Implementations using External Storage for
the Crank Nicholson and Extrapolated
Backwards Euler Methods for
Finite Element Programs

by
D.C. Donnan and R.B. Simpson

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

Research Report CS-81-07
February 1981

This research was supported in part by a grant from the Natural Science and
Engineering Council of Canada, and in part by a contract with Environment
Canada.



CHAPTER I

Introduction

It is common in finite element packages to augment the use of addressable
memory by storing files of data on disk storage. In this report, we
examine the interaction between the use of external disk files and two
time stepping algorithms for dynamic finite element calculations. The
time stepping algorithms are the commonly used Crank Nicholson time dis-
cretization, with its benefits of simplicity and second order accuracy
for adequately smooth time evolutions, and the less well known extrapo-
lated backwards Euler methods, which have better numerical stability
characteristics for solutions with stiff time evolution, but are somewhat
more complicated to implement, and less effective for computations with

smooth time evolutions.

A standard technique for using external file storage in the finite element
method is the frontal method, see Hinton and Owen [3]. Our discussion is
based on an alternative design in which the solution of the global system
of equations is done entirely in core by sparse matrix solving codes
(SPARSPAK, George, Liu and Ng, [2].) There is a considerable, perhaps
surprising, amount of file traffic which appears to'be required by these
algorithms operating under this design strategy, and this report is in-
tended primarily to serve as an exposition of this fact. As such, it has

more of the nature of posing a question, than of resolving one.



In Chapter II, we briefly review the reduction of a parabolic partial
differential equation to a system of ordinary differential equations

by the spatial discretization provided through the finite element method.
In Chapter III, the Crank Nicholson, and extrapolated backwards Euler
methods for solving the resulting ordinary differential equations are
described. Their performance on a problem with a stiff time history

is indicated with an example. In Chapter IV, a model for the data files
used by the finite element method, and for the use of addressable memory
and disk storage is formulated, which attempts to capture the features
of our design that are relevant to the topic of this report. Algorithms
for the Crank Nicholson and extrapolated backwards Euler methods are
given in terms of this model, and the number of file transfers per time
step of each is indicated. A series of computational tests of these
algorithms is then described which attempts to ascertain how closely

the crude measure of file transfers correlates with the actual running

of the implementation.



CHAPTER I1I

The Finite Element Method for
Initial-Boundary Value Problems

The finite element method can be applied to provide approximate solutions
to problems from the following general class of parabolic initial-boundary
value problems. These problems require the determination of a function
c(x,y,t) defined in a space-time cylinder, , specified by a region R

in the x-y plane and t > tO and satisfying:

Q

2.1)  equation 59-= Lc + F for (x,y,t) € R

for L a general elliptic operator with possibly time dependent

coefficients D.(x,y,t), i =1,2,3,4, U(x,y,t), V(x,y,t), Q(x,y,t)

-9 ac 3Cy 4 8 ac 9Cy _ y 3¢ _ y 3¢
Le = 3% (Dl 5x T Do By) * oy (D3 3y t Dy ay) Usx -V oy t*Qc

2.2) Boundary conditions
c(x,¥,ty) = g(x.y,t)
for (x,y) € 5R, t > tg

2.3) initial conditions
c(xsystg) = co(x.y)
for co(x,y) specified.

A common finite element approach to determining c(x,y,t) 1) - 3) approxi-
mates 2.1), 2.2), 2.3) by a system of ordinary differential equations. It
can be described as introducing a set of N + Nb basis functions

¢k(x,y), k = 1,...,N+Nb and approximating ¢ by a Tlinear combination of

N+N

the Sy with time varying coefficients, ck(t), T(x,y,t) = kZ]bck(t) ¢k(x,y).



The Tast Nb of the coefficients ck(t) are assumed to be explicitly
determined by the boundary conditions, 2.2); they will form an Nb
vector denoted cb(t). ATT N + Nb are determined at t - tO by initial

conditions 2.3).

The values of the first N of the coefficients, ck(t), are determined

by solving the system of equations for j =1 to N:

2.4) <65, ] (de;/dt) o>
1
= <¢J': z C1L¢1> + <¢js F>

3
where "<, >" denotes the inner product <f,g> = ffR f(x,y,t) g(x,y,t) dxdy.

These equations can be rewritten in matrix notation as the system of

ordinary differential equations

dc dey
2.5) M rr Ac + (S+Abcb-Mb aE—) = Ac + f
where the traditional finite element designations for these terms
are M - the global mass matrix
A - the global stiffness matrix

S - global Toad vector.

Mb and Ab are N x Nb matrices that couple boundary conditions to the
approximate solution, and are part of the global mass and stiffness

matrices.



CHAPTER III

The Crank Nicholson and Extrapolated
Backwards Euler Time Discretization

In the preceeding section we have seen that a spatial discretization of
an initial boundary value problem for a general parabolic partial dif-
ferential equation using a finite element method leads to an initial
value problem for a system of ordinary differential equations of the

form

dh

dt

3.1) Mat = Alt)e+g+

for (possibly time dependent) matrix B(t) = M_] A(t), and known
'source' functions g = (S+Abcb(t)) and dh/dt = - Mpdc,/dt.

While this is not an appropriate form for computational purposes, it is
a convenient one for the formal discussion of time discretizations. For
further convenience of exposition, we shall assume a discrete set of
uniformly spaced time levels, tn = to + n At and use a subscript on an

N vector, wn, to denote its value at time tn.

Probably the most commonly used time discretization has been the Crank

Nicholson (CN) scheme, which for 3.1), may be written

3.2) (M- M (L, )/2)c, g =

(M + DA (t,, )/2)c, + 0t(g, o+, )/2

n n

- h

* hn+1 n

for tn+» = tn + At/2. Doubtless much of the popularity of the
2
CN scheme is due to the combination of its being second order

accurate in time and its being relatively simple to implement.



A Tess common alternative, or parameterized family of alternatives, is
the extrapolated backwards Euler (EBE) scheme [5]. For extrapolation
parameter, w, the EBE scheme for 3.1) uses two auxiliary storage vectors,

a and b, and takes the form

Mo, + Btg(t,,,) + 2(h(t, . ) = h(t)

3.3a) [M—AtA(tn+%)/2]a n

b) [M-AtA(tn+%)/2]b Ma + Atg(t ,q) + 2(h(t ,q) - h(t )

n+1

c) [M-atA(t ;)]a = M+ Atg(t, 1) + (h(t ) - h(t)))

d) Chs] = (1+w)b - w a

In terms of computations per time step, the CN scheme requires one evalu-
ation of A, g and h and solution of one system of equations per step.

The EBE schemes require one evaluation of ‘A, two evaluations of g and h,
and the solution of three systems of equations, only two of which have

distinct matrices of all coefficients.

To see what the EBE schemes have to offer to compensate for involving
more than twice as much computation per step, we must Took at the

stability properties of each method.



3.2 Stability Considerations

To examine the stability properties of these methods, we replace 3.1)

by the simple scalar initial value problem
3.4) dz/dt = az(t), z(to) = zg.

This problem may be viewed as having a single time scale, or transient,

set by . The exact solution of (3.4) is

3.5) z(t ) = (MHN Z

The solution of the Crank Nicholson scheme applied to 3.4) is z, = E(CN)n z

for the Crank Nicholson 'growth factor".
3.6) E(CN) = (1#\at/2)/(1-rat/2).

The solution for the EBE scheme can be seen to be z = EW(EBE)n z, for

the EBE growth factor.
3.7) EW(EBE) = (1+w)/(1-At>\/2)2 - w/(1-atr).

The second order accuracy in time of the Crank Nicholson scheme is re-

flected in the fact that

3.8)  E(CN) = ™t 4+ o(atd)

0



While the CN method is A-stable (i.e., |E(CN)| =1 for RE X < 0 and all

At, [6], page 43), it is well known that it can produce erroneous oscil-
lations in the computed solution of dynamically stiff problems unless the
time step At s adequate]y‘restricted; This behaviour can be anticipated
from the fact that E(CN) » -1 as Re \ At - -~, 1j.e., the CN method is not
stiffly A-stable ([6], page 221). However, the system of ordinary differ-
ential equations arising from the Galerkin method for 2.1) is commonly
dynamically stiff if the solution to be computed is not smooth in both

its spatial and time variations. An example of the weakness of the CN

method in dealing with such a problem is given below.

Properties of the Extrapo1ated‘3a¢kwérdé Euler Method

The corresponding properties of the EBE method are probably less well known
(see Gourlay and Morris [5]). The ‘'growth factor' for the EBE methods for
w=1and w=1.5 are shown in Figure 3.1 along with the exact growth factor,
exp(iat) and E(CN) plotted as functions of AAt. Over much of the argument
range shown in Figure 3.1, EW(EBE) is clearly a better approximation to
exp(Aat) than E(CN) is. However, the EBE method is actually only second

order accurate forw =1 i.e.
3.9)  E(EBE) = exp(nat) + 0(st’).

These figures suggest that we might wish to choose w so as to minimize
the error, i.e. chose w to minimize

max [E (EBE) - exp(nat)].
AMt<0 7



1.0

EXP(AAL)
— —— N
_——— EREF Wwaild

— =~ EBE Ws1§

Q.5 -

/
0.0 e /

-1.0 0.0
aot

Figure 3.1

Graphs of Approximations to exp(nat)



The minimizing value of w is (,to two decimal places,) W,

- 10 -

bt = .97: how-

ever the reduction in maximum error obtained by using W, rather than

pt

w=1 is so small, that it has not been considered significant, i.e.,

max |E o, (EBE) - exp(Aat)| = .0344
AAL<0 '

compared to

max |E; (EBE) - exp(aat)| = .0361
xat<0

It can be seen from 3.7) that the EBE method for w=1 is stiffly A-stable,

i.e. that E](EBE)-+ 0 as Mt » -, Combining these stability properties

with its improved approximation of eXp(XAt) over much of the argument range,

we can expect the second order EBE method to give satisfactory computed sol-

utions to dynamically stiff problems for significantly larger time steps

than would be possible with the CN method.

To demonstrate the difference in behaviour between the CN method (3.2) and

the EBE method (3.3), we solve a test problem which takes the form of a plate

being steadily heated by a discontinuous source. The equation to be solved is

3.17)

3.12)

2 4 s(x)

au/at = azu/ax2 + azu/ay
for a solution in the unit square 0 £ x <1, 0=<y=< 1, for t2 0.
The source function is a pulse in the x direction, corresponding

to heating in a strip of the plate,

0 0= x<5/12
S(x) = 200 5/12<sx<7/12
0 7/12 <x=<1

The solution is initially 0, and is held at zero at the boundary of

the square.



- 11 -

A typical contour plot of the solution after heating has started is shown
in Figure 3.2 (for a higher pulse at amplitude than stated in (3.12)).
The values of the computed solution obtained by the CN method and the

EBE methods are shown in Figure 3.3, for a step size of At = .3 and in
Figure 3.4 for At = .15. These computations were done on an 181 element
mesh. The mesh was subdivided further into 724 elements, and the results
using a time step of size At = .3 are shown in Figure 3.5. The 'ringing’
error in the CN solutions is clearly evident, and the smoothness of the
EBE results is equally apparent. A comparison of solution values for the
181 element computation is given in Table 3.1, and indicates that the
step size At = .3 appears to be giving satisfactory two digit results,

although the comparison to the 724 element calculation shows the second

digit to be influenced by the spatial discretization.

181 elements 724 elements
' At = .15 At = .3 At = .15
Time CN EBE CN ~ EBE CN EBE
.15 9.51 7.66
.30 8.88 9.16 12.54 9.16 12.68 9.30
.45 10.13 9.55
.60 9.32 9.65 8.40 9.64 8.58 9.82
.75 9.96 9.67
.90 9.45 9.67 10.54 9.68 10.72 9.86




- 12 -

Figure 3.2

A Contour Plot of the Solution of
the Discontinuously Heated Plate Problem



- 13 -

region where
Soevrce term hag
,1) ) the volve C

e 1)

U] d (7
2 16
1 17
§ 9
4 K7
3 18
S |6
G —t & + N N
(o,0) ¢ G5l ¢ (e

Figure 3.3

Mesh used for the Discontinuously
Heated Plate Problem



- 14 -

13
ﬂ + - CN, pt=.15
X — EBE, At= .5
I\
12— I a ~ ¢N, at=-30
® -~ EBE, at= .30
I\
11~ ! \
! \ A
10 : '\ki | /o
O ZﬁZ}:-Cb >
- X x%x%x
X \ : / "
_ \ 7/
I \/
o
8 |
/
|
7 l T l T I I
0 2 4 6 8 1.0 12 14
Figure 3.4

Numerical Solution Values at the
Centre of the Discontinuously Heated Plate
(181 elements)



13
] a cn 181 elements
n 0 CN 744 "
12— I\ X EBE 181 "
[ \ ©®© EBE 724 v
I\
11— / \
o]
/ \\ /8\
/I \ Fo
10— /
I /,‘? ——%
o~ \" /-
9— \ 7
\ /
o}
A
8-
7
0 L ‘-I+ IS é 1ID 1,[2. 14
Figure 3.5

Numerical Solution Values at the Centre of
the Discontinuously Heated Plate
(181 and 724 elements)



- 16 -

CHAPTER IV

Implementation using External Store

We now turn to a discussion of the implementation of these methods into
algorithms using external (disk) storage, paying particular attention to
data transfers between addressable and external store. Basically, our
discussion forms a model for the implementations carried out for the
finite element package FEMPAK, [1]; developed on an experimental basis
at the University of Waterloo. Three classes of data are distinguished
in the algorithms:

I) - mesh and problem data

II) - local stiffness matrices and load vectors

III) - the data for the global system
The basic flow of data in a time stepping algorithm is shown in Figure

4.1.

We assume that the implementations require random access to data I and
data III, but only sequential access to data II. A common technique
for extending the problem size that can be handled through the use of
external store is referred to as the frontal method in which data I is
resident in addressable memory, data II exists temporarily in address-
able memory and possibly is also stored externally, and data III is
organized so as to be stored in a combination of addressable and

external store.



- 17 -

LOCAL STIFENESS mAaTRIX

/LOAD VECTOR GENERATION

&GLOBAL EQUATIONS SOLUTION

PATA GLOBAL EQUATIONS ORDERING

s AND ASSEMBLY

Figure 4.1

Flow of Data in Time Stepping Algorithms



- 18 -

In our case, we wish to perform the computations with the global system
of equations entirely in core using available sparse matrix software
(SPARSPAK, [2]). We assume then, that for reasons of problem size and
modularity, that addressable memory can be used for data I or data III
in a mutually exclusive manner. Copies of data I and data III are main-
tained in external store, the dynamic part of which must be updated
periodically. When an algorithm requires data I to be in addressable
memory, we will refer to the algorithm as being in state I, and simi-

larly for the algorithm being in state III.

Some of the data is unchanged during the cycling of the time stepping
algorithm. Such data will be referred to as static; e.g. the meshes
being considered do not change with time. Data that may change with
the cycles of the time stepping algorithm will be called dynamic. The
designation of data as static or dynamic depends, of course, on the
problem class being considered, as well as the method being used. We
shall consider two problem classes:
a) fully dynamic equations i.e. the coefficients of the partial
differential equation may change in time (either explicitly
or due to a nonlinearity)
b) constant coefficients i.e. the coefficients of the partial
differential equation may be spatially variable but not time

varying.



- 19 -

One objective is to have time stepping algorithms for the fully dynamic
case which are easily modified for the constant coefficient case so as
to avoid recomputing and rewriting data to external storage that is
static in the latter case. For this purpose, we break the three data
classes introduced above into files that are described in Table 4.1 and

which are the external files of our implementation constant.

One of the virtues of the Crank Nicholson method is its simplicity; this
makes it a useful introduction to our high Tevel description of algorithms
including file transfers to external storage. All such transfers are
indicated either by 'read from' or ‘write to'. The phrase 'switch to
state I' is intended for the orientation of the reader and does not in-
dicate any resource utilization beyond what is explicitly indicated.

The global matrix sparsity information is available from the local Tload
vector file, hence this file is used for data for the global equation

ordering step.



- 20 -

swy3 L4aob e

buirddags awil 40} sa|Ly oLseyg

L*v 378yl

*AJoWBl [ eUJDIXD UL
pa40ols AL3LoLjdxa jouy

aL3e3s xJ LueuAp S40308B) XLJdjew |eqo|b (9 11I
JL3e3s J13e3s eiep buLuopJao uoLienba (e 111
oLweuAp oLueulp S40309A peo| [ed0] q11
JLje3s JLweulp S90LJRW SSDULSLES |BO0| eIl
JLweulp JLweuAp uoLinjos qI
JL3e3s oLje3s uor3dLaosap ysau el
ase) 9se) oLweuLg suieN allL4 sse|) eieq
JUBLILI 4909

1URLSUO)




- 21 -

The Crank Nicholson Method (fully dynamic case)

1) Initialize the mesh, and starting solution (in state I)
- write to mesh description file (Ia)
- write to solution file (Ib)
FOR TIME STEPS = FIRST TO LAST
2)  Form local stiffness matrices, local load vectors (in state I)
- write to Tocal stiffness matrix file (Ila)
- write to local load vector file (IIb)
IF TIME STEP = FIRST
THEN
3) Order global equations and set up sparse matrix data struc-
tures (in state III)
- read from Tocal load vector file (IIb)
- write to global equation ordering data file (IIla)
ELSE
4) Switch to state III
- read global equation ordering data file (IIla)
5) Assemble global matrix, load vector, solve for Crt1 (see 1.B)
(in state III)
- read from local stiffness matrix file (IIa)
- read from local Toad vector file (IIb)
- write to solution file (Ib)
6) Switch to state I
- read mesh description file (Ia)

- read solution file (Ib)



- 22 -

We shall assume that a gross characterization of an algorithm's perform-
ance can be obtained by counting the number of file transfers required
to perform N time steps. For the fully dynamic case of the Crank

Nicholson method, as described, we have
4.2) CN(FD) = 4 + 8N file transfers

The modifications necessary for the constant coefficient case are indi-

cated in the following description.

The Crank Nicholson Method (constant coefficient case)

1) Initialize the mesh and starting solution (in state I)
- write to Ia, Ib
2)  From local stiffness matrices (in state I)
- write to Ila
3) Order global equations and set up sparse matrix data structures
(in state III)
- read from Ila

- write to IIla

4)  Assemble global matrix, factor it and store the factors (in state I1I)

- write to IIIb
5) Switch to state I
- read from Ia, Ib
FOR TIME STEP = FIRST TO LAST
6) Form local load vectors (in state I)

- write to IIb



- 23 -

7)  Switch to state III
- read from IIla, IIIb

8) Assemble global load vector and solve for Cotl (in state III)
- read from IIb
- write to I

9) Switch to state I

- read from Ia, Ib
For the constant coefficient case then, the number of file transfers is
4.3) CN(CC) = 8 + 7N

In the extrapolated backwards Euler method, considerably more file traffic
per step is generated, due to having to form and solve several equations
per step that have some interdependencies. This gives rise to multiple
versions of some of the categories of data; e.g. for IIa), the Tocal
stiffness matrices, there will be two files of these, one contributing

to M - AtA(tn+%), the other to M - AtA(tn+%)/2. It might be expected that
one could gain some storage advantage from the algebraic similarity between
these two matrices. However, our initial experiments with storing one of
these matrices only, and making explicit calculations of the modification
needed for the other proved more costly than generating two independent
files of Tocal stiffness matrices. Hence we take advantage of the
similarity only during the computation of local stiffness matrices, not

to effect any storage solving. Similarly, independent copies of the local

load vectors, solutions, and global matrix Cholesky factors are maintained.



- 24 -

The Extrapolated Backwards Euler Method (fully dynamic case)

1)  Initialize the mesh and starting solution (in state I)

- write to lIa

FOR TIME STEP = FIRST TO LAST

2)

Form local stiffness matrices, and local load vectors for 3.3a)

and 3.3c)
- write to IIa (2 files), IIb (2 files)

IF TIME STEP = FIRST

THEN
3) Order global equations and set up sparse matrix data
structures (in state III)
- read from IIb
- write to Illa
ELSE
4) Switch to state III
- read IIIa
Assemble global matrix, load vector for 3.3a), solve for a and
store matrix factors
- read IIa, IIb
- write Ib, IIIb
Switch to state I
- read Ia, Ib
Form local load vectors for 3.3b)
- write to IIb
Switch to state III; read ordering data plus matrix factors

- read IIIa), IIIb)



- 25 -

9) Assemble load vector for 3.3b; and solve for b
- read from IIb
- write to Ib
10) Assemble global matrix, load vector for 3.3c, and solve for a
- read IIa, IIb
- write Ib (2nd file)
11) Switch to state I, and perform extrapolation 3.3d)
- read Ia, Ib (2 files)

The fully dynamic extrapolated backwards Euler method thus requires
4.4) EBE(FD) = 12 + 22N file transfers

It should be noted that in this algorithm, a copy of the current solution,
s is never stored in the external file for data Ib. If this were desired,
it could ge acéomp]ished by an extra write to Ib at step 1, and at step II,

which would result in 13+ 23N file transfers for N time steps.

If the global stiffness matrix does not change for subsequent time steps,
some reduction in the file traffic can be made through moving matrix
operations forward outside the time stepping loop, as was done for the

Crank Nicholson method. The following algorithm describes this case.



- 26 -

Algorithm for Extrapolated Backward Euler (Constant Coefficient Case)

1) Initialize the mesh & starting solution (in state I)
- write to Ia
2)  Form local stiffness matrices (half & full time steps) (in state I)
- write to Ila (2 files)
3) Order global equations & set up sparse matrix data structures
- read from Ila
- write to Illa
4)  Assemble global matrices - factor them and store the factors (in
State III)
- write to IIIb (2 files)
5) Switch to state I
- read from Ia
- read from Ib
FOR TIME STEP = FIRST TO LAST
6) Form Tocal load vectors for 3.3a, 3.3c (in state I)
- write to IIb (2 files)
7)  Switch to state III
- read from IIIa, IIIb
8) Assemble global load vector for 3.3a & solve for a of 3.3a
(state III)
- read from Ila
- write to Ib
9) Switch to State I

- read from Ia, Ib



- 27 -

10) Form Tocal load vectors for (3.36)
- write to IIb
11) Switch to state III and read ordering data and factors:
- read from IIla, IIIb
12) Assemble global Toad vector for 3.3b and solve b of 3.3b
- read from IIb
- write to Ib
13) Assemble Toad vector 3.3c¢ and solve for a
- read from IIb
- write to Ib (2nd file)
14) Switch to state I and perform extrapolation 3.3d
- read Ia, Ib (2 files)

The number of file transfers in N time steps of this constant coefficient

extrapolated backwards Euler method algorithm is
4.5) EBE(CC) = 9 + 17N.

We summarize these file transfer formulae (4.2, 4.3, 4.4, 4.5) in Table 4.1.

Method CN(CC) CN(FD) EBE(CC) EBE(FD)
No. of
file 8 + 7N 4 + 8N 9 + 17N 2 + 22N
transfers :

Table 4.1

Summary of Number of File Transfers
for N Time Steps



- 28 -

We might speculate that the file transfer formulae of Table 3.2 would
give a rough guide to the (relative) execution times to be expected

from these algorithms. This might be expected partly because the file
transfers take a significant part of the execution time, and partly be-
cause other activities are highly correlated with them, particularly the

activity of solving the linear equations.

The four algorithms have been implemented as FORTRAN modules and inte-
grated into FEMPAK, a finite element package developed at the University
of Waterloo. The running times of these implementations for a test
problem are reported in Table 4.2. The test problem used was the dis-
continuously heated plate problem discussed in Chapter II, with the mesh

shown in Figure 3.3 and a subdivision factor of 4 (288 elements).

One basic question of interest is to what extend the simple count of file
transfers represents the amount of work done by the algorithms. In Table
4.3, we Tist the execution time per file transfer for the four algorithms,

for several numbers of steps.

N CN(cc) CN(FD) EBE(cc) EBE(FD)
1 1.66 1.06 3.03 2.99
2 2.39 2.12 4.82 6.18
3 3.19 3.18 6.62 9.33
4 3.93 4.24 8.4 12.51
5 4.70 5.45 10.21 15.71
6 5.50 6.56 12.0 18.93
7 6.26 7.62 13.94 22.3
8 7.12 8.67 15.75 25.65
9 7.85 9.79 17.53 29.03
10 8.58 10.93 19.33 32.42
Table 4.2

Execution Times (seconds) for Four Algorithms
on Test Problem




- 29 -

N CN{cc) CN(FD) EBE(cc) EBE(FD)

1 110 .088 17 .124

4 .109 .118 .109 .139

7 110 127 .109 .143

10 .110 .130 .108 .146
Table 4.4

Execution Time per File Transfer for N steps

It is, of course, not surprising that the execution time file transfer

ratio is roughly constant for each algorithm, (after the start up at

N = 1), since both are roughly constant for each time step.

It is more

interesting, however to note that between algorithms, the execution time

file transfer ratio varies by only a factor of about 1.4, at least for

this example problem.

It suggests then, that there is some validity to

comparing these algorithms simply on the basis of file transfers.




[1]

[2]

[3]

[4]

[5]

[6]

- 30 -

REFERENCES

J.A. George and R.B. Simpson, "The Waterloo Finite Element Package,
User Guide", Appendix, Final Report, Project Number 606-03-03,
Waterloo Research Institute, March, 1979.

A. George, J. Liu and E. Ng, "User Guide for SPARSPAK: Waterloo
Sparse Linear Equations Package", Research Report, CS-78-30,
Department of Computer Science, University of Waterloo.

E. Hinton and D.R.J. Owen, "Finite Element Programming", Academic
Press, 1977.

J.D. Lawson and D.A. Swayne, "A Simple Efficient Algorithm for the
Solution of Heat Conduction Problems", Proc. 6th Manitoba Conference
on Numerical Mathematics, University of Manitoba, 1976.

A.R. Gourlay and J.L1. Morris, "The Extrapolation of First Order
Methods for Parabolic Partial Differential Equations, II", SIAM

J. Num. Anal., Vol. 17, 1980, pp. 641-655.

C.W. Gear, "Numerical Initial Value Problems in Ordinary Differen-

tial Equations", Prentice-Hall, 1971.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

