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1. Introduction

Let 4 be a large sparse m by n matrix which is of full rank. Consider the least squares prob-

lem

1. That is, we find an m by

An efficient way of computmg Q and R 1s as follows [4]. Let R O be the 1 by n zero matrix.
Then for 1<k <m, we obtain R by rotatmg the k—th row of A into R*7! * using Givens

transformations. Let Q, be the product of these Givens rotations. Then we have

3

0,0,

and g PR
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Note:‘;hét
RIR = [RTO} [g] =4ToTo4 =474,

and since 4 74 is symmetric and positive definite, R TR is therefore (at least mathematically) the
Cholesky decomposition of 4 T4,

Let P, and P, be m by m and n by n permutation matrices respectively. We may then write
T T
(PTaTpTy(P AP)=PI4a"4P,=4"4

which shows that row permutations of 4 have no effect on the nonzero structure of 77, How-
ever, column permutations of 4 correspond to symmetric row and column permutations of A T4,
and it is well-known that the choice of P, can drastically affect the sparsity of the Choéeskyb factor
RT of Z74. Reliable algorithms are available for finding a 7, which yields a sparse R [51, so if
doing so is our sole objective, the ordering problem is already solved.

However, it is known that for a given column permutation P, of A4, the cost of transforming
AP, to upper trapezoidal form using Givens rotations depends very much on the row permutation
P 41 U nfortunately, it is not obvious how to find a "good” row permutation cheaply.

In this paper, we give some results about the relationship between row and column
permutations. A heuristic algorithm which is based on these results is proposed, and some

experimenis based on the algorithm are vrovided.
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Figure 2.2 An example of the union of two graphs.

For a graph G =(X,E) with | X | =n, an ordering (or labelling) of G is a bijective mapping
a:{l,2,.. n}=>X.

The node and edge sets of a Iabelled graph G ¢ are denoted by X * and E © respectively.



3. Row elimination using Givens rotations

Our first observation is well-known: when two sparse rows x T and ¥ T are operated on by a
rotation, so as to annihilate the leading element ofyTsay, the structure of the remaining parts of -
‘the transformed X7 and ?T is the union of those of xT and y7. This is illustrated in Figure 3.1,

where the rotation has been chosen to annihilate y .

Figure 3.1 Example showilng fill-in. that occurs

when two rows are transformed by a rotation.

In the sequel, the row being used to annihilate an element, x Tin Figure 3.1, will be called
the pivot row. As a simple way of measuring the arithmetic cost in such operations, we count the
number of nonzeros in the transformed pivot row, which is 6 in xTin Figure 3.1.

Now consider using such rotations to reduce a sparse matrix A to upper trapezoidal form
VOQ] Recall from section 1 that. our viewpoint is' that the computation begins with an "empty”
7 R%=0, and the sequence of matrlces R, R2 . R””—1 R™=R is computed, where R* s

obtained from R*¥~! by totating in the k—th row of A. This process is illustrated in Figure 3.2.

We include a cost even for a row whose rotation into R simply amounts to transferrmg it
into R. We do so for simplicity, and because in most cases, time proportional to the number of

nonzeros in the row will be expended, even if it is. not done so in performing arithmetic. In any

case, the error introduced in our cost is at most O (min(| 4|,
term dominates the execution time bound are probably too small or special to be of much practical
significance. Here and elsewhere, | M | denotes the number of nonzeros in M when M is a vector

or matrix, and the number of elements in M when M is a set.

We now consider the elimination of a row in more detail, using the example in Figure 3.3.
We assume that the first k rows of 4 have been processed to generate R X. The k —th row of A4 is
denoted by ak, and its elements are al.k, I€ign. In Figure 3.3, nonzero elements of R k=1 are
denoted by X, nonzeros introduced into R k and a* due to the elimination of a ¥ are denoted by +,
and all elements involved in the elimination of a © are circled. Of course elements in a k denoted by

@ are themselves ultimately annihilated.



-t
ar
k) =
= w5
a —t o3
I - i
o A i )
~ o
6 ~
13 e = -
jord = - =
-
i i
Yo A el -
< g = 4
o B -
o L I3
= T =
ot e i k]
i oy 0y o =]
= - Pl o [
= = i pe)
= 24 - o e
14 = - -
o™y s = ¥ S
QR — o o & = -
' = =SB N =
- o = Iy o b
Rt H o Lo el |24 ]
¥ o =

/
Flem

yof g

in the eliminatio

0

cost




-7 -

We call the increasing sequence of ‘row indices involved in the elimination of a ¥ its elimina-
tion sequence, which we denote by Ef= {E{?,Ezk,...,ffk}. In Figure 3.3, E%={2,4,5,7.8}.
Obviously, Elk is the column subscript of the first nonzero in a*, and Eik+1 is the column subscript
of the first off-diagonal nonzero in row £ l.k of R*. The sequence terminates for one of two reasons:
a) the pivot row has no off-diagonal nonzeros, as in the example of Figure 3.3, or b) an empty row
is encountered at some point in the elimination, as occurred several times in the example of Figure
3.2. In case a), we say =k is maximal.

Since m >n, and often m >>n, there will usually be many maximal elimination sequences.

Our objective is therefore to develop some conditions under which u, =| Ek| can be limited.

The following lemma is an immediate consequence of the elimination process, assuming exact

cancellation does not occur. We denote by M i the .(i,/)-element of M when M is a matrix.

Lemma 3.1

Let s and 7 be consecutive members of Ek. Then

a) RE#0
b) if t—s>1, then RS’;=0, s<j <,
and o) if RE#0, then R /0, for j >t

It is useful to dlstmgulsh between two. types of nonzeros in R k. A fionzero R K is a non- -fill
element if there is a row al l<k of 4 such that mln{q [ a, L0} b=t and al¢0 Obvrously k#O

regardless of whether any ehmmatlon sequences occurred in computmg Rk If no such row of A

ex1sts then R k i called a ﬁll element, an “' § exrstence must be due to i having appeared in some

elimination sequence 77[— VES L ELIL w1th i>£5 Note that fill- elements may. turn into
q‘ 12 yl,_.v, _‘ >

non-fill elements as k inckreas_es., o

S
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Clearly the graphiof A 74, denoted by G =(X,E), is given by G™=(X ™ E™). When A.is of
full rank, A4 T4 is symmetric and positive definite, and R T is therefore the Cholesky factor of

ATA. The following result characterizes the nonzero structure of R using the graph G [3].

Lemma 4.1

For j>i, Rl.j#O if and only if x]EReachG(xl., e e )

The next lemma follows directly from Lemma 4.1 and its proof is omitted.

Lemma 4.2

Let G be a disconnected graph having connected components G(C)), /=1,2,...,r, and let x;

and X, j>i, be in different components. Then RU=0.
1

A special case of Lemma 4.2 is when a component of G consists of an isolated node, say x,,
_corresponding to a row and column of 4 T4 having all zeros except its diagonal element. From
Lemma 4.2, RU=O, for j>I. In other words, the presence of x; in G has no effect on the applica-

tion of Lemma 4.1 or the determination of the nonzero structure of R.

Consider the sequence of symmetric matrices Bk= (A k) T4k Since some of the A * may have
null columns, B* may be only (structurally) positive semi-definite, which is manifested in R * as
null rows corresponding to null rows of B*. However, our discussion in the previous paragraph
shows that except for the null rows of R k it has the same structure as it would have if all 'diagonalﬂ

elements of R k¥ had been nonzero.

Thus, we can determine the nonzero structure of R K from G*. Nodes corresponding to null
rows in B¥ are deleted. Lemma 4.1 applies as before, but involves nodes actually present mg k

It is important to note that all our discussions, and Lemma 4.1, assume that we are \‘)\éérktinng

with B¥ and that no cancellation occurs during the computation. Thus the structure of R*

9

“determined represents the "worst case” situagion with respect to fill-in. ‘Moreover, it is assumed

that all elimination sequences are maximal. - ‘
- We now define the graph & *in a more refined way. Define the # by #, rank-one matrix

1

Y;=(a)7al,

.F;_z{rid denote its corresponding symmetric graph by G j=(X j,E j). Note that G ; is a complete éraph.

w
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Using the fa‘ct";
k | k T‘ k s
B"=(4%)"4 ,=.§1YJ-,
we can express the graph G ¥ as the union. of 'k'complctc graphs:
‘ k Eok
G¥= Ug, U U

j=1 =1 " j=1

. For future reference, we state the,‘follow‘ing ob'servat'ion as‘a lemma.

Lemma 4.3 -

k=Gt I, =t Ux EFIUEY

Now for each’ Gk let Qk {Ck C’zc,...,Ck } be its component p’aftitioning; that is, the

partltlonmg of its node set 1nduced by the connected components Gk(C k) of the graph G . k. Thus,
for 1<i,j <7k and i#j, Ckﬂ Ck ,@' and Lj Ck—Xk The followmg lemma. is obvious from the

way in wh1ch the graphszG‘k'akr,e deﬁned’.‘

Lemma 4.4 7 , L g -
For 1<k <k ,<m, if C; 1€Q ", then there exists j such that C; 1€C; 2and C; 2€Q 2.

That is, the sizc of the component sets Cl.k is non—decrcasjng as -k increases. An example is given in
Figure 4.2, where thc graphs correspond to those"of the matrix A given in FigurcS 2. |

It should be emphasmed that thc sequencc of component partitionings Qk depends only on ‘v
the ordering of the rows of 4. It is 1ndepcndent of the column ordermg The eﬂ"cct of permuting

‘«iithe columns of 4 is Just a relabelhng of the nodes 1n G k
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Lemma 4.5 and Theorem 4.6 characterize the elimination sequences introduced in section 3 -

iﬁ terms of the graphs G*.

Lemma 4.5
a) !;'lk=_min{i | x,€X,}.

= k|
={x.ex¥ z<g}<_1}.

b)  For 2</j <y, gk =min{i | x,EReach (x,; T, ; ), where T,
N : CUUE & )
Proof:

This follows from the definition of Z¥ and Lemma 4.1.

Theorem 4.6 . L o
Let Qk={Cck.C*,. . C 'I;k | be the component partitioning of G ¥ induced by the row ordering

of 4. Denote the component containing G; by Gk(CI; ). Then xpECI;k, for all pEEk.

Proof: » . v

The proof is by contradiction.  Since xékEC{:,‘ there 'must exist two consecutive members s

: 1k : ,

and ¢ of Z¥ such that‘xSEC’; and xtEClk, for some [#0,. From Lemma 3.1, R;;#O. Further-
more, R s’; must be a fill element, since otherwise there would exist a row a’, j <k, such that a S’ is
the first nonzero in a’ and atj;ﬁO. Using the graph interpretation, this implies that there would
exist an XJ., j <k, suph that xSEX].ﬂ Ci;k and xtEXjn Clk, which contradicts the deﬁnition of -
ok . ; .

Thus a necessary prerequisite for %X to violate the theorem is that there exists a row having
such a fill element. ‘

We now want to show that no such row exists. Suppose for a contradiction that some do,
and let (r,s) be a subsequence of the elimination éequence %! that creates the first such element
Rslt, where xr,xseEC{T and xtEC}, j#o; and I <k. Now in order for Rslz to be created, there must

1 P
exist elements R rls;éO and R ,{t;éO. However ert cannot be a fill element because row s is the first

row having a fill element Rslz so that xSECfTI and xtECJ{, j#o;. Thus ert must be a non-fill ele-
s . . / ] .
ment, which implies that there is an Xq, g </, such that erXqﬂ C”l and xtEXq ﬂCj, which

again contradicts the definition of ol
O
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Theorem 4.6 is important because it illustrates the significance of the component partitioning

QK. It shows that the set of nodes that are involved in the elimination of row k, {xsk,xgk,...,xgk %,
) ‘ 1 2 I
k

is limited to the component GXC ’; ) whose node set C’; contains X,. Note that the cost of
k k

eliminating a row depends in part on the length of its elimination sequence. Obviously, we want to

find a row and column orderings which allow the component Gk(CI;k) to be kept small for as
large a k as possible.

The following results are consequences of Theorem 4.6..

Theorem 4.7

The cost of eliminélting row k is bounded by

Bl Ce 1(Cg 14D

“Proof:
‘ The bound is obtained by assuming %k is maximal aﬁd’ each oW in thé elimination sequence
has nonzeros in all positions in C’;k which are to the left of the diagonal in R,
, k: , 5

Corollary 4.8 o ;
Let 6, =| {x,€C* | 1>&}|. Then the cost of eliminating row k is bounded by /6 ,(5, +1).
s : ‘ ‘
|
Theorem 4.7 says we want to keep C’; small and Corollary 4.8 says that regardless of
koo
whether C];k is small, we want to arrange that the leading column subscript of row k be as large as

possible.
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© 5, Automatic width-2 nested dissection ordering

Let G=(X,E) be the unlabelled graph of B=4 T4. For simplicity, we assume G is
connected. Let S be a width-2 separator in G, whose removal disconnects the graph into two or
more components (say 2). Denote the node sets of the components by C, and C',. Lemma 5.1

follows directly from the definition of S.

Lemma 5.1 ; :
Let K be any clique in G. Then either K cc|JSor K§C2US.

We recall from section 4 that G can be written as the union of the graphs G, =(X.E,),
where each is a complete subgraph of G. The following lemmas characterize the cliques X in the

partitioning {S,C|,C,} of X.

Lemma 5.2 R ‘ I DR :
Let X,2C,|JS and XCCZUS i#j. If ‘X,.ﬂclyzg, and X;[\Cp*&, then
X NX,=2. o | '

Proof:

If X ﬂS & or X; nS &, then the result follows 1mmedlately from Lemma 5.1.  As-
sumeXﬂS#,@' andXﬂS#/@ LethX nC andeX nC If Xian#,@, there
would exist yEXian CS such that xl.,,ijAd] (v), which contradicts the definition of S.

| m
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Lemma 5.3
If S is a minimal width-2 separator, then there is at least one complete graph G 0 the sec-

tion graph G (S).

Proof:

Since S is a minimal width-2 separator, there must exist ueC p VEC 5, and x,y ES (x #y)
such that (w,x,y,v) is a path in G. Otherwise either S —{x} or S —{y} is also a width-2 separator
which contradicts the fact that S is minimal. Now G is the union of the complete graphs G, so
there must exist one, say G,, such that x,y€X, and {xyl€E. "By Lemma 5.1, either
‘Xk§C1US or XkEC:U S. Assume the first alternative. - If anC1¢,®, then there exists
wEan C, and a path (w,y,v) in G, contradicting the fact that S is a width-2 separator. Thus
X, €S, and G, is a subgraph of G (S). |

|

Lemma 5.4 ;
If S is a minimal width-2 separator, then every edge in 7 (S') belongs to at least one com-

" plete subgraph G, of G(S).

Proof:
This follows from the fact that G is a union of the completekgraphs G, and S is a minimal

width-2 separator.
O

Corollary 5.5
If S is a minimal width-2 separator, then G (S) is the union of one or more complete graphs

G,.

Proof:

This follows from Lemmas 5.3 and 5.4.

Lemma 5.2 and Corollary 5.5 are important because they provide some insight into how the
columns and rows of A should be ordered. We now assume that S is minimal. If the nodes of S

are numbered after those of C; and C,, it follows directly from Lemma 4.1 that {x,y} is not a fill
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'f kxEC and’ yEC Thus th1s dzssectzon techmque induces a 1abe111ng « for G and hence a k

._column permutatlon P for A) such that the upper trlangular matrlx & suﬂers low fill-i in.

Apart from providing a good column permutat1on for A4, th1s drssectron techlque also znduces‘
a good row ordering for A in a natural way. Note that if xEC " yEC2 and z€ES, then
a_l(x)<oz”1(y)<a_1(z ). Denote the nodes*assbciated with the ‘rowskbof the matrix AP 2 by X[,
B 'Xé", ...., X, and their, correspnding graphs by G 1%, G 5, ..., G 2. k o
The results in section 4 imply'v that “for any"’ column permutati‘(‘)n say P, the cost of ‘
. transforming the matrrx AP to upper trapezordal form depends on the order in which the rows are .
‘processed Let ® s. . be- the set of rows of AP2 such that their assocrated nodes are in S; and <I>C,
z—l 2, be the set of rows of AP2 such that therr assocrated nodes are in C UAd 7(C,), where »
"AdJ(C)CS e T o
Clearly @SU <I> U Q. is the set of all TOWS “in AP2, due to Lemma 5.2 and Corollary o

5.5. Slnce Ad] (S)CC U C2, 1f the rows in <I>S are processed ﬁrst then when the rows in <I>C
Cand <1>C are processed the component Gk(Ck ) 1n G k U G~ k>l <1>S| would become as large

as Gk In view of the results 1n sectron 4 th1s is undes1rable Thus ‘one would like to process the
rows 1n <I> as late as possible. Assumrng we: do that 1t follows frorn Lemma 5.2 and Corollary 5.5
that for i=1,2, the component Gk(Ck ) is ‘at most C UAd](C) when the TOWS in ‘I>C are
processed. Th1s Tow, orderlng cdn be obtamed by arranglng the rows in AP2 so ‘that the leadrng
- column subscripts in the rows: of AP, are in non- decreasrng order :
This drssectron techmque can of course be apphed recursrvely, yreldrng a wzdch nested
dissection, which is similar to :the nested dissection described in [2]. However care has to be taken

when choosing. width-2 ”sepa’rators Cons1der the graph G (X E)in F1gure 5.1,
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To solve this problem, we do the lfollowing. Instead of choosing ak width-2 separator from
G(C}), it is chosen from the graph G(C{|JA4dj(C})). As an example, S,=5,|J{x.y.z .z} is
a minimal width-2 separator in G (C 11 UAdj(C 11 )} in Figure 5.1, and S 1US2=31U§2U{x’y}
is a minimal width-2 separator in G. The following theorem shows that the separator constructed

in this way is always a minimal width-2 separator in G.

Theorem 5.6 ,

Let S‘ll be a miriimélwidth-z separator',in a connected graph G =(X,E) and denote the
éomponents in G(X—8 11) by »G C 11 ), G(Czl), G'(Cpl)’. Let S kz be a minimal width-2 separator
in G(C\JA4dj(C})) and denote the components in G(C,/=S2) by G(C 7). G(C3), ... G(C ).
If xECl,2 and yEC],Z’ i#j, then the distance between x andvy in G is g‘reater‘ that 2. That is,
S 11 LJSk2 is a width-2 separator in G. Furthevrmore,"S‘l1 US k2 is ' minimal.

Proof: . , R o , e ,
If x€C? and yECjz, i#j, then Adj(x)SCHJAdj(C? and Adj‘(y)ECszAdj‘(Ciz).
‘Note that G(CI.ZU Adj(Cl.z)‘——Skz) ‘and'r G(C]2UAdJ(C jz)%Sk?)v’ are. components inr‘_
G(C\UJ4dj(Cc), and S2 is a minimal width-2' separator in G(C/{JA4dj(C})). Thus,
¢ JAdj(CP) and CjZUAdj(Cjz) must be disjoint, implying that 4dj(x)(A4dj(y)=Z. Now
S 11 U Sk2 is minimal b»ec‘ause S 11 and Skz are_~‘minima1, "and G is a union of complete graphs.

o R 5

We now define a WidthQZ nested dissection partitioning formally. Let G'=(X,E) be the
unlabelled graph of A74. Let Y0=X, and for. m'=0,1, 2,...,A until ,Yh+1=,®’, do the following:

a)  Determine the connected components of ¥'™ and label them Y, Y7', ..., Y.
. m

by Forj=1,2..r,, choose §Jm§ Y;”UAdj(Y;") such that .§Jf" is a ‘minimal width-2 separator
pf G(YJmUAdj(Y;”)) and set Sjm=§;"ﬂ Y]f", or else is equal to Y]f”.

.
¢)  Define Sm=th]m and Y tl=ym—gm
=1

- The partitioning <I>={Sj’.”EX, 1<jgr,,, 0Km<h} isAa width-2 ngsted dissection partitioning of G.
An ordering o of X is said to be a width-2 nested dissection ordering with respect té &={S ;"}
if for x€S Jm and yEYJ.m—S }”, a_l(x)>a—1(y). An example of a width-2 nested dissection order-
ing on the partitioning of Figure 5.2 is shown in Figure 5.3.

The proof of the following theorem is similar to that of George and Liu [2]. It provides a

bound on the number of nonzeros in the upper triangular martix R.
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Theorem 5.7

Let &={S7"} be a width-2 nested dissection  partitioning on G and « be any width-2 nested

dissection ordering with respect to ®. Then the number of nonzeros iﬁ R is bounded by
B Tm ‘
> DUSH A (Y +( ST =172}
m=0j=1
O
The bound given in Tﬁeorem 57 can be used as a guideline in determining width-2 nested

- dissection orderings with small fill. xClea'rly, \s'méll’ rriini«fnal width-2 separators which disconnect the

graph into two or more components .of ,,apprydximatelyve'qual'fsivze should be used. k’
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Figure 6.4" Darkened nodes are reachable fro’m x jES i thkro‘ugh x| k<j}.

They represent the nonzeros in row j of R. Shaded nodes have labels less than A

Unmarked nodes have labels greater than j and are not reachable from x 5

Then,

o ifx, €S,
85 n-(i=7) ifx,€S 5.

Similarly, one can show that if ijS 5 then le?fO for [ >J, where X; belongs to S, or X; belongs

to one of the separator-lines in S, that is closest t_o'kS 2 (see Figure 6.5).
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sequence EX will include {/ >.§1k| x,ES,} and {/ >£1k| x; is a node on the separator-line in S, that is
closest to S,}. This is illustrated in Figure 6.6 where darkened nodes are in the elimination

sequence. The labels of shaded nodes are less than £ lk, thus these shaded nodes are not in the elim-

ination sequence. Here | Z¥| ®2n —k, so

2n~=k -
0 X 12_)1 I=2n%=2nk + 4%k +0(n).

Figure 6.6 Darkened nodes are in the elimination sequence of an equation.

Shaded nodes have labels less than Slk, they are not in the elimination sequence.

Now using a similar argument, it is easy to show that for the k —¢h equation in S |, | E'kl ®2n—k,
$0
2n—k

0, ~ 121 I=2n2=2nk + 45k +0(n).

Since there are approximately n and %n equations in S| and S, respectively, we then have

| B(n. 0) = 46(%n, 2) + —S%rﬁ +0@).



[

i

Gderive

sl

B

L

e

s,




-31 -

Lemma 6.1 [5]

a) Let f(n)=f(%n)+knlog,n +0(n).

Then f(n) =-§—kn 2log2n +0(n 2).

b)  Let g(n)=2g(%n)+knllogyn + O (n?.
Then g(n)=2kn 2logzn +0(n 2).

¢) Leth(n)=4h(%n)+kn’+0(n).
Then k(n) = kn’log,n + O (n?).

O
Lemma 6.2 [5]
a)  Let f(n)=f(%n)+kn®+0(n%og,n).
Then f(n) =—§—kn3+ 0 (n2og ).
b) Let g(n)=2g(%n)+kn>+ 0 (nlog,n).
Then g(n) =%kn 34+ 0(n 2log2n).
¢) Leth(n)=4h(Un)+kn*+0m?.
Then h(n)=2kn>+ O (n%log,n).
]

Now using the recurrence equations and Lemmas 6.1 and 6.2, we obtain the following results.
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Theorem 6.3
Consider an n by n grid, and the associated least squares problem as described at the begin-
ning of this section, with row and column orderings induced by a width-2 nested dissection label-

ling of the grid. Then

a)  the number of nonzeros in the upper triangular matrix R is bounded by

é‘%nzlogzn + O (n 2) ,

b)  the number of operations required to reduce the equations is bounded by

% 1405

4 1 n3+0(n210g2n).

The factor 4 in the second part of Theorem 6.3 is due to there being four equations
associated with each small square. Note that in the analysis, we consider only one of those four
equations for each small square. Furthermore, the bound for the operation count may be too
large. This is because in the derivation, it is assumed that if the elimination sequence of an equa-
tion is E={£,.£,...., EM}, then it is maximal, and Rl/#C for i,jEE and j»i. Of course, this may
not always be true.

The following shows some numerical experimenis on # by n grids which were carried out on

an IBM 4341, using a modification of SPARSPAK ([4], [5]).

n | no.of columns | no. of rows storage & | reduction time § (sec) —’5—3

10 106 324 2223 £.692 2.110 00211
12 144 484 3419 6.623 3777 .00219
14 | 196 676 5058 6.778 5.957 00217
16 256 900 7185 7.021 9.103 00222
18 324 1156 9805 7.257 13.227 .00226
20 400 1444 12679 7.332 17.760 00222
22 484 1764 16076 7.448 24.160 .00227

These results confirm that the reduction time and storage requirement are O(n? and

O 2logzn) respectively. Note that “storage S” refers to the storage required to store the nonzeros



pjoiin_t‘ets,: ‘_sl‘ib'ser'ipt:s,' etc.).  Further i@pl.ementAtion deftai"ls‘i_.eaﬁ be
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