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Abstract

We consider the subfamilies of rational and pushdown trans-
ducers and corresponding translations (relations) which are mbéfrwrr
frequently encountered in the literature. We survey some o%uéhéAkH;@ﬁ'
results on characterization, factorization, closure properties, decision
problems and comparison of classes and give new results on these

properties using either direct proofs or resuits from other theories

such as homomorphism equivalence.



1. INTRODUCTION

One of the most natural ways of defining a relation, or

translation, or transduction, of a free monoid * into another A*

is to use some type of transducer, i.e. some type of automaton provided
with outputs. At each step of the procedure of recognition of the word
we ¥, one of some available outputs in A* s chosen. The concatena-
tion of these outputs in the order they are produced during the compu-

*

tation defines a word z ¢ A™ which is in relation with w. Thus,

finite automata yield the notion of rational relation (also known as

ratjonal transduction or finite translation) while more generally,

pushdown automata define pushdown translations (relations) (cf. e.q.

[1, p.228]).

Rational relations are definitely the best known family of

relations due to their nice properties and to the role they play in the
theory of Abstract Families of Languages where they prove to be a useful
tool for studying context-free languages (cf. e.g. [14 and 3]). Un-
fortunately, the very success of rational relations in this theory is
certainly the cause why the study of these objects for their own sake,
has practically stopped, with some very few exceptions (see e.g. [18
and 19]). In our opinion, the next step towards a better knowledge of
rational relations should be a systematical study of the "simplest"
subfamilies of rational relations: rational partial functions, sequential
and subsequéntia] partial functions.

As far as pushdown translations are concerned, they have
received Tess attention than they deserve. Indeed, since their general
properties have been established, very Tittle work has been done. Yet,

apart from providing a model of compilation (cf. [1]), and, from a



strictly mathematical point of view, posing some challenging problems,

to ignore these translations would lead to exclude some natural functions
such as the function which reverses each word, or characteristic
functions of context-free languages, to mention only a few.

In this paper we consider the subfamilies of pushdown relations
which are most frequently encountered in the literature. Since the
authors assume the reader is familiar with rational relations, the
emphasis will be put on other subfamilies of relations. we shall make
a survey of the properties which are known so far - characterizations,
factorizations, closure properties, equivalence decision problems - and
give some new properties using either direct proofs or results from
other theories, such as homomorphism equivalence (cf. [8]).

The definitions of the different families we shall deal with,
are given in the preliminaries, in terms of transducers. Yet, when it
comes to proving results, one wishes to use an alternative, more
algebraic definition. Such a characterization has first been stated
for rational relations by Nivat, and has easily been extended to pushdown
relations (translations). It uses the notion of "bimorphism" and has
given way to what in Eilenberg's terminology is called "The first
factorization Theorem". In section III, we establish a similar
characterization for unambiguous pushdown functions, which helps proving
results in the next sections.

Section IV is concerned with properties of the closure under
composition. We consider more specifically subfamilies of pushdown
functions. Our results enable us to define a hierarchy of these sub-
families.

Finally equivalence decision problems are considered in

section V. Some new results are shown.



II. PRELIMINARIES

II.1 Free Monoid, Relations

We denote by I* the free monoid generated by the finite
non-empty set - or alphabet - Z, by e its unit or empty word and by
gt = 7*\{e} the free semigroup. The length of a word w ¢ * is
denoted by |w|. Let w = ap ... ap be a word, where n > 0 and

CIETRRFL S Z. The reverse of w 1is the word wR = an .o a1. We

R=€.

define the reverée of the empty word as: €
In order to simplify notations, all relations considered in
this paper, unless otherwise statéd, are from the-fixed free monoid
£* into the fixed free monoid 4*. We write f : £* > A* such a
relation and view it as a function of I* into the power set ZA*. It

is length-preserving if v ¢ f(u) implies |u| = |v|. If f(u)

possésses at most one element for each u e I*, we say that f is a

partial function.

The domain of a relation f : I*¥ > A* is the subset
Domf= {ue I* | f(u) # 6}. Its image is the subset Imf= {v e A" |
v e f(u) for some u e r*}. Its graph is the subset
#f = {(u,v) € £ x A* | v ¢ f(u)}. Finally the reverse of f is the
relation fR : ¥ = A* whose graph is #fR = {WRWRY € 2% < a*
(u,v) e #f}.

Given a family F of relations, FR denotes the family of

R

all f° where f ¢ F.

The unfon of a family of relations f, : 0% (iel) s

the relation f : £* -~ A* defined by: #f = #f..
jel



1I1.2 Pushdown Relations
We refer to [1, p. 228] for all notions not explicitly

defined in the sequel. We recall that a pushdown transducer, abbreviated

a-PDT, is an 8-tuple T = (Q,Z,A,X,G,qO,ZO,F) where:

- Q dis the set of states, g € Q is the initial state and
F < Q 1is the subset of final states

- L is the input alphabet

- A 1is the output alphabet

- X is the pushdown alphabet and Z0 e X is the start symbol

- 8§ 1is a function which maps Q x (Z u {e}) x X into finite
subsets of Q x X* x A*,

*

A relation f : £* + A* is a pushdown relation (translation),

abbreviated PD relation, if it is defined by some PDT.

We denote by PDR the family of all pushdown relations and by
PDF the family of all pushdown partial functions.

Let f : £* - A* be a partial function. Then it is
unambiquous if it can be defined by some PDT whose underlying pushdown
automaton is unambiguous (cf. e.g. [15, p. 142]). It is left

deterministic (or shortly deterministic) if it can be defined by some

PDT whose underlying pushdown automaton is deterministic (cf. e.g. [15,

p. 139]). It is right deterministic if the partial function R is

deterministic. Finally it is bideterministic if it is both left and

right deterministic.

R

We denote by UPDF, DET, DET" and BIDET respectively, the

families of unambiguous, deterministic, right deterministic and bi-
deterministic partial functions.

Let L ¢ £* be a context-free language recognized by the

i

pushdown automaton A = (Q,Z,X,G,qO,ZO,F). We denote by I :



the restriction of identity to L, i.e. the relation whose graph is
{(u,u) € 2 x £ | u e L}. The restriction of identity to L is a
pushdown function since it is defined by the PDT 1 = (Q,Z,Z,X,G',qO,ZO,F
where: (p,u,a) € 8'(q,a,v) iff (p,u) ¢ 8(q,a,v).

An important subfamily of PDR consists in the family RAT of
all rational relations, i.e. of all relations f : £* - A* whose

*

graph is a rational subset of the product monoid £* x A* (cf. e.g.
[9, p. 236]). The family of rational partial functions is denoted by
RATF. The well known facts that rational relations are particular

R

pushdown relations and that PDR = PDRR, PDF = PDFR, UPDF = UPDFR,

RAT = RATR, RATF = RATFR, can be seen for example, using

Proposition III.1 of the next section.

I1.3 Sequential and Subsequential Partial Functions

We now turn to the crucial notion of sequential partial
functions. Since there exist in the literature all kinds of "sequential"
functions, we will expose in detail the notion we will use which
corresponds to Eilenberg's generalized sequential partial functions
(cf. [9, Chap. XI]).

We will make use of the following convention. A1l partial
functions f of a set X into the free monoid £* shall be considered

as a total (i.e. everywhere defined) function of X into the semiring
>

2% . Therefore we have f(u) = ¢ whenever f 1is undefined for the
value u e X. Further, the product f(u)f(v) equals ¢, i.e. is
undefined iff f(u) or f(v) 1is equal to ¢.

A sequential transducer is a sextuple S§ = (Q,Z,A,A,e,qo)
where Q, £, A and qp are as in the definition of a pushdown trans-
ducer and where:

A1 QxZ->Q is a partial function, called the transition



function, and
8 : Q x L~> A" is a partial function, called the output
function.
It is assumed that A and 6 have the same domain.
The partial functions A and 6 are extended to Q x I* in
the usual way (see e.g. [9, p. 297]). For all ge Q and u e g¥
we wr1te q-u and gxu instead of A(q, u) and e(q u) respect1ve1y
Th1s enab]es us, as Iong as no confus1on may arise, to denote S by |
Wthe quadrup]e (Q Z A,qo), theApart1a1 funct1ons A égaﬁénngé;;gAAW‘ﬂ

understood.

A partial function f : ¥ > A* is left sequential or simply

sequential if there exists some sequential transducer S = (Q,Z,A,qo)

satisfying for all u e £* : f(u) = qo*u. It is right sequential if

the reverse partial function fR is left sequential. It is bisequential

if it is both Teft and right sequential.

We shall denote by SEQ, SEQR and BISEQ respectively the
families of sequential, right sequential and bisequential partial
functions.

Sequent1a1 part1a1 functions are particular rat1ona1 part1a1
functions as 1t is eas11y seen (cf e. g [9 Prop XI, 3 1]) More o
precisely we have the fo]]owing crucia] resu]t due to E]got and Mezei
(cf. e.g. [3, Theorem IV.5.2]):

Theorem 1

A partial function f : I* - A* dis rational, iff there exist
a finite set T, a Teft (resp. right) sequential partial function
g : 2 >TI* and a right (resp. left) sequential partial function

h : T™ + A% such that f(u) = h(g(u)) holds for all u ¢ I*.

A few words to compare the different "sequential" functions:



Ginsburg's generalized sequential machine mappings - or GSM mappings -

as defined in [13, p. 93], are sequential partial functions which are
total, i.e. everywhere defined. DGSM mappings, considered by several
authors (cf. e.g. [16, p. 172]), are restrictions of "GSM mappings"

to some arbitrary rational subset (not just the complement of a

rational right ideal as for our sequential partial functions)flrﬁéSM ére N

thus deterministic sequential transducers with a distinguished subset of

“final" states.
It is clear from the definition that a left (resp. right)
sequential partial function f : I* + A* is prefix- (resp. suffix-)
preserving: for each u,v e ¥, fluv) < f(u)a* (resp. f(vu) < A*F(u)).
Using this property, Ginsburg and Rose have characterized the sequential
partial functions among the class of all partial functions of a free
monoid into another (see e.g. [9, Theorem XI, 6.3]):
Theorem 2 (Ginsburg and Rose)
Let f : * > A* be a partial function such that f(e) c €.
’%heﬁdit is sequential iff the fhrée‘%oiiéwing conditions hold:
o mi) f is prefix preserviﬁg;” . | -
2) there exists an integer k > 0 such that |f(ua)| - |ful < k holds
for all ue I, a ez satisfying f(ua) # ¢;
3) for each rational subset R c A*, f'](R) is a rational subset
of =*.
The property of being prefix-preserving does not characterize
the sequential partial functions among the class of all rational partial
functions. For example, let I = {a,b}, A = {a} and consider the
function defined by (cf. [13, p. 100]):

n ,
a if u=a

a2n if u

n
fu) =

a"bv for some v ¢ I*.



Then f 1is prefix-preserving and rational but not sequential.
Nonetheless, if we denote by f, : £* > A* the morphism defined by
f1(u) = aIul and by f2 : 2¥ > A* the sequential function defined by

f,(u) =a%" if u=a" or u=aby for some v e ¥, then f is

the sum of two DGSM mappings: the restriction of f] to af, and
the restriction of f, to z¥\a*.

We shall show a stronger result by exhibiting a rational
(total) function which is both prefix and suffix preserving but which

is not a finite union of DGSM mappings.

Proposition 3

Let I = {a,b}, A = {a} and consider the partial function

g : =¥ > &* defined by:

+ . .
an 1 if n 1is even

ny _
alba’y = a2n+] otherwise ,

and g(u) = ¢ if u ¢ ba*.

Then the subset X = (a,a)*(#g)*(b,a)(a,a)* v (a,a)* ¢ * x a*
is the graph of a (total) function which is rational, prefix- and
suffix-preserving and which is not a finite union of DGSM mappings.
Proof

We shall just prove that f 1is not a finite union of DGSM

mappings, the rest resulting from standard verifications.

Assume #f = y #f. where f. is the restriction to a
I<isn !

rational subset Ri c I* of a sequential function f%. For 1T <is<n,
let ki be the integer assigned to f% as in the condition 2) of
Ginsburg and Rose's theorem and set K = max{k, | lsi<n} + 1.

Let M]’MZ""’Mn+] be a sequence of integers such that
M, =0, and for all 1 < i < n+l, M}.+1 > K(MT + ... + Mi +n).



Consider the n+1 words ui = baM"+] baMn - baMi, 1 s1i < n+]. Notice

that if we denote by < the partial order over i "prefix of", we

have: u U< e < Uy < Uy Certainly there are two integers

n+] n

1 <r<s=<ntl such that uy,. and ug belong to the same subset Ri’
for some 1 < i < n. By Ginsburg and Rose's characterization we must
chave: (Ul - If(ugl = If(udl - 1, (udl < K(lul - Tugl). But

we have: K(Iurl - !usl) = K(Ms—l + ...+ Mr + (s-r)) < K(M +

+
5_1 LA )
M] +n) < MS < 'f(ur)l - lf(us)l which yields a contradiction. d
We turn now to the notion of subsequential partial functicn.

A subsequential transducer is a pair (S;¢) where

S = (Q,Z,A,A,e,qo) is a sequential transducer and ¢ : Q> A% a
partial function (see [5, p. 109]).

A partial function f : £* - A* is left subsequential or

simply subsequential if there exists a subsequential transducer (S,o)

such that f(u) = qo*u.w(qo-u) holds for all u e It (notice that

there exists no condition on f(g)). It is right sequential if the

reversed partial function X : $* = A* is left sequential. It is

bisubsequential if it is both left and right subsequential. Sub-

sequential partial functions have been considered in [11] where they
are called "augmented version of DGSM mapping".

Intuitively a subsequential transducer is a sequential trans-
ducer capable of guessing the end of the input word. Formally we have
the following connection between sequential and subsequential partial
functions:

Proposition 4

Let f : £* > A% bea partial function. Then it is sub-

sequential iff its domain R = f'](A*) is a rational set and if there
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exist é new symbol § ¢ £ and a sequential total function
g: (zu {$}1)* = 2* such that f(u) = g(u$) holds for all wu e R\{e}.
Proof

"only if"-part: Let (S,¢) - where S = (Q,Z,A,qo) - be a subsequential

transduceEAAEfinﬁg thé_subéequentfal-pé}tial function f : I* + A*,

Set F=DomecQ, Q' =Qu {qt} where q, ¢ Q 1is a new symbol and

' =% vu {$}. The domain R = f'1(A*) js rational since it consists
in all words u ¢ I such that qp-u e F. Define the sequential

transducer S' = (Q',Z',A,x,e,qo) where X and 6 satisfy:

g.a if aeI,qeQ and q.a # ¢,
rqg,a) = .

94 otherwise;

gka if ael and qeQ
6(q.,a) ={o(q) if a=$ and qeF

€ otherwise.

Let g : Z'* + A* be the sequential total function defined

by S'. Then for all u e R we have:

f(u)

8(qq,u$) = g(us).

"if" -part: Let g : (2 u {$})* - A* be a sequential total function
defined by the sequential transducer S' = (Q',Z',A,qo) where

' =2 u {$§}. Without Toss of generality we may assume that the
automaton underlying S recognizes the rational subset R, i.e. that
there exists a subset F c Q such that R = {u e =¥ | qp-u € F1.

Denote by ¢ : Q = A* be partial function defined by:

) o4y - 84y alaga) = 3ag) legru)



DET

/N N

g% if qeF,

o(q)
¢ otherwise.

Let S = (Q,Z,A,qo) be the sequential transducer obtained

11

by restriction to Z, of the transition and output functions of S'.

For all u e =¥ we have:

Flu) = g(us) = (g=u)(9g-us$) = (ag+e) #(qg-u)
which proves that f 1is subsequential.
Corollary 5. Let $ ¢ 1* and f : £*§ > A*. Then f 1is a DGSM
mapping iff f dis a subsequential function.
Corollary 6. The family of DGSM mappings is pfoper]y between the
families of total sequential functions and subsequential functions.

We refer to [5] for a systematic study of subsequential

partial functions. We shall denote by SUBSEQ, SUBSEQR and BISUBSEQ
respectively, the families of subsequential, right subsequential and
bisubsequential partial functions.

The diagram in Fig. 1 shows the various strict inclusions

among the families considered in this section.

PDR
PDF \\\\\\\\\\
‘ RA

UPDF e \ Fig. 1

BIDET
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ITI. FACTORIZATION PROPERTIES

ITI.1T A Useful Factorization of Unambiguous Functions

A1l proofs on relations involving constructions of transducers
are intricate and therefore unreliable. It is desirable to use, as much
as possible, an alternative, more manageable definition. This is
Tuckily the case for rational relations which, according to what in
Eilenberg's terminology is the "First Factorization Theorem", can be
obtained as a composition of simpler relations: morphisms, inverse
morphisms and intersections with a rational language. A similar result
is true for pushdown relations, where "context—frée language" has to
be substituted to "rational language". We summarize in a single state-
ment these two well-known results (for the “"rational" part of the
Proposition see for instance [17] or [9, Thm. IX, 2.2] and for the
"pushdown" part see [12, p. 122] or [1, Thm. 3.4]). We recall that a
morphism f : ¥ - A* is alphabetic if the image of every letter of
I by f, 1is either a letter of A or the empty word: f(Z) c A u {e}.
It is strictly alphabetic if f(I) < A.

Proposition 1

Let f : ¥ > A* be a relation. Then it is rational (resp.
a pushdown relation) iff there exist a finite set ', a rational
(resp. context-free) language R c I'* and two alphabetic morphisms
h:I™>3* and g : I'™ +~ A* such that for all u e 2*, f(u) =
g(h’l(u) u R) holds.

When f : 2* - A* 1is a partial function - not any relation -
the preceding Proposition can be made more precise (see e.g. [9, Thm.

IX, 8.1]).
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Theorem 2

Let f : £* > A* bea partial function. Then it is rational
iff there exist a finite set T, a rational subset R c I'*, an
alphabetic morphism h : I - I* which maps bijectively R onto h(R)
and an alphabetic morphism g : I + A* such that f(u) = g(h'](u) n R)
holds for all u e I*.

As a consequence, all rational partial functions are unam-
biguous. This is not the case of all pushdown partial functions,
since the restriction of identity to an inherently ambiguous context-
free language is clearly not unambiguous. However, unambiguous push-
down partial functions can be characterized in a much similar way:

Proposition 3

Let f : Z*¥ > A* be a partial function. Then it is
unambiguous iff there exist a finite set =, a bideterministic context-
free language L < =¥, an alphabetic morphism g : g% > A, and an alphabetic
morphism h : 2% - £* which maps bijectively L onto h(L) such that
for all u e 2%, f(u) = g(h™'(u) n L) holds.
Proof
"only if"-part: Assume we have proved that f admits the factorization

(1) f = goI, oh™!

L
where g and h are as in the Proposition and where L 1is a deterministic
(not necessarily bideterministic) context-free language. By Chomsky-
Schiitzenberger's Theorem (see e.g. [3, Th. 3.10]), since L is a
deterministic, and therefore an unambiguous language, there exist a bi-
deterministic language D (actually the intersection of a rational
language with a Dyck language over n Tletters, for some integer n > Q)

and an alphabetic morphism k which maps bijectively D over k(D) = L.

The equality IL = koIDok'] holds. Substituting in (1) we have:
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f = gokeIpek o™ = (gok)oIpe(gok) .

The conditions of the Propositions are thus satisfied.

Assume now we have proved that f admits the factorizatioﬁ:
(2) f= goILoh'] where L 1is deterministic, h is as in the
Proposition but where there is no assumption on the morphism g. We
will show that f admits a factorization of the type (1).

First,the morphism g : =* -+ A* can be factorized as
9 = g,°9y> where 9 is an injective morphism of = into a new free
monoid T* and g, : I'™ > A* 1is an alphabetic morphism. Indeed if
2

we set:

IA

I ={(a,i) e ExN| 1<is<]g(a)l, or g(a) =¢ and i =0}

it suffices to define 9 and 95 by the following conditions: for all
aeZ, if g(a) = ¢ then g](a) = (a,0) and 9, = (a,0) = €, other-

wise, if g(a) = bys...sb (where n > 0 and bys...sb, € A) then

n
g](a) = (a,1) ... (a,n) and gz(a,i) = bi (1<izn).

]

Substituting g = g,eg; in (2) and observing that 91°IL =
-1 _ -1 _ -1
goILoh = gzog]oILoh = 920191(L)°g]°h .

Ig](L)°g1’ we obtain: f

Since g{] is a DGSM mapping, then according to [16, Theorem 12.31,
g](L) =r(gI])"'T(i.)i is a determinfﬁtic language. It suffices to verify
that the partia1 function Hog{] is the restfiction to its domain
D = (g42)* ¢ I* of an alphabetic morphism g' : I* » £* which is
injective on g](L) c D.

Let g' be the morphism defined, for all (a,i) ¢ I' by:
€ if i#1,

gl(a9i) =
h(a) otherwise.
Clearly, g' 1is alphabetic and for all a ¢ Z, we have:
g'og](a) = h(a). Therefore, for all u = g](a]...an) ¢ D, we obtain:
hog{1(u) = h(a1...an) = g'(u), which shows that hog{I js the restric-



15

tion of g' to D. Furthermore if u,v e g;(L) verify hog{](u) =
hog{](v) then 9{1(u) = g{](v), i.e. u =v which completes the
verification.

Therefore, given any unambiguous partial function f, it
suffices to prove that f admits a factorization of the type (2),
which we now turn to do.

Let T = (Q,Z,A,X,G,qO,ZO,F) be an unambiguous pushdown
transducer defining f. For each (g,a,x,q',x',u) ¢ Q x (Su{e}) x
X x Q x X* x A* such that (q',x',u) ¢ 8(g,a,x) we define a new symbol
[q,asx,q',x"',u] and we denote by W the finite set thus obtained.

Let A = (Q,W,X,é‘,qO,ZO,F) be the pushdown automaton defined for all
w=1[q,2,x,q',x'u] e W, pe Q and y e X by: (q'sx') e 8'(p,[g,a,x,q",x",ul,y)
iff p=q and y = x. Then the language L recognized by A is
deterministic, and the morphism h : W* = =¥ . which to each [q,a,%x,9"',x",u]
assigns its second component a e Iu{el is alphabetic and injective

on L since two distinct wy,w, ¢ L such that h(wl) = h(wz) would
correspond to two distinct computations of w ¢ Domf. Then it suffices

to define g : W* ~ A* as the morphism which to [g.,a,x,q',x"',u] ¢ W

assigns its last component u.

"if"-part: Since the relations goILoh'] and ILoh'] can be

defined by two PDT having the same underlying automaton, it suffices

to show that ILoh'] is an unambiguous relation.

Let A = (Q,E,X,d,qO,ZO,F) be a bideterministic pushdown
automaton accepting L. Define a PDT 1 = (Q,Z,E,X,S',qO,ZO,F) as
follows. For all (q,a,x,q',x') € Q x (Su{e}) x X x Q x X* we have:
(q',x',a) ¢ §'(qg,h(a),x) iff (q',x') e 8(q,a,x).

Clearly, ILohf] : ©¥ > 5% is the relation defined by r.

Finally, the pushdown automaton underlying Tt is unambiguous since to
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each w e I* corresponds a unique factorization h(a] e @) =W
(n>0 and a; < = for 1< 4<n) and for such a word ay ... a_
there is arunique computation in A. This completes the proof.

II1.2 A Factorization Using Length-Preserving Partial Functions

The following is equivalent, for a certain family of deter-
ministic partial functions, to Theorem IX, 8.4, of Eilenberg's book,
which states that every rational partial function is the composition
of a length-preserving rational partial function and a morphism. We
think it is quite unlikely that there exists a result of this type for
many reasonable families of pushdown partial funcfions. We recall that
a subset X ¢ £* is prefix-free if for all wu,v ¢ £* we have:
usuv ¢ X implies v = €.

Proposition 4

Let f: * » A* be a deterministic partial function whose
domain is prefix-free. Then there exist a finite set Q, a length
preserving deterministic partial function g : £* - Q* and a morphism
h : @ - A* such that: f = heg.

Notice that the assumptions of our Proposition cannot be

weakened. Indeed let I = A = {a,b} and consider the deterministic

*

partial function f : I -~ A" defined by:

ronom b a"p™ if m<n,
for all r>0,n2m>0, f(bab") = roam e
ba’b’a if m=n,,
otherwise f(u) = ¢ .
Assume f = heg where g : I*¥ - Q¥ 1is a length-preserving
deterministic partial function and h : Q* + A* is a morphism. Set
M= max{|h{x)] | x ¢ Q},g(bMaZb) =y and g(bMazbz) = uyv where by

hypothesis Ju| = M+¥3 and |v| = 1. We obtain:



1
(bMa%b2) = h(uv) = h(u)h(v) = £(6"a%) h(v)

M252y < pMa%2M and f(6Ma%) = ba% we have

f
Since f(b a
|h(v)] = M + 1, which yields a contradiction.

Proof of the Proposition 4

Let us note that it suffices to prove that f = hog where
h 1is a morphism and g 1is a deterministic partial function such that
|g(u)| = 2]u] whenever u < Dom f. Indeed, denote by I a copy of

2

*
Q" and by [w 2] the copy of w.w, € Qz. let y: T - Q* be the

172

monomorphism defined by vy([w,w,]) =w Then Y-1 is a DGSM
172

o
mapping and yoy'] is the identity over (92)* > Img. Therefore we
have the factorization f = hy o (y']g) where hy 1is a morphism and
y']g is, by Proposition IV, 3. of the next section, a iength-preserving
deterministic partial function.

Let T = (Q,Z,A,X,S,qo,zo) be a deterministic PDT defining
f. Without loss of generality, we may assume that the underlying push- .
down automaton recognizes Dom f by empty stack (cf. [15, Theorem 11.5.2.]).
Furthermore, we may suppose that t satisfies the following conditions:

1) all e-moves are erasing moves (cf. [15, Exercise 5.6.6])

2) forall q, peQ,aci, xecX, ¥e X* and u e A* we have:
8(g,a,x) = (p,y,u) implies |y| = 2 (cf. [15, Theorem 5.4.2])

3) forall ae Z+, geQ, uce X* and x ¢ X we have: (qo,a,Zo)F:—
(g,e,ux) implies q # 9 and x # Z0 (this can be done, if.
necessary, by creating a new initial state qo', and a new
start symbol ZO'). Further more, for all a e I, 6(q0,a,20)
is of the form (g,x,u) where x 1is a letter.

Let Q@ be the set consisting of a copy of Dom § and of a new
e]ement o. We sha]] denote by [q a,x] the copy of the element (q a,xl €

Dom 6 The morph1sm h 1 Q¥ > A of the factor1zat1on we seek, is
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defined by:
h{c) = ¢,
and for all q, peQ,acZuiel,xeX,yce X* and u € A*:
h([g,a,x]) = u iff &(q,a,x) = (p,y,u).
We now give an informal explanation of how the deterministic
partial function g: Z* > Q* assigns to each word u e Dom f g_z* a
word of length 2|u| containing all informations about f(u). A deter-
ministic transducer t' defining g will be obtained by modifying t.
Assume that, at a given moment of the computation of a word
u e Dom f by the PDT t, the current letter is a ¢ L. If this occurrence
preserves the height of the stack, then the output assigned toAthe move
in the PDT t' will be a word of length 2. If it increases the height of
the stack (by 1 accordihgrfgraéggépéébé é{ then the output in t' is a
word of length 1, i.e. a letter. In this last case, the new stack
symbol will eventually be removed either by an s-move to which an output
of length 1 will be assigned or by a non e-move i.e. a move involving
a letter b e I, to which an output of length 3 will be assigned. In
all cases the average length of an output assigned to one letter is 2
(0 +3)/20r1+1).
Formally t' = (Q,Z,A,X,G',qO,ZO) is a deterministic PDT
recognizing Dom g = Dom f by empty stack, and defined by:
i) for all q,p € Q, x ¢ X we have:
§'(q,e,x) = (p,e,[q,e,x]) iff 8(qg,e,x) = (p,e,u) for some u « A*
ii) for all p, q = GpeQaecl, xelk and y € X" we have:
§'(g,a,x) = (p,y,[q;a,x]) o2 ¥ ¢¢ §(q,a,x) = (p,y,u) for some

*
Ue A
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iii) forall geQ,aeZandy ¢ X* we have:
6'(q0,a,20) = (p,y,[qo,a,ZOJ) iff 6(q0,a,zo) = (p,y,u) for
* .

some u e A

It is left to the reader to verify that t' works as claimed. O

IV.  CLOSURE UNDER COMPOSITION

IV.1T General results

It is well known that rational relations are closed under
composition (seé e.g. [9, Theorem IX, 4.1]), while pushdown relations
are not (if L, M are two context-free languages of Z* then IL and

I Aare pushdown relations, but IL ° IM.- ILnM might not be)}. Yet we

M
have (see e.g. [12, p 115]):

Proposition 1

*

* * *
Let f: Z, -Z be a push down relation and g: A1 > AZ

1 2
be a rational relation. If Z] = A2 (resp. 22 = AI) then f o g
(resp. g o f) is a push down relation.
Obviously, the preceding Proposition holds when f and g are
partial functions. Using the factorization properties established in

the preceding section, we will see that it still holds in the following
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case:

Proposition 2

* *
Let f: 21 - 22 be an unambiguous partial function and

*
g: A1* - A2 a rational partial function. If 21 =4, (resp. 22 = A])

then f o g (resp. g o f) is an unambiguous partial function.

Proof

By Proposition III.3. and Theorem III.2. we have the factorizations
_ -1 _ -1
f = f2 ° IL ° f] and g = 9y ° IR ° 9

* *
where L c I is a bideterministic language, R c A is a rational

* %* %* *
Tanguage, fi: I > Zi i=1,2 and 9;° A - Aﬁ i=1,2 are

alphabetic morphisms such that 1’.l and g, are injective on L and R
respectively.

Case 1: 2z, = A

1 2

Consider the relation h = f1'1 ° gy AT By Lemma IX,
4.2. of [9], there exist a finite set [, a rational subset K E_F* and
two alphabetic morphisms hl: F* - A* and h2: r*-+ Z* such that
h = hz 0 IK ° h1'1. Furthermore for all (u,v) e #h, there exists exactly

one element w ¢ K such that h](w) =y and hz(w) = v,

We have:
f°9=(f2°IL°f]-1) ° (92° IR°91-])=f2° ILO (h2° IK°h]-1)
-1
[} IR o g.l
=f, oh, ol -1 -1

2 ° hy h2'1(L) o Iy o Ih1(R) °hy e

= o o o o -]
=fpehy oIy o (g ohy)

5
[
h1
o
=
L}

h](R) nKn h2°1(L) is, according to [16 , Theorems 12.2 and
12.3], a Bide%e;ﬁ{h%stic language.
'It hbwrsﬁffices to show that hT is injective on M. Consider

-1 o h, o I

L 2 K
° h] o Ip is a partial function, we have hz(z) = hZ(t) and therefore

z,t ¢ M such that h](z) = h](t). Since h2 f IM ° ﬁ]

=1
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z = t, which proves that h, 1is injective on M as claimed.

1
Case 2: 22 = A1
We have g o f =g, o Ipogyof,o I o f]-l. Since

* *
IR ° gy ° f2: r > A 1is a rational partial function, there exist a

*
finite set I, a rational language K c [ ,- an alphabetic morphism

h]: r* - Z* which is injective on K and an alphabetic morphism
hy: "> 4" such that: I g, o f,=h, o T oh ™. Thus we obtain:
gof=g,o (h2 o Iy o h1'1) N f]'1
= (9 7 1) o T o Ty <1y hte
(g o hp) o Iy o) (f = )7

Since K n h]'](L) is bideterministic, the proof is complete.
O
The families of (left) deterministicApartial functions and of
right sequential partial functions are incomparable. Therefore, if we
compose a deterministic partial function with a right sequential partial
function (or more generally with a rational partial function), the result

is not necessarily a deterministic partial function. However we have:

Proposition 3

* *
Let f: Z] - 22 be a deterministic partial function and
*

*
g: & 4, a DGSM mapping. If I, =4, (resp. I, = Al)’ then f o g

(resp. g o f) is a deterministic partial function.

Proof

Let T = (Q,Z],ZZ,X,G,qO,ZO,F) be a deterministic pushdown

transducer defining f an S = (P,A],Az,l,e,po,ﬂ) a DGSM (sequential

transducer with final states) defining g. We remind our convention

%*
from section II.3. that for all g e¢ P and u e A] we write q.u

and g * u instead of A(q,u) and 8(q,u), respectively.
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Case 1: I, = A

2 1

It suffices to notice that the partial function g o f: Z]* - Az*
is defined by the deterministic pushdown <t' = (QXP,Z1,A2,X,6',(qO,pO),
ZO,FXH) where &' is defined, for all q,q9' ¢ Q, pe P, a € DAY {e},
ue AZ*’ X e X and x' ¢ X* by:

((a',p.u),x',p*u) ¢ &' ((q,p),a,x)

iff (q',x"',u) € 8(q,a,x)
Case 2: Z; = 4,

We shall first consider three particular subcases.
subcase i) g is length preserving (which is equivalent to saying that
for all pePand a4y, we have p » a E.AQ)-

Then f o g 1is defined by the deterministic pushdown transducer
T = (QXP,A],ZZ,X,S',(qo,po),ZO,FxH) where for all q,q' ¢ Q, p ¢ P,

. * *
aelh, uiel, xeX, x' €eX and u € 22 we have:

1
((q',p.a),x",u) e §'({q,p),a,x) iff (q',x',u) e 6(q,p*a,x)
subcase ii) For all a ¢ A1, we have g(a) = (a,1)...(a,n) for some
integer n > 0 (in particular |g(a)| = n).
Consider the set R = {(q,a,1)  QxA;xNI1 < i < |g(a)l}
and define the pushdown transducer
= (R,A1,22,X,6 ,(qo,ao,lg(ao)l),ZO,F) - where a; is a fixed
arbitrary letter - in the following way:
*
- for all q,q' € Q,a,b ¢ Aq,x € X,Xx' € X* and u ¢ T, we have:
(‘(quas1)s)§l3u) _5 6'((qab9{g(b),)sasx) iff (qu_9x>l9u) € 6(qs(as])sx)
*

- for all q,q' € Q, a,b e 445X € X,x' e X*,u €I, and 1 <1 < lg(a)]
we have:

((q',a,i+1),x",u) € 8'((g,a,1),e,x) 1ff (q',x',u) ¢ §(q,(a,i),x)

- forall 4,0' € Qa e Apx e Xx' e X,ueZ, and T <1 < |g(a)]

we have:
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((g',a,i),x',u) e 6'((g,a,1),e,x) iff (q',x',u) € 8§(q,e,x),

It suffices to note that <t' is deterministic and defines f - g.
subcase iii) g 1is an alphabetic morphism. Let Q' < Q be the subset of
all states defining e-moves. Define the pushdown transducer t' =
(Q,4,52,,X,8",04,Z,5F) in the following way:

* *
- forall geQ',9" e Q,x e X,x' ¢ X and u ¢ L, we have:
(q',x'su) e 8'(g,e,x) iff (q',x',5u) e 8(qg,e,X)
- for all q e Q',q' € Q,a ¢ A1,x e XoX' € X* and u ¢ AZ* we have:
if g(a) = €, then (q',x',u) ¢ 6'(q,a,x) iff (q',x',u) ¢ &(q,9(a),x)
if g(a) = € then (q,x,e) € §'(q,a,x)

It is easy to check that t' is deterministic and that it defines
fog.

To complete the proof, it suffices to note that every sequential
partial function g can be factorized as: g = 95 ° 9y where 94 is a
length-preserving sequential partial function and 9, is a morphism.

But g, can be factorized as g, = g% o g, where g, is as in subcase ii)
2 2 2 2 2

and gg is alphabetic. O
* * *
Let Rc X be a rational subset and f: Z -4 an un-
* *
ambiguous partial function. Since IR: Z] + % is a rational partial

function, by Proposition 2, the restriction f o IR of f to the subset R
is an unambiguous partial function. We can deduce from the next Propositibn,
a similar result for deterministic partial functions.

* *
We recall that a subset R< I x A is recognizable (cf.[9],

* *
p.68]) if there exist a morphism ¢ of T x A into a finite monoid M
and a subset N < M such that R = w'](N).

Proposition 4

For each unambiguous (resp. deterministic) partial function

* * * *
f: £ -+ A and each recognizable subset R < I Xx A , the partial function



24

* *
g: © - A whose graph is #g = #f n R, is an unambiguous (resp.

deterministic) partial function.
Proof .

Let T = (Q,Z,A,X,a,qo,ZO,F) be an unambiguous (resp.
deterministic) PDT defining f and let R = ¢'1(N) be as in the above
definition. Then it suffices to observe that g 1is defined by the
unambiguous (resp. deterministic) PDT T' = (QxM,Z,A,X,S',qox{1},Zo,FxN)
where we have denoted by 1 the unit of the monoid M and where §' is
defined by:

for all g,q9' ¢ Q,m e Mya ¢ Z v {e}, x € X,y ¢ X* and u ¢ A*
we have:
((q'.m.o(a,u))sy,u) € 8§'((q,m),a,x) iff (q',y,u) e 8(qg,a,x) 0

As a consequence we have:

Corollary 5

For each unambiguous~(resp. deterministic) partial function
fr 1z > A* and each rational subset R c Z*, the restriction of f to
R 1is an unambiguous (resp. deterministic) partial function.

Proof

Indeed we have #(f o IR) = #f n (Rx A*) O
Corollary 6

For each unambiguous (resp. deterministic) partial function
f: Z* - A* and each rational subset R E_A*, f'](R) is an unambiguous
(resp. deterministic) context-free language.
proof _

Indeed, f'1(R) is the domain of the partial function
g: Z* + & whose graph is: #g = #f n (Z* x R) O

Finally, we recall that sequential and subsequential partial

functions are closed under composition (see e.g. [3], Proposition IV,2.5]).
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IV.2 A hierarchy of pushdown partial functions

Given two families of partial functions F] and F2’ we shall

use the customary notation F2 ° F] to indicate the family of all partial

functions of the form f2 ° f] with f] € F1 and fz € Fz.

Proposition 2 of the preceding paragraph shows that:

UPDF o RATF = RATF o UPDF = UPDF.

This implies in particular, that

DET, DET o RATF, RATF o DET and RAT o DET o RAT are subfamilies of

UPDF.

Proposition 7

The following strict inclusions hold:

PDF
(1)
UPDF
(2)
RAToDEToRAT
(3) (4)
DETSRAT RATSDET DET.RATR
(;;\\\\\\\\ 6)
DET
(

BIDET

We will see that all inclusions among these families are strict.

RATDETR.RAT

RAT-DETR

///,,///”

TR
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Proof

For obvious reasons of symmetry it suffices to consider the
left part of the diagram.

Strict inclusions (1) and (7) can be established arguing on
the domain of the different partial functions. The same holds for strict
inclusion (2). Indeed, by Theorem II.1. and Proposition 3 of the pre-
ceding paragraph we have RATF o DET o RATF = SEQ® o DET » SEQX which
shows that the domain of a partial function f ¢ RATF o DET o RATF if
the inverse image of a (left) deterministic Tanguage by a right sequential
partial function. But we do not get in this way all unambiguous
languages (cf. e.g. [21, p.40]). |

Strict inclusions (5) and (6) are consequences of the fact
that RATF and DET are incomparable.

Strict inclusions (3) and (4) will follow from the fact that
RATF o DET and DET o RATF are incomparable which we will turn to prove
now.

In order to show that DET - RATF,i RATF - DET, let I = {a,b,c,d}

. * K 2
and set L = {anbncln > 0} v {anbzndl n>0} Then I, : Z -+ I belongs

L
to DET o RATF as is easily seen, but does not belong to RATF o DET,
since its domain is not a deterministic context free language.

We are now left with proving RATF o DET}# DET o RATF. This will

be done in two steps.

Lemma 8
Let = = {a,b} and A = {c,d}. The partial function f: Z* > A*
defined by:
c" ifnzm,
for all m,n > 0, f(a"ba™) =

d otherwise,
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and f(u) = ¢ if u ¢ a*ba*b,
is not deterministic.
Proof

Assume f 1is defined by a deterministic pushdown transducer
T = (Q,Z,A,S,qd,ZO,F). We shall assign to T a deterministic pushdown
automaton A recognizing a language L c (Z v A)* consisting of words
belonging to the shuffle of a word u ¢ Z* with its image f(u) € A*.

Formally, we consider the pushdown automaton A = (QuQ',ZuA,
X,6',q0,ZO,F) where the set Q' of new states disjoint from Q and §'

are defined by replacing each relation (q',y,u) ¢ S8(qg,a,x) by a set of

relations according to the following rules:

i) if u = €, then the collection is reduced to:

(9',y) € 8'(q,a,x)

ii) if u Up-..u (ui e A 1 <1 <p) then the collection is:

P
(Q'-l sx) e §' (q ,a',X)

IA

(qi75%) € 8'(a5,u:5x) T = i<p
(q'.y) € &' (aq>u,x)

where qi,...,qé are new states.

If we denote by L the (deterministic) context-free language
recognized by A, then L n'{a,b,c}* 5_{a,b}*c* since the occurrence c¢
cannot be output before A knows for sure that n = m, i.e. before it
reads the second occurrence of b. More precisely L n {a,b,c}* =
{anbambcnl n = m} which contradicts the fact that L is context-free. O
Lemma 9

Let £ = {a,b}, A = {c,d} and consider the partial function
f: I > A& defined by:

fu) = ¢ if u ¢ ab
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and f(a"p™) =
d otherwise
Then f ¢ (RATF o DET) \ (DET o RATF).
proof e L
i) f ¢ RATF o DET -

Let g: Z*+»A* be the dgterministic partial function defined
by:

glu) =¢ if ugab

cn ifnzm->0,
and g(a™™ =
¢"d™ " otherwise.

Consider now the right sequential partial function h: A* - A*
satisfying, for all u ¢ A*: h(uc) = uc and h(ud) = d. Then it suffices
to note that: f =h o g.

ii) f ¢ DET o RATF

By Theorem II.1 and Proposition 3 of this section, it suffices
to verify that f can not be factorized as f = h o g where g: Z* +'r*
is a right sequential partial function and h: F*+ A* a deterministic
partial function.

Assume this is the case and let ¢ be the canonical morphism
of Z* onto the transition monoid of a sequential transducer defining
g (cf. e.g. [10, p 157]).

Choose an integer n > 0 satisfying the conditions:

(1) w(an) = w(azn) and ¢(bn) = w(bzn). Then there existquur'

words U,V,W,Z € r* such that for all r,s > 0 we have:

g(an(r+]) bn(s+1)) = u'ww’z. This implies the following:
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c"(r+]) if r=s,

h(urvwsz) =
d otherwise.

* *
Consider the sequential partial functions h1: r - and

* *
hZ: A =+ A defined by:
urvwsz if t= arbasb,r,s >0
h(t) =
) otherwise;
cr if t= cn(r+1),
and hz(t) =

t otherwise.
Then by Proposition 3 of the section, the partial function:
h2 o h o hI: Z* > A* is deterministic. But this contradicts the pre-
ceding lemma since this partial function is precisely the one defined

in this lemma. ' |
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V. DECISION PROBLEMS
Let F1 and F2 be two subfamilies of pushdown relations and
consider f] € F] and f2 € F2 . We are concerned in this section with

the two following decision problems:

problem 1 : f1 € F2 ?
problem 2 : f] = fz ?

Problem 1 is known to be undecidable in case F] = F2 = RAT
(see e.g. [3, Theorem III, 8.4.]. Several authors have independently
proved that Problem 1 is decidable when F] = RAT and F, = RATF (cf.

[4] and [20]).

2

Proposition 1

Given an arbitrary rétiona] relation f : I* > A* it is
decidable whether it is a partial function i.e. whether f(u) contains
at most one element for all u e I* .

In particular this proves that Problem 2, under the same
assumption, is decidable. Indeed, f1 = f2 iff the two rational languages
Dom f1 and Dom f2 are equal and if the union of f] and fz is again
a partial function. Therefore we have (cf. the same references):

Proposition 2

Given two arbitrary rational partial functions fi P I¥ > A*

i=1,2, it is decidable whether f. =f, , i.e. whether f1(u) = fz(u)

1 2

holds for all u e I* .

Assume F, = RAT and F, is any of the families SEQ, SEQ®,
BISEQ, SUBSEQ, SUBSEQR, BISUBSEQ . For each of these cases Problem 1 can
be decided (cf. [6]):
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Proposition 3

Given an arbitrary rational relation f : £* - A* each of the
following problems is decidable:

1) f e SEQ?

2) feSEQN?

3) f e BISEQ ?

4) f e SUBSEQ ?

5) f ¢ SUBSEQY ?

6) f e BISUBSEQ ?

A stronger result than Proposition 2 has been shown in [7,
Theorem 7], namely that Problem 2 is decidable for F] = RATF and
F2 = UPDT . We will further strengthen this result in two ways.

Propoéition 4

Given an arbitrary rational relation f] : Z*¥ > A* and an
unambiguous pushdown function fz : Z* > A* , it is decidable whether
f] = f2 .

Proof
By Proposition 1 and Theorem 7 in [7].

Proposition 5

Let f] : I* > A* be a pushdown relation and f2 P I* > A* a
rational partial function such that Dom fz < Dom f1 . Then it is
decidable whether f1 and f2 are equal.

Proof
Observe that under the assumptions of the Propesition,

Dom f2 = Dom f] iff the context-free language Dom fl\Dom fz is empty.
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This is known to be decidable. We shall from now on assume that

Dom f Dom f, .

1 2

Let A1 and Az be two disjoint copies of A such that
A]rwz = A2112 = ¢ . The idea of the proof is to define a pushdown
relation f : I* » (A] U A2)* with the following property. For each
uel*, every word in f(u) belongs to the shuffle of the copy (in Af)
of some word of fl(u) with the copy (in A§) of some word of fz(u) .
In particular, if Py and p, are the canonical projections of
(A] u Az)* over A* , we will have for all u ¢ Z* : f](u) = p]af(u) and
fz(u) = Py f(u) . Therefore the initial decision prdb]em will be reduced
to testing whether the two homomorphisms P and P, agree over the
context-free language Im f = f(I*) .

Denote by j1 : A* » Af and jz I Ag the canonical

isomorphisms. By Proposition III.1. the pushdown relation
j]of1 L Af and the rational partial function jzofz DI A§

admit the factorizations:

1

o - o
Jyefy = gyl ehy” and Jyof, = gyelpeh,

where L c E¥ is a context-free and R ¢ E5 a rational language, and
. Tk * « Tk * . ok * . T% *
where h1 P EY > o* g9y * E7 > A] , h2 P E5 > £* and 9, * E5 > A2
are alphabetic morphisms, We will assume, without loss of generality
that E], 52’ Z, A] and A, are pairwise disjoint.
Let gi : ET + (2 y A])* be the morphism defined for all

X e By by : gi(x) = h](x)gl(x) » and set : f; = gioILoh;] .

—

Consider next the rational subset R' ¢ (:2 U Al)* which 1is
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the shuffle of R 5'55 with A¥ (cf. e.g. [9, Proposition II, 3.4.]).
Define the alphabetic morphisms hé : (EZ U A])* > (Z u A])* and

g5 : (E2 u A])* - (A2 u A1)* by setting:

X if x e A] X if X ¢ A1
hs(x) = { i _ gp(x) = { _

hz(x) if xek gz(x) if xeZ, .
Then fé = géoIR.ohé] : (T u A])* > (Az U A1)* is a rational

relation and we leave it to the reader to verify that the pushdown
relation f = féof{ : I* > (A1 U AZ)* satisfies the condition: f] = p]gf

and f, = pzof as claimed.

2
Assume f] = f2 and consider x e f(X*) . Then we have

x ¢ f(u) for some u e Z* . This yields:
p;(x) € pyf(u) = f(u) and  py(x) e ppflu) = f,(u) .

Since fl(u) and fz(u) are two equal singletons, we obtain
p] (x) = pz(x) .
Conversely, assume that p](x) = pz(x) holds for all

x ¢ f(£*) . Then for all u ¢ I* we obtain:
f1(u) = pyflu) = pyflu) = fo(u) .

In other words, f] = f2 iff the two morphisms are equivalent
over the subset f(£*) . Since this subset is context-free (cf. e.g.

[12, p. 116]), this last problem is decidable by [8] or [2]. O
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