TRANSDUCTIONS AND THE PARALLEL
GENERATION OF LANGUAGE*

K. Culik II
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

Tom Head
Department of Mathematical Sciences
University of Alaska
Fairbanks, Alaska, U.S.A.

Research Report CS-81-03
January 1981

* This research was supported by the National Sciences and Engineering
Council of Canada under grant No. A-7403 and by the National Science
Foundation of the United States of America under grant MCS-8003348.

Parallel Generation of Language

K. Culik II
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
N2L 3G1

Abstract

Each regular expression R over a finite vocabulary P of
appropriately chosen ordered pairs provides a type of parallel rewriting
scheme here called an RL scheme. The fraditiona] IL schemes (resp.,
TIL schemes) are identified with certain RL schemes for which R is a
strictly Tocally testable language (resp., a finite union of strictly
locally testable languages). Using the virtual identity of RL schemes
with a-transducers, a collection of decision procedures are imported into
L theory from the theory of a-transducers. A collection of undecidability
results for RL theory are proved by simulating Post tag systems with
RL systems.

Concepts of determinism are defined for RL schemes and
systems. Determinism is shown to be decidable for RL schemes but not
for RL systems. Equivalence is shown to be decidable for deterministic

RL schemes.

1. Introduction

The rewriting schemes established in various theories of the
parallel generation of languages define direct derivation relations which
are finite (ratipna]) transductions, i.e. which are binary relations
determined by a-transducers. This observation was used in [8] and [9] to
apply algorithms developed for a-transducers to the investigation of
Lindenmayer systems with interactions (IL systems). These results
suggested the establishment of a type of L system that, in its relation
generating power, would coincide with the class of a-transducers (making
no move on null input). In the present article we introduce a level of
L theory, RL theory, with precisely this relation defining power.

An RL scheme is based on a finite alphabet A and a finite
set P of context free productions. The productions are elements of
A x A* . We take P as a vocabulary and choose a regular language R
over P . In examples we generally present R by means of a regular
expression over P . Such a regular expression is in essence a finite
transduction. An RL system is then an RL scheme augmented with an
axiom string and an RL Tanguage is a language that is generated by an
RL system. In the succeeding sections of this article we show that the
RL formalism has an integrative capacity that allows Lindenmayer theory
to be related conveniently to various other subdisciplines of theoretical
computer science.

The formal definitions and elementary concepts of RL theory
are given in Section 2. In Section 3 we show how the classical L schemes,
from OL through TIL , are assimilated into RL theory. We identify

these schemes with certain RL schemes having regular languages that are

locally testable. We explain in Section 4 the connection between RL
schemes and the regular global context L schemes introduced and studied
in [4]. The main results of this article are contained in Sections 5 and
6 : In Section 5 we introduce into L theory a collection of decision
procedures from the theory of a-transducers. In Section 6 we simulate
Post tag systems with RL systems and produce a 1ist of undecidability
results for RL systems. We conclude in Section 7 with remarks on
further topics for study.

For basic references on L systems, see [10] and [17]. As a
background reference on a-transducers we suggest [6], but all necessary
definitions are included in Section 5. For an explanation of the

biological motivation of L theory see in particular Chapter 0 and 1 of

[10].

2. The RL Formalism

Definition 1. An RL scheme S = (A, P, R) consists of a finite
non-empty set called the alphabet of the scheme, a finite subset P of
A x A* called the set of productions, and a regular subset R over the
vocabulary P of ordered pairs.

An RL scheme S = (A, P, R) is a finitary device for defining
relations between strings and relations between the occurrences of symbols
in strings: Suppose that u = Up «.. U and v = Vi +-. Vv, are strings
with the U in A and the v; in A* . Suppose further that

(u], v1) e (un, Vn) is a string in R . Under these circumstances we

say that u_directly derives v via S and write u =>g Vv, or sometimes

merely u =>v . We also say that the string (u1, v1) - (un, Vn)

provides mother-daughter relations between the occurrences of symbols in

u and symbols in v : The i'th symbol occurrence in u is Us and it
is the mother of those symbol occurrences in v provided by Vi - Any
symbol occurrence in v occurs within a unique Vj and is the daughter
of uj . In the present study almost as much significance is attached to
the mother-daughter relations provided by RL schemes as to the direct
derivation relations themselves. The mother-daughter relations provide the
theory with the tranditional tree structures which we consider to be
fundamental. With respect to the usual biological metaphor, to ignore these
mother-daughter relations would be to ignore cell lineages.

An RL scheme (A, P, R) 1is reduced if each symbol in A
occurs in the left or right side of some production in P and each

production in P occurs in some string in R . From a regular expression

for R those productions that occur in strings in R can be read off.

The symbols of A that occur in productions occurring in R can likewise
be read off. Thus it can be decided if a scheme is reduced and if it is
not reduced it can be reduced by deleting productions from P and symbols
from A without changing R. Apparently R itself determines a unique
reduced scheme. In most contexts only reduced schemes are of significance
and consequently we often identify the scheme (A, P, R) with the
language R .

Defintion 2. An RL system G = (A, P, R, w) consists of an

RL scheme (A, P, R) and a string w in A" called the axiom of the

system. The language generated by G is L(G) = {v in A* | w =>* v} ,

An RL Tlanguage is a language that is generated by an RL system.

Example 1. R] = (a, aa)(a, a)*(b, bb)(b, b)*(c, cc)(c, c)* . This
RL scheme defines the direct derivation relation

{aibjck => aiﬂbjﬂck+1 | 1,d,k =1} . 1In aibjck => aiﬂb‘jﬂck+1 the
first occurrence of a (resp. b , resp. c) on the left is the mother
of the first two occurrehces of a (resp. b, resp. c) on the right.

The remaining symbol occurrences on the left have unique daughters. The

RL system formed by adjoining the axiom abc to R] generates the

language {a™d"c" | n =1} .

Example 2. R, = (a, al) u (a, a%) U [(a, a2)2]+ U (a, a3)[(a, a3)2]+_

This scheme defines the relation

2

{a =>a", a=> a3t U (2% = ¥ | i=z1}U (a21F1 o5 46143 | =21} .

The RL system formed by adjoining the axiom a to R2 generates the

oh 3N
language {a“ | n=0}U{a” | n=0}.

The domain of an RL scheme (A, P, R) dis {u in A* | there
isa v in A* such that u => v} . The domain is a regular subset of
A* that can be computed from a regular expression for R by projection
into the first coordinate. Thus for R = (a, az)[(a, b)2 U (b, a)*] we

have domain a[a2 Ub*] . A complete RL scheme (A, P, R) 1is one for

which the domain is A* . Note that completeness of RL schemes is

decidable. The traditional definitions of L schemes from OL to TIL
have required completeness. If an RL scheme (A, P, R) is not complete
it is possible to complete it: Compute the domain D . Compute a regular
expression E for the complement of D . For each occurrence of each
symbol a in E replace a by (a, a) . This yields a fegu]ar expression
R' over the alphabet P' = {(a, a) | a occurs in E} . The scheme

(A, PUP', RUR' s complete. It defines the same relation on D as

(A, P, R) and defines the identity relation on the compietement of D .

A complete RL system G = (A, P, R, w) 1is one for which for

each u in L(G) there is at least one v in A* (equivalently in L(G))

for which u => v . Completeness of RL systems is undecidable as is

shown in Section 6. (See also Lemma 2 of [4].) In traditional L theory
the possible lack of completeness of L systems is avoided by :'sing only
complete schemes. This could be done for RL systems or the weaker pair

of conditions: axiom included in domain and range contained in domain,

could be required. Note that this pair of conditions is also algorithmically
testable. We prefer to make no completeness requirements at all. Even
though completeness of systems is undecidable it is often clear that

specific systems are complete. The systems given in Examples 1 and 2 are

apparently complete.

The range of an RL scheme (A, P, R) is {v in A* | there
is @ u in A* such that u => v} . The range is a regular subset of
A* that can be computed from a regular expression for R by projection
into the second coordinate. In the question period recorded in [12] a
question was raised which might be formalized: For an L scheme what
are the strings, if any, that do not occur as derived strings? Such

strings were called Garden of Eden strings in analogy with the use of this

phrase in cellular automata. The set of all Garden of Eden strings for

an__RL scheme is the complement of the range of the scheme and is

therefore a computable regular set. By the results of Section 3 the same

is true for the classical L schemes from OL through TIL . Thus the
various decision procedures available for regular sets allow most
questions concerning Garden of Eden strings to be answered.

Recently Rozenberg and others [16, 18] have been developing
generating schemes that include as special cases both parallel and
sequential rewriting. One goal of such efforts is to provide a unified
theory of generation processes that includes these two extremes. The
utility of RL schemes for this purpose has not yet been investigated,
but we note here that RL schemes allow simulation of both these extremes:

Let W = (A, P) consist of an alphabet A and a finite subset
P of A xA* . If we wish to use W as a parallel rewriting system this
can be accomplished by incorporating W into the RL scheme (A, P, P*),
If we wish to use W as a sequential rewriting system this can be
simulated by the RL scheme (A, PUI, I*PI*) where I is the identity

relation {(a, a) | a in A} .

10

3. Locally Testable RL Schemes

Many finitary formalisms that determine binary relations in
free monoids also provide mother-daughter relations between the symbol
occurrences in each domain string and the symbol occurrences in each
corresponding range string. This is true of the various types of L
schemes defined in the literature and it is true also for those
a-transducers (defined in Section 5) that have the property that the
length of the input string associated with each edge is 1. It is with
such examples in mind that we make the following informal definition.

Definition 3. Two finitary formalisms that determine binary

relations and accompanying mother-daughter relations in a free monoid are
congruent if they define both the same binary relation and the same
mother-daughter relations.

In the usual biological metaphor congruent formalisms describe
identical behavior for strings of cells.

In this section it is indicated how the various classical L
schemes from OL to TIL may be identified via congruence with types of
RL schemes. For the definitions of the various schemes and the relations
they define see [10] or [17].

An OL scheme (A, P) consists of a finite alphabet A and a

finite subset P of A x A* . Each such OL scheme (A, P) is

apparently congruent to the RL scheme (A, P, P*) .

In discussing IL schemes we will follow the definition given
in Herman and Rozenberg [10]. Each production of an (m, n)L scheme

takes into account m symbols to the left and n symbols to the right of

11

each symbol being rewritten. A special symbol g not in the alphabet
of the scheme is used to express the background of the string. Each
string over the alphabet is considered to have m extra g's adjoined
at the left end and n at the right end. Our notation for (m, n)L
strings will be (A, P, g) where A is the finite alphabet; P 1is the
set of productions, which are now sensitive to context; and g 1is the
special background symbol.

Recall that a language L over an alphabet A is strictly
k-testable, for a positive integer k , if there are three subsets Lk s
wk, Rk of Ak such that a string ap.--2, of length n =k s in L
precisely if:

(1) ap-..3 dsin L, 3
(2) for 1 =<1 =n-k-1, CPIRRRL P is in W, ; and

(3) 417003, is'in Rk .

The intersection of L with the finite set of strings of length less than
k may be specified arbitrarily.

A language is strictly locally testable if it is strictly

k-testable for some positive integer k . These languages are among the
simplest of the regular languages. As a background reference on (strict)
local testability see McNaughton and Papert [14]. For examples of more
recent work see de Luca and Restivo [5] and the references listed there.

We will say that an RL scheme (A, P, R) 1is strictly
k-testable (resp., strictly locally testable) if R is strictly
k-testable (resp., strictly locally testable). The scheme in Example 1 in

Section 2 is strictly 2-testable but the scheme of Example 2 in that

12

section is not (strictiy) locally testable. The following notation is
convenient in working with an RL scheme (A, P, R) : For each a in
A let Pa denote the set of all those pairs in P that have a as
first coordinate.

Proposition 1. Each (m, n)L scheme (A, P', g) 1is congruent

to a strictly m+n+l-testable RL scheme (A, P, R) .

Proof (construction only). Let P = {(a, w) | there are c(i)

(1 =i=m) in AU {g} such that (c(1),...,c(m),a,c(m1),...,c(mn))
~w is in P'} .

W=W

men+l @ and

Begin with the settings L = btnt1 = ¢ o

X=R Consider in turn each production

mn+] T @
(c(1),...5¢c(m),a,c(m1),...,c(m*n)) - w in P' for which either
c(1) #g or c(mn) # g . For each such production enlarge either L ,
W, or X as follows:

Case 1. Suppose that for an i satisfying 1 <i<m,
c(1) = ... =c(i) =g and c(j)#g for j>i . Adjoin to L the
set: Peiian) e Po(m (@ WPCan) - Pe(mem)P
Case 2. Suppose c(i) #g for 1 <1 <mtn . Adjoin

to W the set: Pc(])"‘Pc(m)(a’ W)Pc(m+1)"'Pc(m+n) .

Case 3. ~Suppose that for an i satisfying 1 <1 =n

c(mti) = ... =c(mn) =g and c(j) # g for j < m+i. Adjoin to X the

. on-i
set: P Pc(l)"'Pc(m)(a’ W)Pc(m+])"'Pc(m+i-1) .
Let E = LP* n [~PT(P™™\W)ptT 0 P*X . For each of the finite

number of strings CERRRLY in A" having Tength i < m+n+1 T1ist the

finite number of strings (a], w])...(ai, w.) for which a;...a; directly

1 1

13

derives Wy- o W with respect to the (m, n)L scheme (A, P', g) and
where, moreover, the mother of each symbhol occurrence in wj is aj for
1=j=1i. Let F be the finite set of all such strings of pairs that
are associated with any of the strings in AT of length less than m+n+1.
Let R=EUF . Then (A, P, R) is an RL scheme congruent to the
original (m, n)L scheme. #

The construction given in Prop. 1 is illustrated in the follow-
ing example.
Example 3. For the (1, 1)L scheme ({a}, {(g, a, g) ~ a2,
(g, a, a) > a2, (a, a, a) - a, (a, a, g) ~ a2}, g) we have

P= (a, a2), (a, a) , ’Lé = (a, a2)PP . w3 = P(a, a)P , and
2yp2px y { [PT(P3\P(a, a2)P)PTT} U

R3 = PP(a, a2) so that E = (a, a

P*Pz(a, a2) . The two strings a and a2 of length less than 3 yield:

2 2) U (a, a%)? .

(a, a and (a, a2)2, respectively. Thus F = (a, a

The congruent RL scheme given by the construction procedure of Prop. 1
%)

is therefore ({a}, {(a, a“), (a, a)}, E U F) . Notice that the strictly

3-testable E U F is also strictly 1-testable via: L, = (a, a2) ,
w1 = (a, a) , R1 = (a, az) . #
A TOL scheme (A, Taseens Tk) consists of a finite alphabet

A and k finite sets (tables) of productions Ti cAxA* , 1 =i=<k.

1A

Each TOL scheme (A, T]""’Tk) is apparently congruent to the RL

scheme (A, T]U...UT T*¥U...UT¥) . Each of the languages T? , for

k> 1 k
1 =14 =k, is strictly 1-testable via L] = W1 = R] = Ti . A similar

result holds for TIL schemes:

Proposition 2. Each TIL scheme (A, T],...,Tk, g) , where

T],...,Tk are k tables of productions, is congruent to an RL scheme

14

(A, P, R) where R in the union of k strictly locally testable
language.

Proof (construction only). With a TIL scheme (A, T1,...,Tk, g)
there are k associated IL schemes (A, Ti’ g), 1=i=<k. For
each of these IL schemes carry out the construction of Prop. 1 to
produce a congruent RL scheme (A, Pi’ Ri) . Then

(A, PU...UP, R1U...URk) is an RL scheme that is congruent to the
original TIL scheme. #

A regular language over an alphabet A s locally testable if

it is a member of the Boolean closure of the family of strictly locally
testable languages over A [14, ex. 7, p. 23]. We say that an RL scheme
(A, P, R) 1is locally testable if R is a locally testable language over

the alphabet P . We have shown that each OL, TOL, IL, and TIL scheme

is congruent to a locally testable RL scheme. Not all locally testable

RL schemes, nor even all strictly locally testable RL schemes are
congruent to TIL schemes. The following example gives a strictly
2-testable RL scheme which is not congruent to any TIL scheme.

Example 4. Consider the RL scheme

({a, b}, {(b, b), (a, a2), (c, ¢), (a, a3)}, R) where R 1is the strictly
2-testable Tanguage defined by setting L, = {(b, b)(a, a2)} ,

iy = (2, a9)%, (2, a9)(c, ¢} (e, ©)(a, @), (2, @92}, Ry = {(a, 292}
and including no string of length one in R . When baca is adjoined as

an axiom to this scheme the language generated is {baznca3n | n=0}

which is not a TIL Tlanguage.

15

4. RL_Schemes and Regular Global Context L Schemes

In [4] Culik and Opatrny introduced a class of generating
systems that generate precisely the same class of languages as the RL

systems. These systems are the regular global context L systems which

we will abbreviate RGCL systems:

Definition 4. An RGCL scheme S = (A, B, P, C) consists of

(1) a finite non-empty set A called the alphabet of S , |

(2) a finite non-empty set B called the set of labels,

(3) a finite subset ’P of p(B) x A x A* , where p(B) is the set of
non-empty subsets of B ,band

(4) C is a regular lanquage over B called the control language.

The RGCL scheme S = (A, B, P, C) defines a relation
u =>S v in A* as follows: u =gV if u-= ay...ap with the a, in
A; v-= V]"'Vn with the v in A* ; and there are
(T], a;, v])...(Tn, a, vn) in P with T]...Tn nc ‘not empty.

An RGCL system G = (A, B, P, C, w) consists of an RGCL

scheme S = (A, B, P, C) and a string w in A+ . The language generated

by G is L(G) = {v in A* | w =>g v} . A language L over A is an
RGCL language if L = L(G) for some RGCL system G .

The RL schemes may be identified with those
RGCL schemes S = (A, B, P, C) for which the T in each _(T, a, u) in
P is a singleton and for which distinct trib]es in P have distinct
first coordinates:

Proposition 3. Each RL scheme (A, P, R) 1is congruent to an

RGCL scheme (A, P, P', R) .
Proof (construction only). The set P itself suffices as the set

of labels. To each (a, v) in P we attach the singleton set {(a, v)}

16

as label to produce ({(a, v)}, a, v) . This allows R to serve as the
control language of the scheme (A, P, P', R). #

Although RL schemes are essentially special cases of RGCL
schemes, they define the same class of relations and the same class of
languages as the RGCL schemes:

Proposition 4. Each RGCL scheme (A, B, P, C) is congruent to

an RL scheme (A, P', R) .
Proof (construction only). Let P' = {(a, v) in A x A* | there is
a subset T of B for which (T, a, v) 49s in P}. For each b in B
let P'(b) = {(a, v) in P' | there is a subset T of B for which b
is in T and (T, a, v) 1is in P}. Let C be given as a regular
expression in the symbols of B . Replace each occurrence of each symbol
b in C by the finite set P'(b) . This substitution process yields a
regular expression over the vocabulary P' . Let R be the language
determined by this latter regular expression. #

Several results in the present article are closely related to
results in [4]. This is especially true of the results in Section 3.
Moreover, RL systems have a close affinity not only to the RGCL systems,

but also to the rule context L systems introduced in [4]. A particularly

valuable result of [4] that has no relative here is that every RGCL

language, and therefore every RL lanquage, is exponentially dense in the

following sense: A language is exponentially dense if there exist

constants ¢4 and Cy having the following property: For any n = 0
there exists a string u in L such that c]e(”'”C2 < Jul = c]e"CZ .

n
In [4] it was observed that the language L = {a2° | n =0} is context

17

sensitive but not exponentially dense. This language L 1is therefore
CS but not RL .

By using a standard method of automata theory [14, p. 18 and
ex. 4, p. 20] it can be shown that every RGCL scheme is congruent to
an RGCL scheme that has a strictly 2-testable control language.
Consequently we cannot restrict the relations generated by RGCL schemes
by placing local testability condition on the control languages of these
schemes. This is one reason we have preferred the RL formalism to the

RGCL formalism for this exposition.

18

5. A-Transducers and Decidability

Definition 5. An a-transducer T = (K, A, E, I, F) consists of

(1) finite non-empty sets K and A called the set of states and the
alphabet, respectively,

(2) a finite subset E of K x A* x A* x K called the set of edges,
and

(3) subsets I and F called the initial and final states, respectively.

Without loss of generality we have collapsed the usually
separately specified input and output alphabets into a single alphabet.

Let T = (K, A, E, I, F) be an a-transducer. Two edges given
in a specified order (p, u, v, g)(r, x, y, s) are abutted if q=1r .

A sequence (q , ups Vys G7)(ays Uy, Vs, 4p)...(q _y5 ups Vo5 q) of

abutted‘edges is a transduction with input UjUy...u and output

ViVpe .oV if 9 is in I and 9, isin F . For x in A* we
define Tx = {y 1in A* | there exists a transduction having input x and
output y} . A-transducers T and T' with alphabet A are equivalent
if Tx =T'x for all x in A* . With T = (K, A, E, I, F) we

associate the inverse a-transducer T'] = (K, A, E', I, F) where

J
edge of T . Note that u is in Ty precisely if v is in Tu .

(qi’ b, a, qj) is an edge of 17! precisely if (qi, a, b, q;) s an

Let S = (A, P, R) be an arbitrary RL scheme. Let M = M(S)
be the minimal state deterministic automaton that recognizes R . Since
the alphabet of M s the subset P of A x A* , M may alternately be
regarded as an a-transducer T(S) with A as alphabet. For this

a-transducer we have, for u, v in A* : v in T(S)u precisely if

19
u => Moreover, the same mother-daughter relations relating the
occurrences of symbols in u and v are determined by T(S) as by S ,

i.e. S and T(S) are congruent. Their virtual identity provides a

means for transferring algorithms known for a-transducers to the theory
of parallel generation of languages. The proofs of all the decidability
propositions in this section use this congruence of S with T(S) .

An RL scheme (A, P, R) is monotonic if whenever => v we
have |ul = [v| . The schemes of Examples 1, 2, and 4 in preceding
sections are monotonic.

Proposition 5. Monotonicity is decidable for RL schemes.

Proof. An RL scheme S 1is monotonic precisely if its associated
a-transducer T(S) s monotonic. The algorithm given in [9, Thm. 1] (or
see [11, Prop. II-1]) may be applied to decide the monotonicity of
T(S) . #

An RL system with axiom w 1is monotonic if whenever
w =>* y =>v we have |u| = |v| . An a-transducer with input alphabet A

is monotonic on a subset L of A* if whenever u 1is in L and v is

in Tu we have |u| = |v].

Proposition 6. Monotonicity is decidable for those RL systems

that generate context free languages.

Proof. Let G be an RL system for which L(G) is context free.
Let S be the scheme of G . Then G is monotonic precisely if T(S)

is monotonic on L(G) . Leguy-Cordellia [11, Prop. II-2] has given an
algorithm that may be used to decide whether an a-transducer is monotonic

on a context free language. Apply this algorithm to decide whether T(S)

20

is monotonic on L(G) . #

Proposition 7. The relation =>* 1is decidable for monotonic RL
schemes.

Proof. Let §S be a monotonic RL scheme having alphabet A and

let u and v be strings in A* . Let n be the number of strings,

x 5 in A* satisfying |u| = x| = |v] . Then u =>* v holds precisely

if u =>i v holds for some i satisfying O0<i<n . #

Corollary 1. Membership is decidable for monotonic RL systems.
#

An RL scheme S = (A, P, R) is propagating if, for a regular
expression representing R , no production of the form (a,) , where A
is the null string and a is in A , appears in the regular expression.
If S s reduced this is equivalent to requiring that P contains no
production of the form (a, A) . Thus the following assertion holds:

Propagativity of RL schemes is decidable.

An RL scheme S with aiphabet A 1is functional if for any
u in A* there is at most one v 1in A* such that u =>v . The

scheme is cofunctional (or codeterministic as defined in [8]) if for any

v in A* there is at most one u in A* such that u =>v . The
schemes of Examples 1 and 4 are both functional and cofunctional. The

scheme of Example 2 is cofunctional but not functional.

Proposition 8. Both functionality and cofunctionality are

decidable for RL schemes.
Proof. Since S and T(S) are congruent, S 1is functional

precisely if T(S) 1is functional (= single valued). Apply the algorithm

21

given in [2, Cor. 4] (see also [1, Thm. 1.2]) to decide functionality of
T(S) . Note that S is cofunctional precisely if T(S)-] is functional.
Consequently to decide the cofunctionality of S , apply the same
algorithm to decide the functionality of T(S)-] . #

An RL scheme S = (A, P, R) is deterministic if for each u

in A* there is at most one string (a1, v])...(an, vn) in R for which
CIRRRL I |

In the usual biological metaphor it is determinism in the sense
defined here that corresponds to the hypothesis: A cell in a specific
state embedded in a specific way in a configuration of cells in specified
states should have only one possible behavior. A. Lindenmayer [13] has

emphasized the central significance of deterministic models for develop-

ment of cell systems. Notice that a deterministic scheme must be

functional. However, the scheme (a, aa)(a, a)* U (a, a)*(a, aa) , for
example, is functional but not deterministic. The schemes of Examples 1
and 4 are deterministic.

Proposition 9. Determinism is decidable for RL schemes.

Proof. Let S = (A, P, R) be an RL scheme and T(S) the
associated a-transducer. Let T, be the automaton obtained from T(S)
by ignoring the output strings associated with the edges of T(S) . The
present proof and the proof of the next proposition require a feature of
T(S) not required by any of the other proofs in this article: T(S) was
obtained by re-interpreting a deterministic automaton M recognizing R
to be an a-transducer. Since M is deterministic, S is deterministic
precisely if T] is unambiguous (i.e. if no input string is accepted via

two distinct paths through T]). It can be decided algorithmically whether

22

the automaton T] is unambiguous ([3, §3] is one source of an algorithm
for deciding unambiguity of an automaton). #

An RL scheme S = (A, P, R) has deterministic passing if for

each v in A* there is at most one string (a1, v])...(an, vn) in R

for which VieesVp =V . A scheme that has deterministic parsing must be

cofunctional. However, the scheme (a, aa)(a, aa)* U (a, a)*(a, aa) is

cofunctional but does not have deterministic parsing. The schemes of
Examples 1, 2, and 4 have deterministic parsing.

Proposition 10. It is decidable whether an RL scheme has

deterministic parsing.
Proof. Let S = (A, P, R) be an RL scheme and T(S) the
associated a-transducer. Recall that T(S) is the a-transducer
interpretation of a deterministic automaton M recognizing R . Observe
that since M 1is deterministic, S has deterministic parsing precisely
if T(S)'] is single-accepting (i.e. if no input string is accepted via
two distinct paths through T(S)—]). Apply [2, Cor. 5] to decide if
T(S)‘] is single-accepting. #

Observe that RL schemes (A, P, R) and (A', P', R') are
congruent precisely if the regular languages R and R' are equal.
Since equality of regular expressions is decidable we have:

Congruence is decidable for RL schemes.

Two RL schemes S and S' are equivalent if they determine
the same direct derivation relations, i.e. if =>g = =>¢y . For
equivalence there is no requirement that S and S' give rise to the
same mother-daughter relations between symhol occurrences. Notice that

congruent RL schemes must be equivalent. However, the schemes

23

(a, aa)(a, a)* and (a, a)*(a, aa) are equivalent but not congruent.

Proposition 11. Equivalence of RL schemes is undecidable.

The proof of this Proposition will use the following construction.
Let T be an a-transducer with the property that the input string
associated with each of its edges is of length one, i.e. is an element of
A. Let P={(a, v) in A x A* | there are states p , q of T such
that (p, a, v, q) is an edge of T}. Then T may be viewed as an
automaton M with P as alphabet. Let R be the language, with
alphabet P , recognized by M . We associate with each such T the RL
scheme S(T) = (A, P, R) and we observe that T and S(T) are congruent.
Proof (of Prop. 11). Let T and T' be an arbitrary pair of
a-transducers each having the property that the length of the input string
associated with each edge is one. Let S(T) and S(T') be the
associated RL schemes. Since S(T) and S(T') are congruent to T
and T' , respectively, S(T) and S(T') are equivalent precisely if T
and T' are equivalent. The undecidability result of Griffiths [7]
concerning equivalence of transducers can now be applied to conclude that
equivalence of RL schemes is undecidable. #

In some significant special cases equivalence of RL schemes
can be decided:

Proposition 12. If either of two RL schemes is either functional

or cofunctional it can be decided whether the schemes are equivalent.
Proof. Let S and S' be RL schemes and let T(S) and T(S')
be the associated a-transducers. The following assertions are equivalent:

(1) S and S' are equivalent;

24

(2) T(S) and T(S') are equivalent;

(3) T(S)'] and T(S')-] are equivalent.

If one of the schemes is functional then either T(S) or T(S') is
functional and [2, Cor. 3] (see also [1, Cor. 1.3]) can be applied to
decide equivalence of T(S) and T(S!') . If one of the schemes is
cofunctional then either T(S)‘1 or T(S‘)-] is functional and [2,

Cor. 3] can be applied to decide equivalence of T(S)'] and T(S')'1 . #
Corollary 2. Equivalence is decidable for deterministic schemes.

#

The RL scheme§ that we regard as the most 1ikely
candidates for use as formal models of natural systems are those’thét are
deterministic or at least functional. The following result assures that
direct derivations can be calculated for these schemes with time and
space requirements linear in the length of the input string. A proof can
be given by analysing the operation of the a-transducer version T(S) of
an RL scheme S .

Proposition 13. For each RL scheme S = (A, P, R) there is a

Tinear-time linear-space algorithm which provides for each u in A*
either a v in A* for which u => v or the information that no such v

exists. #

25

6. Post Tag Systems and Undecidability

A1l of the undecidability results in this section will be
demonstrated by using Post tag systems and an undecidability result
concerning these systems that was proved by Minsky [15].

A Post tag system T = (B, f, s, p) consists of a finite

non-empty set B , a function f : B~ B* , a string s in B » and a
positive integer p . The tag system generates a sequence of strings in
B* according to the following iterative procedure. The initial string is
s . For the last string x of the sequence generated thusfar: If the
length of x s less than p the sequence terminates at this x H
otherwise X ﬁas as its successor the string obtained by deleting the
first p elements from the string xf(a) where a is the first symbo1
of x .

M. Minsky proved in [15] that the problem of determining

whether an arbitrarily given Post tag system generates a terminating

sequence is undecidable. This undecidability result is used in the proof

of each of the propositions of this section.

Let T=(B, f, s, p) be an arbitrary Post tag system.
With T we associ=*e the RL system G(T) with alphabet B U {0, 1}
(where we assume that 0 and 1 are symbols not in B), axiom sl and

scheme:

U0, 0)%(x, 0)..u(x;, 0)(1, 1) | 1< <p, XyseoeaXs in B} U
W10, 0)*(xps 0)ou (x5 O)IULys ¥) |y in BII*(1, £(x)1) |

26

Observe that G(T) generates a string of the form 0*1 precisely if T
terminates. The domain of the scheme contains no string of the form 0*1,
but every string in the range of the scheme that is not of the form 0*]
does Tie in the domain of the scheme. Thus the following assertions are
equivalent:

(1) T does not terminate; and

(2) G(T) 1is a complete RL system.

Since the scheme of G(T) is propagating and deterministic we have:

Proposition 14. Completeness is undecidabie for RL systems

having propagating deterministic schemes. #

In all further propositions in this section it may be assumed

that the schemes are complete. We specify only enough of each scheme to

define a complete system. These schemes may then be completed as schemes
as described in Section 2. The scheme completion method will not alter
the validity of the various hypotheses on schemes appearing in the
propositions, such as determinism, cofunctionality, etc.

Let G](T) be the RL system that is identical with G(T)
except that the term (0, X)*(1, A) 1s adjoined to the scheme. Note that
the only length deminishing term of the scheme, (0, A)*(1, A) , will be
employed precisely if a string of the form 0*1 is generated and that
when it is employed the empty string, X , is produced. Thus the follow-
ing assertions are equivalent:

(1) T does not terminate;
(2) G1(T) is monotonic; and

(3) G](T) does not generate the null string.

27

Since the scheme of G1(T) is deterministic we have:

Proposition 15. For the class of RL systems, G , having

complete deterministic schemes the following are undecidable:
(1) monotonicity of G ,
(2) whether X s in L(G) , and
(3) the membership relation for L(G) . #
Corollary 3. The relation =>* is undecidable for complete
deterministic schemes. #
An RL system G = (A, P, R, w) is propagating if whenever
(a1, v])...(a , vn) is in R with aj...a in L(G) we have v £ A

n
for 1<isn.

1A

Let GZ(T) be the RL system that is identical with G(T)
except that the term (0, 0)*[(1, 11) U (1, 111)(1, ») U (1, 1)3] is
adjoined to the scheme. Note that the production (1, A) will be employed
precisely in the case that a string of the form 0*1 is generated by
GZ(T) . Thus the following assertions are equvialent:

(1) T does not terminate; and
(2) 'GZ(T) is propagating.
Since the scheme of GZ(T) is monotonic and deterministic we have:

Proposition 16. Propagativity is undecidable for RL systems

having complete monotonic deterministic schemes. #
An RL system G with alphabet A is functional if for each

u in L(G) there is at most one v in A* for which u =>v .

28

Let G,(T) be the RL system that is identical with G(T)

X
except that the term (0, Q)*[(1, 1) U (1, 11) U (1, 1)2] is adjoined
to the scheme. Note that it is precisely from strings of the form 0%*]
that more than one string can be directly derived. Thus the following
assertions are equivalent:

(1) T does not terminate; and

(2) G4(T) s functional.

Since the scheme of G3(T) is propagating we have:

Proposition 17. Functionality is undecidable for RL systems

having complete propagating schemes. #

An RL system G = (A, P, R, w) is deterministic if for each

u in L(G) there is at most one string (a1, v])...(an, vn) in R for
which ..., T U .

Let G4(T) be identical with G(T) except that the term
(0, 0)*[(7, 1) u (1, VY(Q, 1) U (1, 11)(1, 1) U (1, 1)3] is adjoined to
the scheme. Observe that the resulting scheme is functional. However, if
a string of the form 0*1] 1is generated by the system then a string of
the form 0*11 will be generated and such a string will give rise to a
string of the form 0*111 in two distinct ways, i.e., with two distinct
mother-daughter relations. Thus the following assertions are equivalent:
(1) T does not terminate; and
(2) G4(T) is deterministic.
Since the scheme of G4(T) is also propagating we have:

Proposition 18. Determinism is undecidable for the class of RL

systems having complete propagating functional schemes. #

29

An RL system G 1is cofunctional if for each v in L(G)

there is at most one u in L(G) for which u => v .

An RL system G = (A, P, R, w) has deterministic parsing if

for each v 1in L(G) there is at most one string
(a1, v1)...(an, Vn) in R for which ay...a is in L(G) and
Let G5(T) be identical with G(T) except that the term
(0, 0)*(1, 1) 1is adjoined to the scheme. The following assertions are
equivalent:
(1) T does not terminate;
(2) L(GS(T)) is infinite;
(3) GS(T) is cofunctional; and
(4) G5(T) has deterministic parsing.
Since the scheme of GS(T) is propagating and deterministic we have:

Proposition 19. For the class of RL systems having complete

propagating deterministic schemes, the following properties are
undecidable:
(1) - the property of generating a finite language,
(2) cofunctionality, and
(3) the property of having deterministic parsing. #

Two RL systems G = (A, P, R, w) and G' = (A', P', R', w')
are congruent if they generate the same language L and for each string
ay...a, in L, a string (a], v])...(an, vn) is in R precisely if it

is in R' . Congruent systems needn't have the same axiom. The system

obtained by adjoining to the scheme (a, b) U (b, a) the axiom b is

30

congruent to the system obtained by adjoining to the same scheme the
axiom a .

Let G5(T) be identical with G(T) except that the term
(6, O)*x[(1, 11) u (1, TY(1, VY U (1, 1)3] is adjoined to the scheme.
Let G7(T) be identical with G(T) except that the term
(0, 0)*[(1, 1) u (1, Y1, 1) U (1, 1)3] is adjoined to the scheme.
The following assertions are equivalent:
(1) T does not terminate; and
(2) GG(T) and G7(T) are congruent.
Since the schemes of GG(T) and G7(T) are propagating, deterministic,
and equivalent we have:

Proposition 20. Congruence is undecidable for pairs of RL

systems having the same axiom and having equivalent complete propagating
deterministic schemes. #

Since the language and sequence equivalence problem for PDIL
systems are undecidable [17] these problems are also undecidable for RL

systems having complete propagating deterministic schemes.

31

Concluding Remarks

As noted at the end of Section 2, language generation schemes that
include both parallel and sequential rewriting are under study by
Rozenberg and others. Can the RL formalism contribute to this work?
To what extent does RL thebry overlap these other models? Do the
decision procedures and undecidability results of RL theory yield
or suggest similar results for these new models?

As shown in Section 3, IL schemes are identifiable with RL schemes
that are strictly locally testable and yet there are strictly
2-testable RL schemes that are not congruent to any IL scheme.
This suggests the class of strictly 2-testable RL schemes (systems
and languages) as an object of study. This class could be taken as
the first step in a sequence that would progress through a hierarchy
envolving RL schemes which as regular languages over alphabets of
ordered pairs are non-counting [14]. In the biological metaphor a
2-testable RL scheme may arise from consistency restrictions on
processes taking place concurrently in adjacent cells.

Are there phenomena of biological development that allow only highly
artificial TIL models but allow simpler or more intuitively plau-
sible (deterministic) RL models? (The RL systems are capable of
expressing global constraints on development.)

A11 regular languages are RL but not all CS languages are RL

[4]. Are all CF languages RL ?

32

We have made no investigation of questions arising from a partition

of the alphabet into terminals and non-terminals. Such questions may
have significance even for topic 1 listed above. We do note however
that every recursively ennumerable language is EIL [17] and therefore

also ERL .

33

References

1.

10.

11.

J. Berstel, "Transductions and Context-Free Languages", B.G. Feubner,
Stuttgart, 1979.

M. Blattner and T. Head, Single-valued a-transducers, J. Computer

and System Sciences, 15 (1977), 310-327.

M. Blattner and T. Head, Automata that recognize intersections of
free monoids, Information and Control, 35 (1977), 173-176.

K. Culik, II and J. Opatrny, Context in parallel rewriting, in "L
Systems", G. Rozenberg and A. Salomaa, eds., Springer-Verlag, New York,
1974.

A. de‘Luca and A. Restivo, A characterization of strictly locally

testable languages and its application to subsemigroups of a free

semigroup, Information and Control, 44 (1980), 300-319.

S. Ginsburg, "Algebraic and Automata-Theoretic Properties of Formal
Language," North-Holland, American Elsevier, New York, 1975.

T.V. Griffiths, The unsolvability of the equivalence problem for
A-free non-deterministic generalized machines, J. Association for
Computing Machinery, 15 (1968), 409-413.

T. Head, Codeterministic Lindenmayer schemes and systems, J. Computer
and System Sciences, 19 (1979), 203-210.

T. Head, A-transducers and the monotonicity of IL schemes, J.
Computer and System Sciences, in press.

G.T. Herman and G. Rozenberg, "Developmental Systems and Languages,"
North-Holland, Amsterdam, 1975.

J. Leguy-Cordellier, "Transductions Rationelles Decroissantes et

Susbstitution," These 32me cycle, Université de Lille (1980).

12.

13.
14.

15.

16.

17.

18.

34

A. Lindenmayer, Developmental algorithms - an application of formal
language theory to biology, Materialienhefte IX, "Gestaltbildung -
processe 3", Schwerpunkt Mathematisierung der Einzelwissenschaften,
Universitdt Bielefeld, (1978), 27-44.

A. Lindenmayer, Personal communication (1980).

R. McNaughton and S. Papert, "Counter-Free Automata", M.I.T. Press,
Cambridge, Massachusetts, 1971.

M.L. Minsky, Recursive unsolvability of Post's problem of "TAG" and
other topics in the theory of Turing Machines, Annals of Mathematics,
74 (1961), 437-455.

G. Rozenberg, Selective substitution grammars (towards a framework
for rewriting systems) Part I: Definitions and examples, EIK, 13
(1977), 455-463.

G. Rozenberg and A. Salomaa, "“The Mathematical Theory of L Systems,"
Academic Press, New York, 1980.

G. Rozenberg and D. Wood, Context-free grammars with selective

rewriting, Acta Informatica, 13 (1980), 257-268.

	

