegler: “Text/360 from a User's Point of View”,
JEEE Iransactions op Engineering ¥rjiting and Sneech
BWS-12, 2 (August 1969), pages 3J3-38

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

